JPH0816014B2 - Manufacturing method of oxide superconducting bulk material - Google Patents

Manufacturing method of oxide superconducting bulk material

Info

Publication number
JPH0816014B2
JPH0816014B2 JP5213636A JP21363693A JPH0816014B2 JP H0816014 B2 JPH0816014 B2 JP H0816014B2 JP 5213636 A JP5213636 A JP 5213636A JP 21363693 A JP21363693 A JP 21363693A JP H0816014 B2 JPH0816014 B2 JP H0816014B2
Authority
JP
Japan
Prior art keywords
phase
oxide
bulk material
temperature
semi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5213636A
Other languages
Japanese (ja)
Other versions
JPH06183730A (en
Inventor
充 森田
勝良 宮本
雅人 村上
昭一 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP5213636A priority Critical patent/JPH0816014B2/en
Publication of JPH06183730A publication Critical patent/JPH06183730A/en
Publication of JPH0816014B2 publication Critical patent/JPH0816014B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高い磁場中において高
い臨界電流密度が得られる酸化物超電導体バルク材の製
造方法に関し、特に高温での半溶融状態すなわち固液共
存領域からの徐冷工程を利用して超電導相を得る技術に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an oxide superconductor bulk material capable of obtaining a high critical current density in a high magnetic field, and particularly to a step of gradually cooling from a semi-molten state at high temperature, that is, a solid-liquid coexisting region. The present invention relates to a technique for obtaining a superconducting phase by utilizing.

【0002】[0002]

【従来の技術】酸化物超電導体バルク材の実用化への取
り組みは、現在のところ焼結法(固相反応法)が中心で
ある(文献: Jap. J. Appl. Phys. Vol.26, No.5, 198
7,pp.L624-L626)。これは、始めに酸化物超電導体の原
料粉(REすなわちYを含む希土類元素・Ba・Cuの
酸化物または炭酸化物)をRE:Ba:Cu=1:2:
3近傍の組成比に混合し、仮焼してREBa2 Cu3
7-y の構造を持つ仮焼粉を作り、これを成形し、焼結す
ることによってバルク材を得ようとするものである。こ
の焼結法の応用例としては、仮焼粉を金属被覆材等に詰
めることによって線材化する研究(Jap. J. Appl. Phys.
Vol.26, No.5, 1987,pp. L865-L866)等がある。また、
板状に成形して焼結してシールド材とする試み等があ
る。しかし、これらの試みは、焼結法による超電導体の
呈する臨界電流密度が低いため、実用レベルには至って
いない。
2. Description of the Related Art At present, most of the efforts for practical application of bulk materials of oxide superconductors are based on the sintering method (solid-state reaction method) (Reference: Jap. J. Appl. Phys. Vol.26, No.5, 198
7, pp.L624-L626). First, a raw material powder of an oxide superconductor (RE, that is, an oxide or carbonate of RE, a rare earth element containing Y, Ba, or Cu) is RE: Ba: Cu = 1: 2:
REBa 2 Cu 3 O mixed with a composition ratio near 3 and calcined
A calcinated powder having a 7-y structure is produced, and this is molded and sintered to obtain a bulk material. As an application example of this sintering method, a study of filling a calcined powder into a metal coating material or the like to form a wire (Jap. J. Appl. Phys.
Vol.26, No.5, 1987, pp. L865-L866). Also,
There is an attempt to form a plate and sinter it into a shield material. However, these attempts have not reached a practical level because the critical current density exhibited by the superconductor produced by the sintering method is low.

【0003】なお、焼結法(固相反応法)以外の酸化物
超電導体の製造方法としての溶融法すなわち原料を高温
に加熱溶融して徐冷する工程による方法は、バルク材の
製造には使用されていず、単結晶育成に使用されている
が、このとき原料粉にはCuまたは(Cu,Ba)がか
なり過剰にフラックスとして加えられており、白金また
はアルミナの坩堝で成長させるのが一般的である(Jap.
J. Appl. Phys. Vol.26, No.5, 1987, pp. L851-L853,
等)。
A melting method other than the sintering method (solid-state reaction method) as a method of manufacturing an oxide superconductor, that is, a method of heating and melting a raw material at a high temperature and then gradually cooling it, is not suitable for manufacturing a bulk material. Not used, but used for single crystal growth. At this time, Cu or (Cu, Ba) was added to the raw material powder in a considerably excessive amount, and it was generally grown in a platinum or alumina crucible. Target (Jap.
J. Appl. Phys. Vol.26, No.5, 1987, pp. L851-L853,
etc).

