JP2550253B2 - Method for producing oxide high temperature superconductor - Google Patents

Method for producing oxide high temperature superconductor

Info

Publication number
JP2550253B2
JP2550253B2 JP4055203A JP5520392A JP2550253B2 JP 2550253 B2 JP2550253 B2 JP 2550253B2 JP 4055203 A JP4055203 A JP 4055203A JP 5520392 A JP5520392 A JP 5520392A JP 2550253 B2 JP2550253 B2 JP 2550253B2
Authority
JP
Japan
Prior art keywords
precursor
temperature
reba
composition
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4055203A
Other languages
Japanese (ja)
Other versions
JPH05301797A (en
Inventor
充 森田
圭一 木村
勝良 宮本
清志 沢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to PCT/JP1991/000769 priority Critical patent/WO1991019029A1/en
Priority to JP3162360A priority patent/JP2556401B2/en
Priority to US07/834,554 priority patent/US5308799A/en
Priority to EP91910631A priority patent/EP0486698B1/en
Priority to DE69114445T priority patent/DE69114445T2/en
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP4055203A priority patent/JP2550253B2/en
Priority to JP4143670A priority patent/JPH07106906B2/en
Publication of JPH05301797A publication Critical patent/JPH05301797A/en
Application granted granted Critical
Publication of JP2550253B2 publication Critical patent/JP2550253B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は酸化物超電導体の製造方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an oxide superconductor.

【0002】[0002]

【従来の技術】YBaCu7−y型超電導体は溶
融法の一種であるQMG(Quench and Melt Growth)法により77K、1Tの条件において1
4 A/cm2 以上の臨界電流密度(Jc)を有しており実
用に耐える特性を有していることが明らかになっている
(New Superconducting Materials Foram News No.10.
(1988)P15)。また、これらのQMG材料の大型化、R
E元素の組合せに関する研究もおこなわれている。(Ph
yica C162−164(1989)PP1217−1
218)。これらはY元素一種類あるいは、種々のRE
元素を含んだQMG材の温度勾配中で一方向成長させて
結晶を大型化するものである。
2. Description of the Related Art A YBa 2 Cu 3 O 7-y type superconductor is manufactured under the conditions of 77K and 1T by a QMG (Quench and Melt Growth) method, which is a kind of melting method.
It has been revealed that it has a critical current density (Jc) of 0 4 A / cm 2 or more, and has characteristics to withstand practical use (New Superconducting Materials Foram News No.10.
(1988) P15). In addition, the size of these QMG materials is increased, and R
Studies on combinations of E elements have also been conducted. (Ph
yica C162-164 (1989) PP1217-1
218). These are one type of Y element or various RE
The crystal is enlarged by unidirectionally growing it in a temperature gradient of a QMG material containing an element.

【0003】[0003]

【発明が解決しようとする課題】上記従来の技術は超電
導物質である、211相が微細に分散した単結晶状の1
23相の生成は徐冷等の冷却による偶然性によって決ま
ってしまう。そのため結晶の方位および結晶の成長を制
御することはできなかった。大型の単結晶状の材料を作
製するためには、結晶方位を制御することは技術的に重
要になる。本発明はこの課題にかんがみ、高い生成温度
を有するRE元素の組成を有する種結晶を用いることに
より核生成、結晶方位および成長をコントロールし、大
型のREBaCu7-x 結晶を得る方法を提供する
ものである。
The above-mentioned prior art is a superconducting substance, that is, a single crystal in which 211 phases are finely dispersed.
The formation of the 23 phase is determined by the contingency caused by cooling such as slow cooling. Therefore, the crystal orientation and crystal growth could not be controlled. Controlling the crystal orientation is technically important for producing a large single crystal material. In view of this problem, the present invention controls the nucleation, crystal orientation and growth by using a seed crystal having a composition of RE element having a high formation temperature to obtain a large REBa 2 Cu 3 O 7-x crystal. Is provided.

