JPH0416510A - Production of oxide superconducting bulk material - Google Patents

Production of oxide superconducting bulk material

Info

Publication number
JPH0416510A
JPH0416510A JP2115901A JP11590190A JPH0416510A JP H0416510 A JPH0416510 A JP H0416510A JP 2115901 A JP2115901 A JP 2115901A JP 11590190 A JP11590190 A JP 11590190A JP H0416510 A JPH0416510 A JP H0416510A
Authority
JP
Japan
Prior art keywords
oxygen
atmosphere
semi
bulk material
rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2115901A
Other languages
Japanese (ja)
Inventor
Kenji Doi
土井 健司
Kiyoshi Sawano
清志 澤野
Mitsuru Morita
充 森田
Katsuyoshi Miyamoto
宮本 勝良
Keiichi Kimura
圭一 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2115901A priority Critical patent/JPH0416510A/en
Publication of JPH0416510A publication Critical patent/JPH0416510A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To produce a large-sized and high-grade oxide superconducting bulk material by quenching and solidifying a melt contg. RE, Ba and Cu to obtain a formed body, semi-melting the body, cooling and further heat-treating the product under specified conditions. CONSTITUTION:A melt contg. RE (rare-earth elements including Y and their combination), Ba and Cu is quenched and solidified to obtain a plate or wire- shaped formed body. The formed body is transiently heated to 1000-1200 deg.C and semi-melted. The semi-molten formed by is slowly cooled in the atmosphere from 1000 to 850 deg.C at the rate of <=200 deg.C/hr and then slowly cooled in the atmosphere free of oxygen from 850 deg.C to room temp. at the rate of <=200 deg.C/hr. The formed body is then pressed at <=500kg/cm<2> and heated in an oxygen atmosphere from 200 to 600 deg.C in >=1hr, hence oxygen is infiltrated into the body, and the tetragonal crystal is converted to a rhombic crystal. Consequently, superconductivity is imparted to the body, and the body is not cracked. A high- grade oxide superconducting bulk material is obtained in this way.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は酸化物超電導バルク材料の製造において、高温
での半溶融状態から超電導相を得る方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for obtaining a superconducting phase from a semi-molten state at high temperatures in the production of oxide superconducting bulk materials.

[従来の技術] 酸化物系超電導バルク材料実用化への取り組みは、現在
、溶融法か中心であり、例えば、QMG法(文献: J
ap、J、Apl)1.Phys、Vol、28. N
o、7.1989゜pp 1189−1194)などが
ある。
[Prior art] Efforts to put oxide-based superconducting bulk materials into practical use are currently focused on melting methods, such as the QMG method (Reference: J
ap, J, Apl)1. Phys, Vol. 28. N
o, 7.1989°pp 1189-1194).

これは、RE (Yを含む希土類元素、およびそれらの
組合せ)、Ba、 Cu元素を含む材料を溶融させ、急
冷凝固した厚さ5 mm以下の板もしくは線状成形体を
いったん1000℃から1350℃の高温に加熱せしめ
、半溶融状態にした後、200℃/hr以下の速度て、
冷却せしめることによって、高磁場下において、IO’
A/cm2以上の臨界電流密度(Jc)を得る方法であ
る。この方法により、高磁場下において、10’A/c
m2以上の臨界電流密度を得ることか可能となり、実用
化の目処を得たか、さらに高品位の酸化物バルク超電導
材料を開発する必要かある。すなわち、粒内におけるク
ラックが、さらなるJcの向上と大型化を阻む原因とな
っている。
This involves melting a material containing RE (rare earth elements including Y, and combinations thereof), Ba, and Cu elements, then rapidly solidifying a plate or linear molded body with a thickness of 5 mm or less and heating it at 1000°C to 1350°C. After heating to a high temperature of 200°C to a semi-molten state, at a rate of 200°C/hr or less,
By cooling it, IO'
This is a method of obtaining a critical current density (Jc) of A/cm2 or more. By this method, 10'A/c under high magnetic field.
It has become possible to obtain a critical current density of m2 or more, and there is a prospect of practical application, or there is a need to develop even higher-grade oxide bulk superconducting materials. In other words, cracks within the grains are the cause of hindering further improvement in Jc and enlargement.