【0004】[0004]

【発明が解決しようとする課題】焼結法等による酸化物
超電導体バルク材は、現在のところ、(温度T=77
K、外部磁場He=0テスラ)の条件下で数千A/cm2
程度の臨界電流密度(Jc)しか得られていず、実用化
には至っていない。実用化には、(T=77K、He=
数テスラ)の条件下でJcは104 A/cm2 程度までの
向上が必要である。本発明は、従来の焼結法(固相反応
法)による酸化物超電導体バルク材の製造とは異なり、
より高温の固液共存領域からの徐冷工程において超電導
相(REBa2 Cu3 7-y 相、以下、適宜「123
相」と略称する。)を形成せしめる「溶融法」を採用し
て高い磁場中における臨界電流密度(Jc)特性の向上
を図り、実用可能な酸化物超電導体バルク材を提供する
ことを目的としている。
The oxide superconductor bulk material produced by the sintering method or the like is currently (temperature T = 77).
K, external magnetic field He = 0 Tesla), several thousand A / cm 2
Only a critical current density (Jc) is obtained, and it has not been put to practical use. For practical use, (T = 77K, He =
Under several (several tesla) conditions, it is necessary to improve Jc to about 10 4 A / cm 2 . The present invention is different from the conventional production method of the oxide superconductor bulk material by the sintering method (solid phase reaction method).
In the slow cooling process from the higher temperature solid-liquid coexistence region, the superconducting phase (REBa 2 Cu 3 O 7-y phase, hereinafter referred to as “123
Abbreviated as "phase". ) Is employed to improve the critical current density (Jc) characteristics in a high magnetic field and to provide a practicable oxide superconductor bulk material.

【0005】上記目的において本発明が克服すべき主な
課題は、 1)零磁場および磁場における臨界電流密度の向上、 2)線・コイル・板等の形状のバルク材への成形性の向
上、 3)機械的強度の向上、 等がある。すなわち、従来の焼結法で得られる超電導体
では、結晶粒径が数μmから数百μmであるため、その
内部には多数の粒界が存在し、これらの粒界は超電導的
には弱点となり、粒内では大きな超電導に基づく電流
(臨界電流密度Jcが指標となる)は粒界で制限され減
少し、特に磁場(たとえばHe=1テスラ程度)におい
ては数10A/cm2 と極端に低下する。また、焼結法で
得られる超電導体は、焼結後の加工がきわめて困難であ
り、その超電導体同士の接合もきわめて困難である。さ
らに、焼結体は周知のように、本来的に脆いという欠点
がある。
For the above object, the main problems to be overcome by the present invention are: 1) improvement of critical current density in zero magnetic field and magnetic field, 2) improvement of formability of bulk material in the shape of wire, coil, plate, etc. 3) Improvement of mechanical strength, etc. That is, in the superconductor obtained by the conventional sintering method, since the crystal grain size is several μm to several hundreds μm, a large number of grain boundaries exist therein, and these grain boundaries are weak in terms of superconductivity. In the grain, the current based on a large superconductivity (the critical current density Jc is an index) is limited at the grain boundary and decreases. Especially, in a magnetic field (for example, He = 1 Tesla), it extremely decreases to several tens A / cm 2. To do. Further, the superconductor obtained by the sintering method is extremely difficult to process after sintering, and it is also very difficult to join the superconductors together. Further, as is well known, the sintered body has a drawback that it is inherently brittle.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に、本発明は、REBa2 Cu3 7-y 相(123相)
中に直径20μm以下のRE2 BaCuO5 相(以下、
適宜「211相」と略称する。)が分散した組織(図1
(a)参照)を超電導材料に利用することを骨子とし、
具体的には、上記組織に基づく高品位の酸化物超電導体
バルク材(以下、「高品位酸化物超電導体バルク材」と
いう)および該バルク材製造に適した前駆組織を有する
中間体(以下、「中間体」という)に基づき、該バルク
材の一の製造方法(第一発明)、および該バルク材の他
の製造方法(第二発明)を提供するものである。これら
の前記高品位酸化物超電導体バルク材、中間材、および
本発明の方法の内容(構成)を以下に若干説明する。
In order to solve the above problems, the present invention provides a REBa 2 Cu 3 O 7-y phase (123 phase).
The RE 2 BaCuO 5 phase with a diameter of 20 μm or less (hereinafter,
It is abbreviated as “211 phase” as appropriate. ) Dispersed structure (Fig. 1
The use of (see (a)) as a superconducting material is essential,
Specifically, a high-quality oxide superconductor bulk material based on the above structure (hereinafter, referred to as “high-quality oxide superconductor bulk material”) and an intermediate having a precursor structure suitable for manufacturing the bulk material (hereinafter, Based on the "intermediate"), a method for producing one of the bulk materials (first invention) and another method for producing the bulk material (second invention) are provided. The contents (constitution) of these high-grade oxide superconductor bulk materials, intermediate materials, and the method of the present invention will be briefly described below.