【0004】[0004]

【課題を解決するための手段】本発明は以下に示す超電
導材料の製造方法を特徴とするものである。即ち、金属
元素比でBa元素の割合が25 mol%から75 mol%で
あるBaおよびCu元素を含む酸化物体中にRE(Yを
含む1種類の希土類元素またはそれらの組合せ)を有す
るRE2 3 が体積率で5%から50%分散した、前駆
体全体に同一なRE組成を有する前駆体を、酸化性雰囲
気中で一旦、950℃から1350℃までの温度領域に
加熱し前記前駆体を半溶融状態にした後、900℃から
1100℃の領域に冷却し、前駆体中のREBa2 Cu
3 7-x 相の生成温度のRE組成よりも高い生成温度を
有するRE組成のREBa2 Cu3 7-x 相の単結晶状
の種結晶を前駆体に接触させ、種結晶と同じ任意に方位
を有する超電導相を800℃から1060℃の温度領域
まで均一温度中あるいは温度勾配中で徐冷あるいは保定
することによってREBa2 Cu3 7-x を連続的に成
長させることを特徴とする。
The present invention is characterized by the following method for producing a superconducting material. That is, RE 2 O having RE (one rare earth element including Y or a combination thereof) in an oxide body containing Ba and Cu elements in which the ratio of Ba element is 25 mol% to 75 mol% in terms of metal element ratio. Precursor in which 3 is dispersed 5% to 50% by volume
A precursor having the same RE composition throughout the body is once heated in an oxidizing atmosphere to a temperature range of 950 ° C. to 1350 ° C. to bring the precursor into a semi-molten state, and then a temperature range of 900 ° C. to 1100 ° C. REBa 2 Cu in the precursor after cooling to
3 O 7-x phase of the production temperature of the single crystalline seed crystals of REBa 2 Cu 3 O 7-x phase of RE composition having a high product temperatures than RE composition is contacted with the precursor, the same optional seed crystal Is characterized in that REBa 2 Cu 3 O 7-x is continuously grown by gradually cooling or retaining a superconducting phase having an orientation in the temperature range of 800 ° C. to 1060 ° C. in a uniform temperature or a temperature gradient. .

【0005】また、金属元素比でBa元素の割合が25
mol%から75mol%であるBaおよびCu元素を含む酸化
物体中にRE(Yを含む1種類の希土類元素またはそれ
らの組合せ)を有するREが体積率で5%から5
0%分散した前駆体Mと前記前駆体Mを支持する支持材
との間に、前記前駆体M中のREBaCu7−
相のRE組成よりも結晶生成温度の高いRE組成を有す
る別の前駆体Hと前記前駆体M中のREBaCu
7−xのRE組成よりも結晶生成温度の低いRE組成を
有する別の前駆体Lとを前駆体M−前駆体L−前駆体H
−支持材の順番で配置したのちに、上記の熱処理を施す
方法により酸化物高温超電導体を作製することを特徴と
する。
The ratio of Ba element to metal element is 25
RE 2 O 3 having RE (one kind of rare earth element including Y or a combination thereof) in an oxide body containing Ba element and Cu element in an amount of 5% to 5% by volume.
The REBa 2 Cu 3 O 7- x in the precursor M is interposed between the precursor M in which 0% is dispersed and the support material that supports the precursor M.
REBa 2 Cu 3 O in another precursor H having the RE composition having a higher crystal formation temperature than the RE composition of the phase and the precursor M
Another precursor L having a RE composition having a lower crystal formation temperature than the RE composition of 7-x , precursor M-precursor L-precursor H
-A high-temperature oxide superconductor is produced by the method of performing the above heat treatment after the support materials are arranged in this order.

【0006】さらに、金属元素比でBa元素の割合が2
5mol%から75mol%であるBaおよびCu元素を含む酸
化物体中にRE(Yを含む1種類の希土類元素またはそ
れらの組合せ)を有するREが体積率で5%から
50%分散した前駆体の表面に前記前駆体中のREBa
Cu7−x相の結晶生成温度よりも低い結晶生成
温度のRE組成を有するREを含む粉末を塗布した後
に、上記の熱処理を施す方法により酸化物高温超電導体
を作製することを特徴とする。
Further, the ratio of Ba element to the metal element ratio is 2
Precursor of RE 2 O 3 having RE (one kind of rare earth element including Y or a combination thereof) of 5% to 50% by volume in an oxide body containing 5 mol% to 75 mol% of Ba and Cu elements REBa in the precursor on the surface of the body
After applying the powder containing RE having the RE composition of the low crystalline product temperature than the crystalline product temperature of 2 Cu 3 O 7-x phase, characterized by forming the oxide high-temperature superconductor according to the method of applying the heat treatment And

【0007】[0007]