[発明か解決しようとする課題] 本発明はかかる問題点を解決して、大型かつ高品位の酸
化物バルク超電導材料を製造する方法を提供するもので
ある。
[Problems to be Solved by the Invention] The present invention solves these problems and provides a method for manufacturing large-sized, high-quality oxide bulk superconducting materials.

[課題を解決するための手段] 本発明は、溶融状態から急冷して得られたRE(Yを含
む希土類元素、およびそれらの組合せ)。
[Means for Solving the Problems] The present invention provides RE (rare earth elements containing Y, and combinations thereof) obtained by rapid cooling from a molten state.

Ba、Cu元素を含む成形体を1000℃から1200
℃て半溶湯状態とした後、1000℃から850℃まで
、200”C/ h r以下の速度で大気中、徐冷後、
850℃から酸素を含まない雰囲気中て、200℃/h
r以下の速度て室温まで、徐冷後、酸素雰囲気中で、5
00kg/cff12以下の加圧で、200℃から60
0℃で、1 hr以上加熱後、200℃/hr以下の速
度で室温まで、冷却し、クラッタなどの欠陥を防ぎ、高
Jeの超電導体を得ることを特徴とする酸化物超電導バ
ルク材料の製造方法である。
A molded body containing Ba and Cu elements is heated from 1000°C to 1200°C.
℃ to a semi-molten state, and then slowly cooled in the atmosphere from 1000℃ to 850℃ at a rate of 200"C/hr or less,
From 850℃ to 200℃/h in an oxygen-free atmosphere
After slow cooling to room temperature at a speed of 500 yen or less, in an oxygen atmosphere,
From 200℃ to 60℃ with a pressure of 00kg/cff12 or less
Production of an oxide superconducting bulk material characterized by heating at 0°C for 1 hr or more and then cooling to room temperature at a rate of 200°C/hr or less to prevent defects such as clutter and obtain a high Je superconductor. It's a method.

[作用コ REBa2Cu30t−x (以下123相)は約10
60℃(RE:最も高い123相生成温度を有するNd
の場合)以上の高温では不安定てあり、RE2BaCu
O,(以)’−211相)と液相(BaCu酸化物)と
に溶融分解する。さらに、約120(1℃以上では21
1相も分解し、RE2O3と液相になる。しかしながら
、高温加熱時の成形体はこれら半溶融状態での粘性か高
いため、成形体の形はほぼ保たれる。この半溶融状態の
成形体を徐冷すると、211相と液相との包晶反応によ
り123相ができる。このときできる組織は細かい21
1相を含む数llll11の擬単結晶の集合体になる。
[The action phase REBa2Cu30t-x (hereinafter referred to as 123 phase) is approximately 10
60°C (RE: Nd with the highest 123 phase formation temperature
RE2BaCu is unstable at higher temperatures than
It melts and decomposes into a liquid phase (BaCu oxide) and a liquid phase (BaCu oxide). Furthermore, approximately 120 (21 at temperatures above 1°C)
One phase also decomposes and becomes RE2O3 and liquid phase. However, since the molded product heated at high temperature has a high viscosity in this semi-molten state, the shape of the molded product is almost maintained. When this semi-molten molded body is slowly cooled, a 123 phase is formed by a peritectic reaction between the 211 phase and the liquid phase. The organization formed at this time is fine21
It becomes an aggregate of several lllll11 pseudo-single crystals including one phase.

本発明によって製造した材料は、このためJcの妨げと
なる粒界がきわめて少なく零磁場で高いJcか得られる
のはもちろんのこと、高磁場中でも、従来の方法と比較
して2桁高いJcが得られる。
For this reason, the material produced by the present invention has extremely few grain boundaries that interfere with Jc, and not only can a high Jc be obtained in a zero magnetic field, but also a Jc that is two orders of magnitude higher than that obtained by conventional methods even in a high magnetic field. can get.

成形体の加熱温度の限定理由は、1000℃以下では十
分に部分溶融せず、部分溶融後、細かい結晶の集合体と
なり、Jcは焼結体程度に低下し、また、1200℃以
上では高温加熱時に、支持台(例えば、白金)との反応
か大きいことから定めた。また、これらの温度はRE元
素の種類や加熱時の雰囲気、仕込組成によフて多少変化
し、イオン半径の大きい元素はど、また、雰囲気の酸素
分圧が大きいほと、また、REの過剰なほど高温側にす
わる傾向にある。
The reason for limiting the heating temperature of the compact is that below 1000°C, it will not fully melt partially, and after partially melting, it will become an aggregate of fine crystals, and the Jc will be reduced to that of a sintered body, and above 1200°C, it will not be heated at high temperatures. Sometimes, it was determined because of the large reaction with the support base (for example, platinum). In addition, these temperatures vary somewhat depending on the type of RE element, the atmosphere at the time of heating, and the charging composition. The more the temperature increases, the more likely it is to sit on the high temperature side.