【0007】前記高品位酸化物超電導体バルク材は、R
EBa2 Cu3 7-y 型酸化物超電導体において、12
3相中に直径20μm以下の211相が分散した組織を
有することを特徴とする磁場中で高い臨界電流密度を示
す酸化物超電導体バルク材である。ここで、「RE」と
は希土類元素を示すがY(イットリウム)をも含むもの
とし、211相の「直径」とは211相粒子の最大外径
をいい、「バルク材」とは厚さもしくは直径がおおむね
1mm以上である材料をいうものとする。この高品位酸化
物超電導体バルク材の組織は、図1(a)に示すよう
に、微細な211相粒子を内包する結晶粒径が数mm以上
の大きな123相粒子から構成され、この123相粒子
は図1(b)から知られるように、123相の双晶のパ
ターンを示す方位の揃った単結晶的な構造を示す。この
ように結晶粒が従来材に比してはるかに大きく、Jc
(臨界電流密度)を低下させる粒界が少ないことが特徴
であり、零磁場および磁場中で高いJcを呈する。ま
た、超電導相(123相)中に存在することが認められ
る211相の粒子は、超電導相の粒界・クラック・異相
(超電導相の内部に存在するCuO相等の211相以外
の第二相をいう)の少ないバルク材を得るためにある程
度必要で、微細に分布していることが望ましい。
The high-grade oxide superconductor bulk material is R
In the EBa 2 Cu 3 O 7-y type oxide superconductor, 12
The oxide superconductor bulk material having a high critical current density in a magnetic field, which has a structure in which 211 phases having a diameter of 20 μm or less are dispersed in three phases. Here, “RE” indicates a rare earth element but also includes Y (yttrium), the “diameter” of the 211 phase means the maximum outer diameter of the 211 phase particles, and the “bulk material” means the thickness or diameter. Refers to a material that is approximately 1 mm or more. As shown in FIG. 1 (a), the structure of this bulk oxide superconductor bulk material is composed of large 123-phase particles having a crystal grain size of several mm or more and containing fine 211-phase particles. As known from FIG. 1 (b), the particles show a single-crystal-like structure with an aligned orientation showing a 123-phase twinning pattern. In this way, the crystal grains are much larger than the conventional material,
The feature is that there are few grain boundaries that lower the (critical current density), and a high Jc is exhibited in the zero magnetic field and the magnetic field. In addition, the particles of the 211 phase that are recognized to exist in the superconducting phase (123 phase) include grain boundaries, cracks, and different phases of the superconducting phase (such as CuO phase existing inside the superconducting phase) other than the 211 phase. It is necessary to some extent to obtain a bulk material having a small amount, and it is desirable that the material be finely distributed.

【0008】前記中間体は高品位酸化物超電導体に相当
する化学組成を有し、BaCuO2相中に直径50μm
以下のRE2 3 相が分散した組織を有することを特徴
とする酸化物超電導体の中間体である。ここで、RE2
3 相の「直径」とはRE23 相粒子の最大外径をい
うものとする。
The intermediate has a chemical composition equivalent to that of a high-quality oxide superconductor, and has a diameter of 50 μm in the BaCuO 2 phase.
It is an intermediate of an oxide superconductor characterized by having a structure in which the following RE 2 O 3 phase is dispersed. Where RE 2
O 3 phase of the "diameter" shall refer to the maximum outer diameter of the RE 2 O 3 phase particles.