【作用】前駆体を再加熱して得られる液相成分は、極端
にBaまたはCu成分に偏った場合、211相が生成し
た後の液相成分がさらに偏ることになり、その後の超電
導相である123相の結晶成長に悪い影響を及ぼし、安
定したファセットを持った結晶成長が起らなくなる。そ
のため、BaおよびCu元素を含む酸化物体中のBa元
素の割合を25%から75%に限定した。また、RE
の割合は、5%より低い場合211相の生成量が少
なくなるため、形状が保てなくなる。また、50%より
多い場合液相成分が少なくなり、123相の成長が十分
進まず大きな結晶が得られなくなる。これらの理由から
5%から50%に限定した。
When the liquid phase component obtained by reheating the precursor is extremely biased to the Ba or Cu component, the liquid phase component after the 211 phase is generated is further biased, and the liquid phase component in the subsequent superconducting phase is This adversely affects the crystal growth of a certain 123 phase, and crystal growth with stable facets does not occur. Therefore, the proportion of Ba element in the oxide body containing Ba and Cu elements is limited to 25% to 75%. Also, RE 2
If the proportion of O 3 is lower than 5%, the amount of 211 phase produced is small, and the shape cannot be maintained. On the other hand, if it exceeds 50%, the liquid phase component becomes small, and the growth of the 123 phase does not proceed sufficiently, so that a large crystal cannot be obtained. For these reasons, it is limited to 5% to 50%.

【0008】前記の条件を満たす前駆体は重ねクエンチ
(溶融体を銅板等で繰り返し急冷し、逐次厚い前駆体を
える前駆体の作製方法)によって作製してもよく、ま
た、Y,Ba,Cuを含む粉末を加圧成形したものでも
よい。
The precursor satisfying the above-mentioned conditions may be produced by lap quenching (a method for producing a precursor in which a melt is repeatedly rapidly cooled with a copper plate or the like to obtain a thick precursor successively), and Y, Ba, Cu It may be obtained by pressure molding a powder containing.

【0009】REBaCu7−xの成長温度は含
まれるREの種類およびそれらの含有率で決まり、大気
中においては、最も高いSm系で約1060℃、Yおよ
びHoは約1000℃、低い方ではYbの約900℃で
ある。原子番号の小さいイオン半径の大きいものほど高
い生成温度を有する。また複数のRE元素を混合した場
合、全RE元素に占めるREのモル分率がm,RE
のモル分率がm・・・の組成を有する結晶の生成温
度Tg[RE(m),RE(m),・・・]
は、ほぼ次のような式で表わすことができる。
The growth temperature of REBa 2 Cu 3 O 7-x is determined by the types of REs contained and their contents. In the atmosphere, the highest Sm system is about 1060 ° C., Y and Ho are about 1000 ° C., The lower one is about 900 ° C. of Yb. The smaller the atomic number and the larger the ion radius, the higher the production temperature. When a plurality of RE elements are mixed, the molar fraction of RE 1 in all RE elements is m 1 , RE
Generating second mole fraction of crystals having the composition m 2 · · · temperature Tg [RE 1 (m 1) , RE 2 (m 2), ···]
Can be expressed by the following equation.

【0010】 Tg=Tg(RE)×m+Tg(RE)×Tg(RE)×m・・) ただし、この時REは、Sm,Eu,Gd,Tb,D
y,Ho,Er,Yb,Lu,Yである。また、La系
に関しては初晶は(La1−xBaCuOにな
り、Nd系に関してはNd1−xBa2−xCu
7−xとなる。しかし、La,Ndは他のRE系に添加
することにより生成温度を高める働きを持つ。そのた
め、より高い生成温度Tgを有する組成のREBa
7−xの結晶は、より低い生成温度Tgを有する
半溶融状態の前駆体の種結晶として有効であることが分
かる。
Tg = Tg (RE 1 ) × m 1 + Tg (RE 2 ) × Tg (RE 2 ) × m 2 ··· However, at this time RE is Sm, Eu, Gd, Tb, D
y, Ho, Er, Yb, Lu, Y. Further, the primary crystal with respect to La system becomes (La 1-x Ba x) 2 CuO 4, with respect to Nd-based Nd 1-x Ba 2-x Cu 3 O
7-x . However, La and Nd have a function of increasing the production temperature by adding them to other RE system. Therefore, REBa 2 C having a composition having a higher generation temperature Tg is used.
It can be seen that the crystal of u 3 O 7-x is effective as a seed crystal of the precursor in a semi-molten state having a lower formation temperature Tg.

