JP3159764B2 - Manufacturing method of rare earth superconductor - Google Patents

Manufacturing method of rare earth superconductor

Info

Publication number
JP3159764B2
JP3159764B2 JP03502892A JP3502892A JP3159764B2 JP 3159764 B2 JP3159764 B2 JP 3159764B2 JP 03502892 A JP03502892 A JP 03502892A JP 3502892 A JP3502892 A JP 3502892A JP 3159764 B2 JP3159764 B2 JP 3159764B2
Authority
JP
Japan
Prior art keywords
oxide superconductor
crystal
oxide
rare earth
superconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03502892A
Other languages
Japanese (ja)
Other versions
JPH05238731A (en
Inventor
尚之 小川
均 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP03502892A priority Critical patent/JP3159764B2/en
Publication of JPH05238731A publication Critical patent/JPH05238731A/en
Application granted granted Critical
Publication of JP3159764B2 publication Critical patent/JP3159764B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、希土類系酸化物超電導
体の製造方法に関し、更に詳しくは、高磁場下でも高い
臨界電流密度を示すREBa2 Cu3y (REは、Y、G
d、Ho、ErまたはYbを表す。)酸化物超電導体
を、種結晶の存在下で溶融処理して得る方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a rare earth oxide superconductor, and more particularly, to REBa 2 Cu 3 O y (RE is Y, G
represents d, Ho, Er or Yb. The present invention relates to a method for obtaining an oxide superconductor by melting in the presence of a seed crystal.

【0002】[0002]

【従来の技術】酸化物超電導体は、その臨界温度が高い
ことから実用化への研究が盛んに行われている。酸化物
超電導体としては、例えば、特開昭63−291814
号公報でY及びCeの希土類元素を含有する超電導材料
組成物が提案されている。これらの酸化物超電導体をバ
ルク材として得る場合、従来から焼結法を採用するのが
一般的であった。焼結法により製造した酸化物超電導体
は、粒径が細かく内部に多数の粒界が存在する微細構造
を有するのが通常である。即ち、焼結法で製造された酸
化物超電導バルク体では、個々の超電導粒子が弱結合で
連結されており、酸化物超電導バルク体の臨界電流密度
(Jc)はこの弱結合に支配されることになるため、高いJc
が得られていなかった。
2. Description of the Related Art Oxide superconductors have been actively studied for practical use because of their high critical temperature. As the oxide superconductor, for example, JP-A-63-291814
In Japanese Patent Application Laid-Open Publication No. H11-163, a superconducting material composition containing rare earth elements of Y and Ce is proposed. When these oxide superconductors are obtained as a bulk material, a sintering method has conventionally been generally used. The oxide superconductor produced by the sintering method usually has a fine structure having a small particle size and a large number of grain boundaries inside. That is, in the oxide superconducting bulk body manufactured by the sintering method, individual superconducting particles are connected by a weak bond, and the critical current density of the oxide superconducting bulk body is
(Jc) is governed by this weak coupling, so a high Jc
Was not obtained.