【0009】前記中間体は、211相の微細分散を含有
する123相からなるRE−Ba−Cu−O化合物を形
成するべき組成で配合した原料(RE酸化物、Ba酸化
物、Cu酸化物等)を一旦溶融してから急冷・凝固せし
めて得られるもので、その組織は、図1(c)に示され
るもので、ここに見られるようなRE2 3 の微細分散
粒子がこの中間体の再溶融処理(1000℃〜1350
℃への加熱)によって、最終目的物たる前記高品位酸化
物超電導体バルク材を成立せしめる211相微細粒子の
生成サイトとなるのである。
The above-mentioned intermediate is a raw material (RE oxide, Ba oxide, Cu oxide, etc.) compounded with a composition to form a RE-Ba-Cu-O compound consisting of 123 phases containing a fine dispersion of 211 phases. ) Is once melted and then rapidly cooled and solidified, and its structure is as shown in FIG. 1 (c), and RE 2 O 3 fine dispersed particles as seen here are the intermediates. Remelting treatment (1000 ° C to 1350
The heating to (° C.) serves as a site for producing 211-phase fine particles that make up the high-quality oxide superconductor bulk material that is the final target.

【0010】第一発明は、前記高品位酸化物超電導体
(211相の微細分散を含有する123相からなる超電
導体)を形成すべき化学組成の出発原材料を調製し、こ
の出発原材料を昇温して溶融し、この溶融体を急冷して
所定形状(例えば板状、線状)に凝固成形し、この成形
体を1000℃から1350℃の温度範囲に属する温度
に昇温して半溶融し、この半溶融体を200℃/hr以下
の冷却速度で徐冷して包晶反応によって123相を析出
することを特徴とする磁場中で高い臨界電流密度を示す
酸化物超電導体バルク材の製造方法である。
The first aspect of the present invention is to prepare a starting raw material having a chemical composition for forming the high-quality oxide superconductor (a superconductor consisting of 123 phases containing a fine dispersion of 211 phases), and heating the starting raw material. Then, the melt is rapidly cooled and solidified and molded into a predetermined shape (for example, a plate shape or a linear shape), and the molded body is heated to a temperature belonging to a temperature range of 1000 ° C. to 1350 ° C. to be semi-melted. The production of an oxide superconductor bulk material exhibiting a high critical current density in a magnetic field, characterized in that the semi-molten material is gradually cooled at a cooling rate of 200 ° C./hr or less to precipitate 123 phase by a peritectic reaction. Is the way.

【0011】第二の発明は、RE2 3 の粉体とBa−
Cu酸化物の粉体とを前記高品位酸化物超電導体を形成
すべき化学組成に混合し、この混合粉を所定形状に成形
し、この成形体を1000℃から1350℃までの温度
範囲に属する温度に昇温して半溶融し、この半溶融体を
200℃/hr以下の冷却速度で徐冷して包晶反応によっ
て123相を析出形成することを特徴とする、磁場中で
高い臨界電流密度を示す酸化物超電導バルク材の製造方
法である。
A second invention is a powder of RE 2 O 3 and Ba-
Cu oxide powder is mixed with the chemical composition for forming the high-quality oxide superconductor, the mixed powder is molded into a predetermined shape, and the molded body belongs to a temperature range from 1000 ° C to 1350 ° C. A high critical current in a magnetic field, characterized in that the temperature is raised to a temperature to be semi-molten, and the semi-molten material is gradually cooled at a cooling rate of 200 ° C./hr or less to precipitate and form 123 phase by a peritectic reaction. It is a method of manufacturing an oxide superconducting bulk material exhibiting a density.

【0012】本発明者らは熱処理前の成形体の状態とし
て以下の三つのものについて調べた。 1.REBa2 Cu3 7-y 相粉末の成形体 2.RE2 BaCuO5 相とBaCu酸化物との混合粉 3.RE2 3 とBaCu酸化物との混合粉 その結果RE2 3 とBaCu酸化物との混合粉を成形
体として用いた場合に、微細な211相が均一に分布し
た超電導相が得られた。また、得られた超電導相は、一
つの粒径が数ミリと大きくかつ割れも少なく超電導的に
weak−linkの少ない超電導体が得られた。
The present inventors investigated the following three states of the molded body before heat treatment. 1. REBa 2 Cu 3 O 7-y phase powder compact 1. 2. Mixed powder of RE 2 BaCuO 5 phase and BaCu oxide When using a mixed powder and the mixed powder as a result RE 2 O 3 and BaCu oxide of RE 2 O 3 and BaCu oxide as shaped bodies, superconducting phase is obtained in which fine 211 phases are uniformly distributed .. In addition, the obtained superconducting phase had a large particle size of several millimeters, had few cracks, and was a superconducting superconductor with less weak-link.