【0011】前駆体の単結晶温度は、Lu系123相が
充分分解する温度950℃以上とし、またSm系の21
1相が分解して形状が保てなくなる温度以下、1350
℃と限定した。また、種付け温度は、Yb系123相お
よびLa,Ndを添加したSm系123結晶を種結晶と
して用いることが可能な温度領域として900℃から1
100℃とした。
The single crystal temperature of the precursor is 950 ° C. or higher at which the Lu-based 123 phase is sufficiently decomposed, and the Sm-based 21 is used.
Below the temperature at which one phase decomposes and the shape cannot be maintained 1350
Limited to ℃. The seeding temperature is 900 ° C. to 1 as a temperature range in which the Yb-based 123 phase and the Sm-based 123 crystal added with La and Nd can be used as a seed crystal.
It was 100 ° C.

【0012】また、123結晶はその構造が複雑である
ため結晶化の際のエントロピーの変化が大きく、比較的
大きな過冷状態にあっても核生成しにくく、成長が充分
終了していないことがある。そのため、保定または徐冷
終了温度はSm系123相が成長する1060℃からL
u系の123相が充分し終える温度800℃と限定し
た。徐冷速度は5℃/h以下が望ましい。
Further, since 123 crystal has a complicated structure, entropy changes greatly during crystallization, it is difficult for nucleation even in a relatively large supercooled state, and growth is not completed sufficiently. is there. Therefore, the retention or gradual cooling end temperature is from 1060 ° C at which the Sm-based 123 phase grows to L
The temperature was limited to 800 ° C. at which the 123 phase of the u system was completely finished. The slow cooling rate is preferably 5 ° C./h or less.

【0013】発明者は、これらの知見を結晶成長に応用
し、種付けと温度制御により、QMG結晶の大型化を行
った。第一項目は、比較的高い生成温度の123相を含
む超電導体を用いて種結晶とし、前駆体に接触させるこ
とによって超電導体の結晶の核生成および方位を制御し
大型のQMG結晶を得る方法を与えるものである。第二
項目は、前駆体と支持材との間に前駆体Hを前駆体の液
相成分が支持材へ流れ出すのを防ぐバリアーとして、ま
た前駆体Lを、前駆体HでできたQMG結晶が成長して
種結晶から成長した結晶の成長を妨げることを防止する
バリアー配置し大型のQMG結晶を得る方法を与えるも
のである。第三項目は、前駆体の表面での核生成を抑制
しより安定に種結晶からの結晶成長を行わせる方法を与
えるものである。
The inventor applied these findings to the crystal growth, and increased the size of the QMG crystal by seeding and temperature control. The first item is a method for obtaining a large-sized QMG crystal by controlling a nucleation and orientation of a crystal of a superconductor by making a seed crystal by using a superconductor containing a 123 phase having a relatively high generation temperature and contacting with a precursor. Is to give. The second item is that the precursor H is a barrier between the precursor and the support material to prevent the liquid phase component of the precursor from flowing out to the support material, and the precursor L is a QMG crystal made of the precursor H. The present invention provides a method for obtaining a large-sized QMG crystal by arranging a barrier that prevents the growth of a crystal grown and growing from a seed crystal. The third item is to provide a method for suppressing the nucleation on the surface of the precursor and allowing more stable crystal growth from the seed crystal.

【0014】[0014]

【実施例】【Example】

(実施例1)Y系123相粉末にY系211相を20wt
% 添加した(Tg:1000℃)後、1400℃で加熱
溶融した後、銅板で繰り返し急冷し、10層の前駆体を
作製した。この前駆体を1200℃に再急加熱した後、
1040℃に保持した。1040℃で保持している間に
Sm系の種結晶(Tg:1060℃)を半溶融状態の前
駆体の上に乗せ種付けを行った。その後、950℃まで
1℃/hで徐冷しY系の123相を成長させた。図1に
得られた試料の結晶の様子を示す。種付けしたところか
ら離れたところに僅かに結晶方位の異なる結晶があるも
のの、種結晶と同一の方位を有する40cm3 程度の大き
さの結晶が得られた。
(Example 1) 20 wt% of Y type 211 phase was added to Y type 123 phase powder.
% (Tg: 1000 ° C.), heated and melted at 1400 ° C., and repeatedly quenched with a copper plate to prepare a 10-layer precursor. After reheating the precursor to 1200 ° C. again,
Hold at 1040 ° C. While holding at 1040 ° C., Sm-based seed crystal (Tg: 1060 ° C.) was placed on the semi-molten precursor to perform seeding. Then, the system was gradually cooled to 950 ° C. at 1 ° C./h to grow a Y-based 123 phase. FIG. 1 shows a crystal state of the obtained sample. Although a crystal having a slightly different crystal orientation was located away from the seeded crystal, a crystal having a size of about 40 cm 3 having the same orientation as the seed crystal was obtained.