【0003】一方、単結晶の超電導体においては、上記
した粒界の問題が無く、高磁場においても高いJcを示す
ことが知られている。従って、高Jcの酸化物超電導バル
ク体を得るため、焼結法により得られる微細構造の超電
導体を単結晶構造に近似させる試みが検討されている。
更に、非超電導相の微細構造粒子を超電導相中に分散さ
せ、侵入した磁束線を固定させるいわゆるピンニングセ
ンターの導入が提案され、例えば、MTG法(Melt Tex
tured Growth法) に代表される溶融法が提案されてい
る。MTG法は、酸化物超電導体において、一般に12
3相(YBa2 Cu3y、但しYはYを含む希土類元
素)の分解溶融温度から徐冷することにより、211相
(Y2 BaCuO5 )と液相との包晶反応を起こさせ結
晶成長させると同時に、包晶反応を不完全にして成長し
た結晶内部に一部未反応の211相を存在させるように
する方法である。この方法により得られる酸化物超電導
体は、123相中に残存する211相がピンニングセン
ターとして作用し、そのため、磁場中でも高いJcを示す
ことになる。
On the other hand, it is known that a single-crystal superconductor does not have the above-described problem of grain boundaries and exhibits a high Jc even in a high magnetic field. Therefore, in order to obtain a bulk oxide superconducting body having a high Jc, attempts are being made to approximate a superconductor having a fine structure obtained by a sintering method to a single crystal structure.
Further, it has been proposed to introduce a so-called pinning center for dispersing fine-structure particles of a non-superconducting phase in the superconducting phase and fixing the penetrated magnetic flux lines.
tured growth method) has been proposed. The MTG method is generally used for oxide superconductors.
By slowly cooling the three phases (YBa 2 Cu 3 O y , where Y is a rare earth element containing Y) from the decomposition melting temperature, a peritectic reaction occurs between the 211 phase (Y 2 BaCuO 5 ) and the liquid phase, and the crystal is formed. At the same time as growing, the peritectic reaction is incomplete so that a partially unreacted 211 phase exists inside the grown crystal. In the oxide superconductor obtained by this method, 211 phases remaining in the 123 phases act as pinning centers, and therefore exhibit high Jc even in a magnetic field.

【0004】しかし、この溶融法で得られる酸化物超電
導体は、211相の粒径が大きく、且つその分布が不均
一であり、結晶成長方向に沿ったクラックが存在する等
の不都合がある。上記MTG法の欠点を改良した方法と
して、特開平2−153803号公報にはQMG法(Qu
ench and Melt Growth法) が提案されている。このQM
G法により得られる酸化物超電導体は、結晶成長した1
23相内部に存在する211相が20μm以下の微細
で、均質に分散するため、極めて強力なピン止め効果を
発揮して高磁場中で優れたJcを示すことが開示されてい
る。また、MPMG法(Melt Powder and Melt Growth
法) が提案されている。MPMG法は、上記QMG法に
おける溶融急冷凝固体を粉砕し成形性を向上させる方法
で、Jc特性は高く同様な効果を得ることができると提案
されている。
However, the oxide superconductor obtained by the melting method has disadvantages such as a large grain size of the 211 phase, a nonuniform distribution thereof, and the presence of cracks along the crystal growth direction. As a method for improving the disadvantages of the MTG method, Japanese Patent Application Laid-Open No. 2-153803 discloses a QMG method (Qu
ench and Melt Growth method) has been proposed. This QM
The oxide superconductor obtained by the G method has crystal grown 1
It is disclosed that since the 211 phases existing inside the 23 phases are fine and homogeneously dispersed with a size of 20 μm or less, they exhibit an extremely strong pinning effect and exhibit excellent Jc in a high magnetic field. In addition, MPMG method (Melt Powder and Melt Growth
Law) has been proposed. The MPMG method is a method of improving the formability by pulverizing the melt-quenched solidified body in the QMG method, and it is proposed that the same effect can be obtained with a high Jc characteristic.

【0005】上記の提案されたQMG法及びMPMG法
によって得られる酸化物超電導バルク体は、ミリオーダ
ー単位の小さなものは、優れた超電導特性を示し極めて
高Jcを有するが、10ミリ以上のオーダーの大きさにな
ると、同様に製造しても予測する程度の超電導特性を示
すものを得ることができない。この原因は、やはり粒界
の存在や、粒界に生じるクラックのためにあると考えら
れている。そのため、更に単結晶に近づける方法とし
て、QMG法で得られたYBaCuO超電導成形体を部
分溶融温度に再加熱処理した後、SmBa2 Cu3x
を種結晶として再結晶させることにより、成形体表面に
単結晶を成長させる方法が提案されている(ジャパニー
ズ ジャーナル オブ アプライド フィジックス(JA
PANESE JOURNAL OF APPLIED PHYSICS)、第30巻、N
o.7A、L1157〜L1159(1991年7月)
参照)。
[0005] As for the oxide superconducting bulk material obtained by the above-mentioned proposed QMG method and MPMG method, those having a small size in the order of millimeters exhibit excellent superconducting characteristics and have an extremely high Jc, but have an extremely high Jc. When the size becomes large, it is not possible to obtain a material exhibiting the expected superconducting characteristics even if it is manufactured in the same manner. It is believed that this is due to the existence of grain boundaries and cracks generated at the grain boundaries. Therefore, as a method of bringing the YBaCuO superconducting compact obtained by the QMG method to a partial melting temperature as a method of bringing it closer to a single crystal, SmBa 2 Cu 3 O x
A method of growing a single crystal on the surface of a molded article by recrystallizing as a seed crystal has been proposed (Japanese Journal of Applied Physics (JA)
PANESE JOURNAL OF APPLIED PHYSICS), Volume 30, N
o. 7A, L1157 to L1159 (July 1991)
reference).