1000℃から1200℃の高温に加熱した後、100
0℃から850℃まで200℃/hr以下の冷却速度で
徐冷する理…としては、200/hr以上であると、!
23相の結晶成長か速くなり、最終組織は多結晶となる
ためである。
After heating to a high temperature of 1000℃ to 1200℃, 100℃
The reason for slow cooling from 0℃ to 850℃ at a cooling rate of 200℃/hr or less is 200℃/hr or more!
This is because the crystal growth of the 23 phase becomes faster and the final structure becomes polycrystalline.

850℃から酸素を含まない雰囲気中で、室温まで徐冷
する理由は、正方晶から斜方晶への相変態の際に生しる
クラックを防ぐためである。また、この際、200℃/
hr以下の速度で徐冷する理由は、こねより速い速度で
冷却すると、温度差の急激な変化により、クラックがは
いるためである。
The reason for slowly cooling from 850° C. to room temperature in an oxygen-free atmosphere is to prevent cracks that occur during the phase transformation from tetragonal to orthorhombic. Also, at this time, 200℃/
The reason for slow cooling at a rate of hr or less is that if the dough is cooled at a faster rate than kneading, cracks will form due to the sudden change in temperature difference.

その後、酸素雰囲気中で、加熱する理由は、成形体への
酸素の導入により、正方晶から斜方晶にし、超電導体に
するためである。また、温度制限の理由は、200℃よ
り低いと、酸素は十分に入らず、600℃以上たと、R
Hによっては、相変態温度を超えるからである。時間制
限の理由は] hr未満だと、酸素は十分に入らないた
めである。また、加圧しなから加熱する時間は60時間
を超える時間処理は酸化物バルク超電導材料I・の酸素
の拡散は飽和されるため必要でない。このときさらに、
加圧中てこの熱処理を11なう理由は、正方晶から斜方
晶への相変態の際に生しる、クラックを抑制御−るため
である。5001℃g/cm”以下とこの加圧を制限す
る理由は、500kg/co+2より大きい圧力をかけ
ると、この加圧により、クラックか発生するためである
。また、クラックを発生させないためには少なくともl
0kg/cm2以上の加圧か必要である。
The reason why the molded body is then heated in an oxygen atmosphere is to transform the molded body from a tetragonal crystal to an orthorhombic crystal by introducing oxygen into the molded body, thereby making it a superconductor. Also, the reason for the temperature limit is that if it is lower than 200℃, oxygen cannot enter sufficiently, and if it is higher than 600℃, R
This is because some H exceeds the phase transformation temperature. The reason for the time limit is that if it is less than hr, sufficient oxygen will not enter. Furthermore, heating without applying pressure for a period exceeding 60 hours is not necessary because the diffusion of oxygen in the oxide bulk superconducting material I is saturated. At this time, further
The reason why the heat treatment is performed during pressurization is to suppress and control cracks that occur during phase transformation from tetragonal to orthorhombic crystals. The reason why this pressure is limited to 5001℃g/cm" or less is that if a pressure greater than 500kg/co+2 is applied, this pressure will cause cracks. Also, in order to prevent cracks from occurring, at least l
Pressure of 0 kg/cm2 or more is required.

[実施例コ 上述した方法により実施した酸化物バルク超電導材料の
製造例を以下に述へる。
[Example] An example of manufacturing an oxide bulk superconducting material by the method described above will be described below.