【0013】これらの原因はRE2 3 と液相(BaC
u酸化物)が反応して211相が成長する際に、細さ1
ミクロン程度の針状211の繊維が材料中にできるため
であることが分かった。
The causes of these are RE 2 O 3 and liquid phase (BaC
u oxide) reacts and the 211 phase grows.
It has been found that this is due to the fact that needle-like 211 fibers of the order of microns are formed in the material.

【0014】[0014]

【作用】123相は約970℃以上の高温では不安定で
あり、211相と液相(L:BaCu酸化物)とに分解
溶融する。さらに約1250℃以上では211相も分解
しRE2 3 と液相になる。しかしながら、高温加熱時
の成形体はこれら半溶融状態で繊維状211が液相を吸
収するため、成形体の形はほぼ保たれる。この半溶融状
態の成形体を徐冷すると211相とL相との包晶反応に
より123相ができる。このときできる組織は細かい2
11相を含む数ミリの単結晶の集合体となる。本発明に
よって製造した材料は、このためJcの妨げとなる大傾
角粒界が極めて少なく磁場なしで高いJcが得られるの
はもちろんのこと、高磁場中でも従来の方法と比較して
3桁高いJcが得られる。また、この製造方法では一旦
1000℃〜1350℃で半溶融状態にあるが高温加熱
時において、適当な粘性があるため任意の形状に加工が
容易にできる。また、材料どうしの接合も接触させてお
くだけで容易に可能となる。
The 123 phase is unstable at a high temperature of about 970 ° C. or higher, and decomposes and melts into the 211 phase and the liquid phase (L: BaCu oxide). Further, above about 1250 ° C., the 211 phase is also decomposed and becomes a liquid phase with RE 2 O 3 . However, since the fibrous 211 absorbs the liquid phase in the semi-molten state of the molded body when heated at a high temperature, the shape of the molded body is almost maintained. When this semi-molten compact is gradually cooled, the 123 phase is formed by the peritectic reaction between the 211 phase and the L phase. The organization that can be created at this time is small 2
It becomes an aggregate of several millimeters of single crystals including 11 phases. The material produced according to the present invention has very few large-angle tilt boundaries that hinder Jc, and therefore, high Jc can be obtained without a magnetic field, and even in a high magnetic field, Jc is 3 orders of magnitude higher than that of the conventional method. Is obtained. Moreover, in this manufacturing method, once in a semi-molten state at 1000 ° C. to 1350 ° C., it can be easily processed into an arbitrary shape because it has an appropriate viscosity when heated at a high temperature. In addition, the joining of the materials can be easily performed only by bringing them into contact with each other.

【0015】成形体の加熱温度の限定理由は、1000
℃以下では部分溶融はするが量的に少なく上記の効果が
得られない、また1350℃以上では成形体の原型をと
どめないことから定めた。また、これらの温度はRE元
素の種類や加熱時の雰囲気に仕込組成によって多少変化
しイオン半径の大きいRE元素ほどまた雰囲気の酸素分
圧が大きいほどまたRE過剰なほど高温側にずれる傾向
がある。
The reason for limiting the heating temperature of the molded body is 1000.
When the temperature is lower than 0 ° C, partial melting occurs, but the amount is small and the above effect cannot be obtained, and when the temperature is higher than 1350 ° C, the prototype of the molded body cannot be kept. Further, these temperatures are somewhat changed depending on the type of RE element and the composition of the atmosphere during heating and tend to shift to the higher temperature side as the RE element has a larger ionic radius, the oxygen partial pressure in the atmosphere is larger, and the RE is excessive. .

【0016】徐冷速度の限定理由は、200℃/hr以上
であると123相の粒が充分成長しないため、粒界が多
くなりJcを低下させてしまうためである。このような
熱処理によって、超電導相の中には細かな211相が含
まれているため組織が細かく機械的強度も改善される。
The reason for limiting the slow cooling rate is that if the temperature is 200 ° C./hr or more, grains of the 123 phase do not grow sufficiently, so that the grain boundaries increase and Jc decreases. By such heat treatment, since the superconducting phase contains the fine 211 phase, the structure is fine and the mechanical strength is improved.