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記の
QMG法やMPMG法により得られる酸化物超電導体
は、溶融法により得られる酸化物超電導体に比して、強
力なピン止め効果を発揮し、より優れたJcを示す。ま
た、211(RE2 BaCuO5 )相を微細分散させるた
め急冷凝固工程を経由させる場合には、溶融−急冷凝固
工程に白金ルツボが必須となる。しかし、溶融工程にお
いて白金ルツボを用いた場合、白金と希土類系酸化物超
電導体との反応が生じるおそれがあり、超電導特性が不
均一となる等のおそれがある。また、高速急冷のための
方法、手段等の問題もある。更にまた、上記のQMG法
で得られた酸化物超電導成形体を再加熱処理し、SmB
2 Cu3x を種結晶として再結晶させる方法は、Q
MG法の上記問題点をそのまま有すると同時に、種結晶
に用いるSmBa2 Cu3x は、1060℃で分解す
るため、RE成分によっては熱処理プロセスの途中からし
か使用することができないため、プロセスが煩雑となっ
ている。
However, the oxide superconductor obtained by the above-mentioned QMG method or MPMG method exhibits a stronger pinning effect than the oxide superconductor obtained by the melting method. Shows better Jc. In addition, in the case where a rapid solidification step is performed to finely disperse the 211 (RE 2 BaCuO 5 ) phase, a platinum crucible is essential for the melt-quick solidification step. However, when a platinum crucible is used in the melting step, a reaction between platinum and the rare-earth-based oxide superconductor may occur, and the superconducting characteristics may become non-uniform. There are also problems with methods and means for rapid quenching. Furthermore, the oxide superconducting compact obtained by the above-mentioned QMG method is subjected to a reheating treatment, and the SmB
The method of recrystallizing a 2 Cu 3 O x as a seed crystal is described in Q
While having the above-mentioned problems of the MG method as it is, SmBa 2 Cu 3 O x used for the seed crystal is decomposed at 1060 ° C., and therefore, depending on the RE component, it can be used only during the heat treatment process. It is complicated.

【0007】上記のように、均一な高Jcを有する酸化物
超電導体を得るための種々の提案されている方法におい
ても、10ミリオーダー以上の大型で、且つ、均一な超
電導特性を有し、高Jcを示す酸化物超電導バルク体を簡
便に得ることは、未だ困難である。そのため工業的には
簡単な操作で、ミリオーダーと同等の超電導特性を有
し、高磁場において高Jcを示す大型の酸化物超電導体の
製造方法が望まれている。発明者等は、優れた超電導特
性を有する酸化物超電導体を大型のバルク体として簡便
に製造する方法について鋭意検討した結果、簡便な溶融
法の操作で、且つQMG法やMPMG法で得られる小型
の酸化物超電導体と同様に極めて強力なピン止め効果を
発揮して高磁場中で優れたJcを示す酸化物超電導体を得
る方法を見出し、本発明を完成した。
As described above, even in various proposed methods for obtaining an oxide superconductor having a uniform high Jc, the oxide superconductor has a large and uniform superconducting characteristic of 10 millimeters or more. It is still difficult to easily obtain a bulk oxide superconductor exhibiting high Jc. Therefore, industrially, there is a demand for a method for producing a large oxide superconductor having a superconducting property equivalent to a millimeter order and exhibiting a high Jc in a high magnetic field by a simple operation. The present inventors have conducted intensive studies on a method for easily manufacturing an oxide superconductor having excellent superconducting properties as a large bulk body. The present inventors have found a method for obtaining an oxide superconductor exhibiting excellent Jc in a high magnetic field by exhibiting an extremely strong pinning effect as in the case of the oxide superconductor described above, and completed the present invention.