【0015】(実施例2)Er,BaCuO
CuOの粉末をEr:Ba:Cuの元素比が4:5:7
になるよう混練した後、成形し直径5cm、厚さ2.5cm
前駆体(Tg:980℃)をえた。この前駆体を500
℃/hで1150℃まで昇温し、20分保持した後、1
040℃まで冷却してSm系の種結晶(Tg:1060
℃)により種付けを行った。その後、910℃まで1℃
/hで徐冷しEr系の123相を成長させた。図2に得
られた試料の結晶の様子を示す。種付けしたところから
離れたところに僅かに核生成しているが、40cm3 程度
の大きな結晶が得られた。
(Embodiment 2) Er 2 O 3 , BaCuO 2 and CuO powders were mixed at an element ratio of Er: Ba: Cu of 4: 5: 7.
After kneading so that it becomes uniform, it is molded and has a diameter of 5 cm and a thickness of 2.5 cm.
A precursor (Tg: 980 ° C.) was obtained. 500 of this precursor
C./h to 1150.degree. C., hold for 20 minutes, then
After cooling to 040 ° C., an Sm-based seed crystal (Tg: 1060
Seeding was carried out according to (.degree. C.). Then 1 ℃ up to 910 ℃
/ H was gradually cooled to grow an Er-based 123 phase. The appearance of crystals of the obtained sample is shown in FIG. Large nucleation of about 40 cm 3 was obtained, although nucleation was slightly generated at a distance from the seeded place.

【0016】(実施例3)YbがYに対して20mol%含
む123相粉末に211相粉末を20wt% 添加した後、
1400℃で加熱溶融した後、銅板で繰り返し急冷し、
10層の前駆体(Tg:980℃)を作製した。この前
駆体の下にハンマークエンチにより作製したYb系の一
層の前駆体(Tg:900℃)を配置し、その下にSm
系の前駆体(Tg:1060℃)を配置し、白金の支持
材の上に置いた。その後、1200℃に再急加熱した
後、1025℃に保持した。1025℃で保持している
間にSmにNdが20mol%含む系の種結晶(Tg:10
70℃)を半溶融状態の前駆体の上に乗せ種付けを行っ
た。その後、920℃まで1℃/hで徐冷し123相を
成長させた。図3に得られた試料の結晶の様子を示す。
種付けしたところから結晶が成長し、60cm3 程度の大
きな結晶が得られた。
(Example 3) After adding 211 wt% of 211 phase powder to 123 phase powder containing 20 mol% of Yb with respect to Y,
After heating and melting at 1400 ° C, repeatedly quenching with a copper plate,
A 10-layer precursor (Tg: 980 ° C.) was prepared. A Yb-based one-layer precursor (Tg: 900 ° C.) produced by hammer quench is placed under this precursor, and Sm is placed under the precursor.
The system precursor (Tg: 1060 ° C.) was placed and placed on a platinum support. After that, it was rapidly heated again to 1200 ° C. and then kept at 1025 ° C. Seed crystal (Tg: 10) containing 20 mol% of Nd in Sm while holding at 1025 ° C.
(70 ° C.) was placed on the semi-molten precursor to perform seeding. Then, it was gradually cooled to 920 ° C. at 1 ° C./h to grow 123 phase. FIG. 3 shows the crystal state of the obtained sample.
Crystals grew from the seeding, and large crystals of about 60 cm 3 were obtained.