【0017】[0017]

【実施例】上述した第一発明の方法により実施した酸化
物超電導体バルク材の製造例を次に述べる。成形体とし
て、YBa2 Cu3 7-y の粉末を溶融しハンマークエ
ンチして得られた、厚さ1mm、幅10mm、長さ20mmの
物を用意した。この材料の組織観察を行った結果を図1
(C)に示す。この組織はBaCu酸化物中に50μm
以下のY2 3 が分散した組織であった。これを白金の
網の上に乗せ、酸素気流中で次のような熱処理を行っ
た。1200℃で1時間保持した後−30℃/hrで90
0℃まで降温し、室温までは−100℃/hrで降温し
た。得られた材料を切り出し、超電導特性を測定したと
ころ以下のような結果が得られた。
EXAMPLES An example of producing an oxide superconductor bulk material by the above-mentioned method of the first invention will be described below. As a molded product, a product having a thickness of 1 mm, a width of 10 mm, and a length of 20 mm, which was obtained by melting YBa 2 Cu 3 O 7-y powder and hammer-quenching, was prepared. Figure 1 shows the results of observation of the structure of this material.
It shows in (C). This texture is 50 μm in BaCu oxide
It had a structure in which the following Y 2 O 3 was dispersed. This was placed on a platinum net and subjected to the following heat treatment in an oxygen stream. After holding at 1200 ° C for 1 hour, 90 at -30 ° C / hr
The temperature was lowered to 0 ° C. and to room temperature at −100 ° C./hr. When the obtained material was cut out and the superconducting property was measured, the following results were obtained.

【0018】臨界温度(Tc):93Kでシャープな超
電導遷移を示した。 臨界電流密度(Jc):図2,図3はそれぞれ77K,
4.2Kでの四端子法による輸送臨界電流密度を示す
(ただし四端子法には、電流端子の発熱によりJcを過
小評価するおそれがある)。また図4は別のサンプルに
ついて磁化測定から求めた臨界電流密度で、四端子法に
よる値を上回っていることが確認できた。このように、
本製造方法は、従来の製造方法と比較して極めて高品位
の超電導材料を製造できることが分かった。
At a critical temperature (Tc) of 93 K, a sharp superconducting transition was shown. Critical Current Density (Jc): 77K in Figures 2 and 3, respectively
The transport critical current density by the four-terminal method at 4.2K is shown (however, in the four-terminal method, Jc may be underestimated due to heat generation of the current terminal). Further, FIG. 4 shows that the critical current density obtained from the magnetization measurement of another sample exceeds the value by the four probe method. in this way,
It was found that this manufacturing method can manufacture a superconducting material of extremely high quality as compared with the conventional manufacturing method.

【0019】また、曲げた白金の網の上に成形体を置い
て同様に実験したところ、網の形とほぼ等しい超電導材
料ができ形状付与が容易であることが分かった。さら
に、二つの成形体の一部を重ねて同様に実験したとこ
ろ、接合部での超電導特性は殆ど変化せず、極めて接合
性がよいことも分かった。
Further, when a molded body was placed on a bent platinum net and the same experiment was conducted, it was found that a superconducting material having a net shape substantially the same as that of the net was formed and that the shape could be easily given. Furthermore, when a part of the two molded bodies were overlapped and the same experiment was conducted, it was found that the superconducting property at the joint hardly changed and the joint was extremely good.

【0020】機械的特性については、組織観察の結果か
ら材料中には、1ミクロン程度の211相が多くあり組
織が細かいため正方晶から斜方晶への相転移による歪を
双晶をつくらずに緩和していることが分かった。このこ
とから機械的靭性が改善されているものと思われる。
Regarding the mechanical properties, from the result of the structure observation, there are many 211 phases of about 1 micron in the material and the structure is fine, so that the strain due to the phase transition from the tetragonal system to the orthorhombic system does not form twins. It turned out to be relaxed. From this, it is considered that the mechanical toughness is improved.