成形体として、YBa2Cu3O7−xの粉末を溶融し
ハンマークエンチして得られた厚さI +nm、幅10
mn+、長さ20+nmのものを用意した。これを白金
の網の上にのせ、酸素雰囲気中で次のような熱処理を行
なった。 1100℃で1時間保持した後に、20℃/
ll1inの冷却速度で1000℃まで陣温し、さらに
1000℃より10℃/hrの冷却速度で850℃まで
降温し、以下、Ar雰囲気中で 室温までは100℃/
hrの冷却速度で降温した。徐冷後、酸素;囲気中て、
300kg/cm2の加圧中で、500でて、l0hr
加熱した。得られた材料を切り出し、光学顕微鏡による
組織観察を行なうとともに、超電導特性を測定したとこ
ろ、以下のような結果か得られた。
The molded body was obtained by melting YBa2Cu3O7-x powder and hammer quenching, with a thickness of I + nm and a width of 10
mn+, and a length of 20+ nm was prepared. This was placed on a platinum mesh and subjected to the following heat treatment in an oxygen atmosphere. After holding at 1100℃ for 1 hour, 20℃/
The temperature was raised to 1000°C at a cooling rate of 100°C, then lowered from 1000°C to 850°C at a cooling rate of 10°C/hr, and then heated to room temperature at 100°C/hr in an Ar atmosphere.
The temperature was lowered at a cooling rate of hr. After slow cooling, oxygen; in an atmosphere;
Under pressure of 300 kg/cm2, 500 hr, 10 hr
Heated. The obtained material was cut out, its structure was observed using an optical microscope, and its superconducting properties were measured, and the following results were obtained.

組      #I:第1図(a)のようにクラックの
きわめて少ない試料か得 られた。(第1図(b)に従来 のQMG法で得られた試料の 組織図を示す。) 臨界温度(丁e):95にてシャープな超電導遷移を示
した。
Group #I: A sample with very few cracks was obtained as shown in FIG. 1(a). (Figure 1(b) shows the structure diagram of a sample obtained by the conventional QMG method.) A sharp superconducting transition was exhibited at a critical temperature (C) of 95.

臨界電流密度(Jc) :第2図、第3図のように、7
7におよび4.2ににおけるJeの磁 場依存性は、従来のQMG法 と比較して、より優れている ことが分かった。
Critical current density (Jc): 7 as shown in Figures 2 and 3
The magnetic field dependence of Je in 7 and 4.2 was found to be better compared to the conventional QMG method.

〔発明の効果コ 以上に詳述したごとく、本発明はこれまで不可能てあっ
た高品位の酸化物バルク超電導材料の製造を可能にする
もので、しかも成形品として各種分野での応用か可能で
あり、きわめて工業的効果か大きい。
[Effects of the Invention] As detailed above, the present invention enables the production of high-grade oxide bulk superconducting materials that have not been possible until now, and can be applied as molded products in various fields. This has a very large industrial effect.

具体例としては、 l)超電導線材 この製造方法により、線状の成形体から高いJ。As a specific example, l) Superconducting wire With this manufacturing method, high J can be obtained from the linear molded body.

の線材ができ、接続も容易であるために、長距離の送電
線としても使用可能である。
It can be used as a long-distance power transmission line because it can be used as a wire rod and is easy to connect.

2)超電導コイル 渦巻状の成形体を何枚か積み重ね、接合部で接触させて
、熱処理するたけで高品位のマグネットかできる。
2) A high-quality magnet can be created simply by stacking several superconducting coil spiral molded bodies, touching them at the joints, and heat-treating them.

3)超電導磁気シールド材 板状の成形体を任意の形状の型にのせて、熱処理するだ
けで任意の形の超電導体ができるため。
3) Superconductors of any shape can be created by simply placing a plate-shaped superconducting magnetic shielding material into a mold of any shape and heat-treating it.

磁束漏れの少ない高品位の磁気シールド材かできる。We can produce high-grade magnetic shielding materials with little magnetic flux leakage.

なとがあげら4る。Natogaagera 4ru.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)は本発明により製造された酸化物バルク超
電導材料の組織を示す顕微鏡写真である。 第1図(b)は従来のQMG法により製造された酸化物
バルク超電導材料の組織を示す顕微鏡写真である。 第2図は液体窒素温度77にでのJeの磁場依存性を、
本発明法と従来のQMG法とを比較して示すグラフであ
る。 第3図は液体ヘリウム温度4.2にでのJeの磁場依存
性を、本発明法と従来のQMG法とを比較して示すグラ
フである。
FIG. 1(a) is a micrograph showing the structure of the oxide bulk superconducting material produced according to the present invention. FIG. 1(b) is a micrograph showing the structure of an oxide bulk superconducting material manufactured by the conventional QMG method. Figure 2 shows the magnetic field dependence of Je at a liquid nitrogen temperature of 77,
It is a graph showing a comparison between the method of the present invention and the conventional QMG method. FIG. 3 is a graph showing the magnetic field dependence of Je at a liquid helium temperature of 4.2, comparing the method of the present invention and the conventional QMG method.