【0017】(実施例4)Ho,BaCuO
CuOの粉末をHo:Ba:Cuの元素比が4:5:7
になるように混練した後、成形し、直径5cm、厚さ4cm
の前駆体(Tg:990℃)を得た。この前駆体の下に
ハンマークエンチにより作製したYb系の一層の前駆体
(Tg:900℃)を配置し、その下にSm系の前駆体
(Tg:1060℃)を配置し、白金の支持材の上に置
いた。またさらに、前駆体の表面にYbBaCu
7−xの粉末(Tg:900℃)を塗布した後、この前
駆体を500℃/hで1150℃まで昇温し20分保持
した後、1040℃まで冷却してSm系の種結晶(T
g:1060℃)によって種付けを行った。その後、9
10℃まで1℃/hで徐冷し、Ho系の123相を成長
させた。図4に得られた試料の結晶の様子を示す。種付
けしたところから、80cm3 程度の大きな結晶が得られ
た。
(Embodiment 4) Ho 2 O 3 , BaCuO 2 and CuO powders are mixed in a Ho: Ba: Cu element ratio of 4: 5: 7.
After kneading so that it becomes, it is molded and has a diameter of 5 cm and a thickness of 4 cm.
To obtain a precursor (Tg: 990 ° C.). A Yb-based single layer precursor (Tg: 900 ° C.) produced by hammer quench is placed under this precursor, and an Sm-based precursor (Tg: 1060 ° C.) is placed under the precursor, and a platinum support material is provided. Put it on. Furthermore, YbBa 2 Cu 3 O is formed on the surface of the precursor.
After applying 7-x powder (Tg: 900 ° C.), the precursor was heated to 1150 ° C. at 500 ° C./h and held for 20 minutes, and then cooled to 1040 ° C. to obtain a Sm-based seed crystal (Tm).
(g: 1060 ° C.). Then 9
It was gradually cooled to 10 ° C. at 1 ° C./h, and a Ho-based 123 phase was grown. The appearance of crystals of the obtained sample is shown in FIG. From seeding, a large crystal of about 80 cm 3 was obtained.

【0018】[0018]

【発明の効果】以上説明したごとく本発明は高臨界電流
密度のバルク材の大型化を容易にするもので、各分野で
の応用が可能であり、極めて工業的効果が大きい。具体
例としては、超電導マグネット、超電導磁気シールド、
超電導ベアリングなどが挙げられる。
INDUSTRIAL APPLICABILITY As described above, the present invention facilitates the enlargement of a bulk material having a high critical current density, can be applied in various fields, and has a great industrial effect. As a specific example, a superconducting magnet, a superconducting magnetic shield,
Examples include superconducting bearings.

【図面の簡単な説明】[Brief description of drawings]

【図1】Sm系の種結晶を用いて作製したY系の大型結
晶の断面および外観スケッチである。
FIG. 1 is a cross-sectional view and appearance sketch of a large Y-type crystal produced using an Sm-based seed crystal.

【図2】Sm系の種結晶を用いて作製したEr系の大型
結晶の断面および外観スケッチである。
FIG. 2 is a cross-sectional view and a sketch of the appearance of a large Er-based crystal produced using an Sm-based seed crystal.

【図3】Sm−Nd系の種結晶とYbおよびSm系の前
駆体をバリアーとして用いて作製したYb−Y系の大型
結晶の断面および外観スケッチである。
FIG. 3 is a cross-sectional view and appearance sketch of a large Yb-Y-based crystal produced by using a Sm-Nd-based seed crystal and Yb and Sm-based precursors as a barrier.