【0021】[0021]

【発明の効果】以上詳述したごとく、本発明はこれまで
不可能であった高品位の酸化物バルク超電導材料の製造
を可能とするもので、しかも成形品として各種分野での
応用が可能であり、極めて工業的効果が大きい。具体例
としては、 1)超電導線材 この製造方法により、線状の成形体から高いJcの線材
ができ、接続も容易であるため長距離の送電線としても
使用可能である。 2)超電導コイル 渦巻状の成形体を何重かに重ね接合部で接触させて処理
するだけで高品位のマグネットができる。 3)超電導磁気シールド材 板状の成形体を任意の形状の型にのせて熱処理するだけ
で、任意の形の超電導体ができるため磁束漏れの少な
い、高品位の磁気シールド材ができる。等が挙げられ
る。
As described above in detail, the present invention enables the production of a high-quality oxide bulk superconducting material which has hitherto been impossible, and can be applied as a molded product in various fields. Yes, it has a great industrial effect. Specific examples are: 1) Superconducting wire rod With this manufacturing method, a wire having a high Jc can be formed from a linear molded body, and since connection is easy, it can be used as a long-distance power transmission line. 2) Superconducting coil A high-quality magnet can be obtained simply by stacking a number of spirally shaped compacts and contacting them at the joint. 3) Superconducting magnetic shield material A high-quality magnetic shield material with less magnetic flux leakage can be obtained because a superconductor of an arbitrary shape can be formed by simply heat-treating a plate-shaped compact on a mold of an arbitrary shape. Etc.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る超電導材料の組織を示す顕微鏡写
真で、(a)は超電導バルク材の組織、(b)は超電導
バルク材の双晶、(c)は超電導バルク材の中間物質の
組織を夫々示す。
FIG. 1 is a micrograph showing a structure of a superconducting material according to the present invention, where (a) is a structure of a superconducting bulk material, (b) is a twin of the superconducting bulk material, and (c) is an intermediate substance of the superconducting bulk material. Each organization is shown.

【図2】液体窒素温度77Kでの臨界電流密度の磁場依
存性を示すものである。
FIG. 2 shows the magnetic field dependence of the critical current density at a liquid nitrogen temperature of 77K.

【図3】液体ヘリウム温度4.2KでのJcの磁場依存
性を示す線図である。
FIG. 3 is a diagram showing the magnetic field dependence of Jc at a liquid helium temperature of 4.2K.

【図4】77Kでの磁化特性から求めた臨界電流密度の
磁場依存性を示す。
FIG. 4 shows the magnetic field dependence of the critical current density obtained from the magnetization characteristics at 77K.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // H01B 12/00 ZAA (72)発明者 松田 昭一 神奈川県川崎市中原区井田1618番地 新日 本製鐵株式会社 第1技術研究所内 (56)参考文献 特開 昭64−72905(JP,A) JPN.J.APPL.PHYS.,V OL.27,NO.2,PP.L188−L190 (1988.2)─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Reference number within the agency FI Technical display location // H01B 12/00 ZAA (72) Inventor Shoichi Matsuda 1618 Ida, Nakahara-ku, Kawasaki-shi, Kanagawa (1) Reference No. 64-72905 (JP, A) JPN. J. APPL. PHYS. , VOL. 27, NO. 2, PP. L188-L190 (1988.2)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 REBa2 Cu3 7-y 型酸化物超電導
体を形成すべき化学組成の出発原料を調整し、この出発
原料を昇温して溶融し、この溶融体を急冷して所定形状
に凝固成形し、RE 2 3 とBa−Cu酸化物からなる
中間体を得、この成形体を1000℃から1350℃ま
での温度範囲に属する温度に昇温して半溶融し、この半
溶融体を200℃/hr以下の冷却速度で徐冷して包晶反
応によって211相が微細分散した123相の結晶を成
長させることを特徴とする磁場中で高い臨界電流密度を
示す酸化物超電導バルク材料の製造方法。ここでRE
は、Y(イットリウム)または希土類元素をいう。
1. A starting material having a chemical composition for forming a REBa 2 Cu 3 O 7-y type oxide superconductor is prepared, the starting material is heated and melted, and the melt is rapidly cooled to a predetermined temperature. Solidified into a shape and made of RE 2 O 3 and Ba-Cu oxide
An intermediate body is obtained, this molded body is heated to a temperature within a temperature range of 1000 ° C. to 1350 ° C. to be semi-molten, and this semi-molten body is gradually cooled at a cooling rate of 200 ° C./hr or less to give a peritectic crystal. The reaction produces a 123-phase crystal in which the 211-phase is finely dispersed.
Method of manufacturing an oxide superconductive bulk material exhibiting a high critical current density in a magnetic field, characterized in Rukoto allowed length. RE here
Means Y (yttrium) or a rare earth element.
【請求項2】 RE2 3 の粉体とBa−Cu酸化物の
混合体を1000℃から1350℃までの温度範囲に属
する温度に昇温して半溶融し、この半溶融体を200℃
/hr以下の冷却速度で徐冷して包晶反応によって211
相が微細分散した123相の結晶を成長させることを特
徴とする磁場中で高い臨界電流密度を示す酸化物超電導
バルク材料の製造方法。ここでREは、Y(イットリウ
ム)または希土類元素をいう。
2. A mixture of RE 2 O 3 powder and Ba—Cu oxide is heated to a temperature within a temperature range from 1000 ° C. to 1350 ° C. to be semi-melted, and the semi-melted product is heated to 200 ° C.
211 per hour by peritectic reaction after slow cooling at a cooling rate of less than 1 hour
Phase method of manufacturing an oxide superconductive bulk material exhibiting a high critical current density in a magnetic field, characterized in Rukoto grown crystals finely dispersed 123 phase. Here, RE means Y (yttrium) or a rare earth element.
JP5213636A 1993-08-30 1993-08-30 Manufacturing method of oxide superconducting bulk material Expired - Lifetime JPH0816014B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5213636A JPH0816014B2 (en) 1993-08-30 1993-08-30 Manufacturing method of oxide superconducting bulk material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5213636A JPH0816014B2 (en) 1993-08-30 1993-08-30 Manufacturing method of oxide superconducting bulk material