Claims (1)

【特許請求の範囲】[Claims] 1、RE(Yを含む希土類元素、およびそれらの組合せ
)、Ba、Cu元素を含む溶融体を急冷凝固した成形体
をいったん1000℃から1200℃の高温に加熱せし
め、半溶湯状態にした後、1000℃から850℃まで
200℃/hr以下の速度で大気中徐冷し、850℃か
ら酸素を含まない雰囲気中で200℃/hr以下の速度
で室温まで徐冷後、酸素雰囲気中で500kg/cm^
2以下で加圧しながら200℃から600℃の温度まで
、1hr以上加熱することを特徴とする酸化物超電導バ
ルク材料の製造方法。
1. A molded body obtained by rapidly cooling and solidifying a molten body containing RE (rare earth elements including Y, and combinations thereof), Ba, and Cu elements is heated to a high temperature of 1000 ° C. to 1200 ° C. to a semi-molten state, and then Slowly cool in air from 1000°C to 850°C at a rate of 200°C/hr or less, cool slowly from 850°C to room temperature at a rate of 200°C/hr or less in an oxygen-free atmosphere, and then cool at 500 kg/hr in an oxygen atmosphere. cm^
1. A method for producing an oxide superconducting bulk material, which comprises heating from 200° C. to 600° C. for 1 hr or more while applying pressure at 2° C. or less.
JP2115901A 1990-05-07 1990-05-07 Production of oxide superconducting bulk material Pending JPH0416510A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2115901A JPH0416510A (en) 1990-05-07 1990-05-07 Production of oxide superconducting bulk material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2115901A JPH0416510A (en) 1990-05-07 1990-05-07 Production of oxide superconducting bulk material

Publications (1)

Publication Number Publication Date
JPH0416510A true JPH0416510A (en) 1992-01-21

Family

ID=14674013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2115901A Pending JPH0416510A (en) 1990-05-07 1990-05-07 Production of oxide superconducting bulk material

Country Status (1)

Country Link
JP (1) JPH0416510A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0649151A1 (en) * 1993-10-13 1995-04-19 International Superconductivity Technology Center Composite of high-temperature superconductive bulk form with coil magnet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0649151A1 (en) * 1993-10-13 1995-04-19 International Superconductivity Technology Center Composite of high-temperature superconductive bulk form with coil magnet

Similar Documents

Publication Publication Date Title
JPH0440289B2 (en)
EP0423375B1 (en) Oxide superconductor and method of producing the same
JP2672926B2 (en) Method for producing yttrium-based superconductor
JPH1121126A (en) Production of oxide superconducting bulk
JPH0416510A (en) Production of oxide superconducting bulk material
JPH07115924B2 (en) Method for manufacturing oxide superconductor
JP2550253B2 (en) Method for producing oxide high temperature superconductor
US6171390B1 (en) Method for preparing oxide single crystalline materials
Iguchi et al. In situ observation of nucleation and growth of iron whiskers from supersaturated wüstite
JP2774219B2 (en) Manufacturing method of oxide superconductor
JP2914799B2 (en) Manufacturing method of oxide superconducting bulk material
JP3217727B2 (en) Manufacturing method of oxide superconductor
JPH04160062A (en) Production of superconducting material
JP2518969B2 (en) Oxide superconductor and method for manufacturing the same
JPH0333051A (en) Production of oxide superconducting bulk material
JPH06183730A (en) Production of oxide superconductive bulky material
JPH03257018A (en) Precursor for oxide high-temperature superconductor and its production
JP2004319256A (en) Silver tape, its manufacturing method, and superconducting wire
JPH03237071A (en) Production of oxide superconductor
Nakagawa et al. Microstructure of Bi-Based Superconductor Prepared by Floating Zone Method
JPH0725699A (en) Production of oxide superconductive material
JPH04175296A (en) Production of oxide superconductor and crystal growth control therein
JPH04164865A (en) Production of superconducting material
JPH0524825A (en) Production of rare earth-based oxide us superconductor and raw material powder therefor
JPH0471114A (en) Manufacture of oxide superconducting wire material