【図4】Sm系の種結晶とYbおよびSm系の前駆体を
バリアーとして用い、さらにHo系前駆体にYb系の1
23粉末を塗布して作製したHo系の大型結晶の断面お
よび外観スケッチである。
FIG. 4 uses a Sm-based seed crystal and a Yb and Sm-based precursor as a barrier, and further uses a Yb-based 1 as a Ho-based precursor.
23 is a cross-sectional view and appearance sketch of a Ho-based large-sized crystal produced by applying 23 powders.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C30B 17/00 ZAA C30B 17/00 ZAA H01B 12/00 ZAA H01B 12/00 ZAA H01L 39/24 ZAA H01L 39/24 ZAAB (72)発明者 沢野 清志 神奈川県川崎市中原区井田1618番地 新 日本製鐵株式会社 第1技術研究所内 (56)参考文献 特開 平2−208286(JP,A)─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Internal reference number FI Technical indication C30B 17/00 ZAA C30B 17/00 ZAA H01B 12/00 ZAA H01B 12/00 ZAA H01L 39/24 ZAA H01L 39/24 ZAAB (72) Inventor Kiyoshi Sawano 1618 Ida, Nakahara-ku, Kawasaki-shi, Kanagawa Shin Nippon Steel Co., Ltd. Technical Research Institute No. 1 (56) Reference JP-A-2-208286 (JP, A)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 金属元素比でBa元素の割合が25 mol
%から75 mol%であるBaおよびCu元素を含む酸化
物体中にRE(Yを含む1種類の希土類元素またはそれ
らの組合せ)を有するRE 2 3 が体積率で5%から5
0%分散した、前駆体全体に同一なRE組成を有する前
駆体を酸化性雰囲気中で一旦、950℃から1350℃
までの温度領域に加熱し前記前駆体を半溶融状態にした
後、900℃から1100℃の領域に冷却し、前駆体中
のREBa2 Cu3 7-x 相の生成温度のRE組成より
も高い生成温度を有するRE組成のREBa2 Cu3
7-x 相の単結晶状の種結晶を前駆体に接触させ、種結晶
と同じ任意に方位を有する超電導相を800℃から10
60℃の温度領域まで均一温度中あるいは温度勾配中で
徐冷あるいは保定することによってREBa2 Cu3
7-x を連続的に成長させることを特徴とする酸化物高温
超電導体の製造方法。
1. The ratio of Ba element to metal element is 25 mol.
% -75 mol% Ba and Cu elemental oxidation
RE (Y containing one kind of rare earth element or its
RE 2 O 3 having a volume ratio of 5% to 5%
Before having the same RE composition throughout the precursor, 0% dispersed
Once the precursor is in an oxidizing atmosphere, once at 950 ° C to 1350 ° C
To a semi-molten state by heating to a temperature range up to
After cooled from 900 ° C. in the region of 1100 ℃, REBa 2 Cu 3 O of RE composition having a forming temperature higher than the RE composition of the product temperature of REBa 2 Cu 3 O 7-x phase in the precursor
A 7-x phase single crystal seed crystal is brought into contact with a precursor to form a superconducting phase having an arbitrary orientation same as that of the seed crystal from 800 ° C. to 10 ° C.
REBa 2 Cu 3 O can be obtained by gradually cooling or retaining the temperature within a temperature range of 60 ° C. in a uniform temperature or a temperature gradient.
A method for manufacturing an oxide high temperature superconductor, which comprises continuously growing 7-x .
【請求項2】 前駆体Mと前駆体Mを支持する支持材と
の間に前記前駆体M中のRE組成のREBa2 Cu3
7-x 相生成温度のより高いREBa2 Cu37-x 相生
成温度を有するRE組成の前駆体Hおよび前記前駆体M
中のRE組成のREBa2 Cu3 7-x 相生成温度のよ
り低いREBa2 Cu3 7-x 相生成温度を有するRE
組成の前駆体Lとを、前駆体M−前駆体L−前駆体H−
支持材の順に配置することを特徴とする請求項1記載の
製造方法。
2. The REBa 2 Cu 3 O having the RE composition in the precursor M between the precursor M and a support material that supports the precursor M.
RE composition precursor H having higher 7-x phase formation temperature REBa 2 Cu 3 O 7-x phase formation temperature and said precursor M
RE with lower REBa 2 Cu 3 O 7-x phase formation temperature of REBa 2 Cu 3 O 7-x phase formation temperature of the RE composition in
The composition of the precursor L, precursor M-precursor L-precursor H-
The manufacturing method according to claim 1, wherein the supporting materials are arranged in this order.
【請求項3】 前駆体または前駆体Mの表面に前駆体中
または前駆体M中のRE組成のREBa2 Cu3 7-x
相生成温度のより低いREBa2 Cu3 7-x 相生成温
度を有するRE組成の粉末を塗布することを特徴とする
請求項2記載の製造方法。
3. REBa 2 Cu 3 O 7-x having a RE composition in the precursor or in the precursor M on the surface of the precursor or the precursor M.
The method according to claim 2, wherein a powder of RE composition having a REBa 2 Cu 3 O 7-x phase formation temperature having a lower phase formation temperature is applied.
JP4055203A 1990-04-13 1992-03-13 Method for producing oxide high temperature superconductor Expired - Lifetime JP2550253B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP3162360A JP2556401B2 (en) 1990-06-07 1991-06-07 Oxide superconductor and method for manufacturing the same
US07/834,554 US5308799A (en) 1990-06-07 1991-06-07 Oxide superconductor and process for preparation thereof
EP91910631A EP0486698B1 (en) 1990-06-07 1991-06-07 Oxide superconductor and production thereof
DE69114445T DE69114445T2 (en) 1990-06-07 1991-06-07 OXIDE SUPER LADDER AND THEIR PRODUCTION.
PCT/JP1991/000769 WO1991019029A1 (en) 1990-06-07 1991-06-07 Oxide superconductor and production thereof
JP4055203A JP2550253B2 (en) 1990-12-14 1992-03-13 Method for producing oxide high temperature superconductor
JP4143670A JPH07106906B2 (en) 1990-04-13 1992-05-11 Oxide superconducting material containing rare earth element and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP02402204 1990-12-14
JP4055203A JP2550253B2 (en) 1990-12-14 1992-03-13 Method for producing oxide high temperature superconductor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP02402204 Division 1990-04-13 1990-12-14