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP63261607A Division JPH02153803A (en) 1988-06-06 1988-10-19 Oxide superconductor bulk material and production thereof

Publications (2)

Publication Number Publication Date
JPH06183730A JPH06183730A (en) 1994-07-05
JPH0816014B2 true JPH0816014B2 (en) 1996-02-21

Family

ID=16642439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5213636A Expired - Lifetime JPH0816014B2 (en) 1993-08-30 1993-08-30 Manufacturing method of oxide superconducting bulk material

Country Status (1)

Country Link
JP (1) JPH0816014B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5157017A (en) * 1987-06-12 1992-10-20 At&T Bell Laboratories Method of fabricating a superconductive body

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN.J.APPL.PHYS.,VOL.27,NO.2,PP.L188−L190(1988.2)

Also Published As

Publication number Publication date
JPH06183730A (en) 1994-07-05

Similar Documents

Publication Publication Date Title
JP3110451B2 (en) High critical current orientated grained Y-Ba-Cu-O superconductor and method for producing the same
EP0374263B1 (en) Oxide superconductive material and process for its production
EP0423375B1 (en) Oxide superconductor and method of producing the same
US5306697A (en) Oriented grained Y-Ba-Cu-O superconductors having high critical currents and method for producing same
US5508253A (en) REBa2 Cu3 O7-y type oxide superconductive material having high critical current density and process for preparation thereof
JP4113113B2 (en) Oxide superconductor joining method and oxide superconductor joined body
Alford et al. Processing, properties and devices in high-Tc superconductors
JP2590275B2 (en) Manufacturing method of oxide superconducting material
EP0800494B1 (en) LOW TEMPERATURE (T LOWER THAN 950 oC) PREPARATION OF MELT TEXTURE YBCO SUPERCONDUCTORS
JPH07115924B2 (en) Method for manufacturing oxide superconductor
JP4925639B2 (en) RE123 oxide superconductor and manufacturing method thereof
JPH0816014B2 (en) Manufacturing method of oxide superconducting bulk material
JP3237953B2 (en) Manufacturing method of oxide superconducting material
JP3219563B2 (en) Metal oxide and method for producing the same
JP3160900B2 (en) Manufacturing method of superconducting material
JP3159764B2 (en) Manufacturing method of rare earth superconductor
JP2828396B2 (en) Oxide superconductor and manufacturing method thereof
JP4153651B2 (en) Seed crystal of oxide superconducting material and manufacturing method of oxide superconducting material using the same
JP2914799B2 (en) Manufacturing method of oxide superconducting bulk material
JP2971504B2 (en) Method for producing Bi-based oxide superconductor
JPH0446053A (en) Oxide superconductor and its production
JPH05254834A (en) Oxide superconductor and production process thereof
JPH08217442A (en) Carbon-containing metal oxide wire material and its production
JP2002326817A (en) Oxide superconductor and its production method
JPH0524825A (en) Production of rare earth-based oxide us superconductor and raw material powder therefor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960813

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080221

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090221

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090221

Year of fee payment: 13