Publications (2)

Publication Number Publication Date
JPH05301797A JPH05301797A (en) 1993-11-16
JP2550253B2 true JP2550253B2 (en) 1996-11-06

Family

ID=26396072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4055203A Expired - Lifetime JP2550253B2 (en) 1990-04-13 1992-03-13 Method for producing oxide high temperature superconductor

Country Status (1)

Country Link
JP (1) JP2550253B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5849668A (en) * 1996-06-21 1998-12-15 Dowa Mining Co., Ltd. Oxide superconductor and method for manufacturing the same
US6172007B1 (en) 1996-06-21 2001-01-09 Dowa Mining Co., Ltd. Oxide superconductor
JP3613424B2 (en) * 1996-09-27 2005-01-26 財団法人国際超電導産業技術研究センター Manufacturing method of oxide superconductor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0717476B2 (en) * 1989-01-30 1995-03-01 インダストリアル・テクノロジー・リサーチ・インステイテユート Method for manufacturing superconducting epitaxial film using liquid phase epitaxial growth method
JP2556401B2 (en) * 1990-06-07 1996-11-20 新日本製鐵株式会社 Oxide superconductor and method for manufacturing the same

Also Published As

Publication number Publication date
JPH05301797A (en) 1993-11-16

Similar Documents

Publication Publication Date Title
Morita et al. Quench and melt growth (QMG) process for large bulk superconductor fabrication
US5308799A (en) Oxide superconductor and process for preparation thereof
EP0423375B1 (en) Oxide superconductor and method of producing the same
JP2556401B2 (en) Oxide superconductor and method for manufacturing the same
JP2550253B2 (en) Method for producing oxide high temperature superconductor
US5545610A (en) Oxide-based superconductor, a process for preparing the same and a wire material of comprising the same
JP3330962B2 (en) Manufacturing method of oxide superconductor
JPH1112094A (en) Production of rare earth-barium-cuprate-based superconductor
JP2801811B2 (en) Manufacturing method of oxide superconductor having large magnetic levitation force
Raina et al. Thin film growth of the 2122-phase of BCSCO superconductor with high degree of crystalline perfection
JP4153651B2 (en) Seed crystal of oxide superconducting material and manufacturing method of oxide superconducting material using the same
JP3174847B2 (en) Superconducting whisker and manufacturing method thereof
EP0778626B1 (en) Superconductor and precursor therefor, their preparation and use of superconductor
JPH01100818A (en) High temperature superconducting material
JP3471443B2 (en) Manufacturing method of oxide superconductor material
JP3115695B2 (en) Manufacturing method of oxide superconductor having large magnetic levitation force
JPH08198700A (en) Production of thin film of thallium-containing superconductor
JP2774219B2 (en) Manufacturing method of oxide superconductor
JP3411048B2 (en) Manufacturing method of oxide superconductor
JP2004319256A (en) Silver tape, its manufacturing method, and superconducting wire
JPS63310798A (en) Production of oxide superconducting element wafer
JPH01161628A (en) Formation of oxide superconducting thin film
JPH01148794A (en) Production of oxide superconductor crystal
JPH0416510A (en) Production of oxide superconducting bulk material
JPH0816014B2 (en) Manufacturing method of oxide superconducting bulk material

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960625

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080808

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090808

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090808

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100808

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100808

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 15