【0008】[0008]

【課題を解決するための手段】本発明によれば、RE−B
a−Cu−O系酸化物超電導体(REは、Y、Gd、H
o、ErまたはYbを表す。)を構成するRE、Ba及び
Cu成分を含む原料粉末を用いて成形した成形体に、種
結晶としてSrTiO3 、MgO、LaAlO3、La
GaO3 、NdGaO3 及びPrGaO3 の単結晶のい
づれか1種を接触配置し、該種結晶配置の成形体を該酸
化物超電導体の分解溶融温度以上の温度で加熱処理する
分解溶融工程、徐冷工程及び熱処理工程で処理すること
を特徴とする希土類系酸化物超電導体の製造方法が提供
される。
According to the present invention, RE-B
a-Cu-O-based oxide superconductor (RE is Y, Gd, H
represents o, Er or Yb. ) Is formed using a raw material powder containing RE, Ba, and Cu components, and SrTiO 3 , MgO, LaAlO 3 , La as seed crystals.
A decomposition melting step in which any one of GaO 3 , NdGaO 3 and PrGaO 3 single crystals is arranged in contact with each other, and the formed body having the seed crystal arrangement is heated at a temperature not lower than the decomposition melting temperature of the oxide superconductor; A method for producing a rare earth-based oxide superconductor characterized by performing a treatment in a step and a heat treatment step is provided.

【0009】[0009]

【作用】本発明は、上記のようにY、Gd、Ho、Er
及びYbから選ばれる少なくとも1種のRE元素成分を含
有するREBa2 Cu3y 酸化物超電導体を構成するよ
うに調整された原料粉末により得られた成形体を、特定
の種結晶を配置する以外は、従来の溶融法とほぼ同様に
溶融、徐冷、熱処理することによりREBa2 Cu3y
酸化物超電導体を得ることができる。また、得られるRE
Ba2 Cu3y酸化物超電導体は、微細なRE2 BaC
uO5 相を含有すると共に、結晶粒界が少なく、且つRE
Ba2 Cu3y 系酸化物結晶構造のab面に結晶配向
性を有し、優れた超電導特性を有して高Jcを示すものと
なる。
According to the present invention, as described above, Y, Gd, Ho, Er
And a specific seed crystal is placed on a compact obtained from a raw material powder adjusted to constitute a REBa 2 Cu 3 O y oxide superconductor containing at least one RE element component selected from Yb and Yb. Other than the above, REBa 2 Cu 3 O y is melted, gradually cooled, and heat-treated in substantially the same manner as the conventional melting method.
An oxide superconductor can be obtained. Also obtained RE
Ba 2 Cu 3 O y oxide superconductor fine RE 2 Bac
contains uO 5 phase, has few grain boundaries, and has RE
It has crystal orientation on the ab plane of the Ba 2 Cu 3 O y -based oxide crystal structure, has excellent superconductivity, and exhibits high Jc.

【0010】本発明においては、特に、Ce成分を原料
粉末中に配合することにより、REBa2 Cu3y 粒子
内に生成するRE2 BaCuO5 相が均一且つ微細構造と
することができると共に、分解溶融、徐冷、熱処理工程
において特定の種結晶を配置することにより、REBa2
Cu3y の粒子構造が結晶粒界が少なく、且つその表
面をREBa2 Cu3y 結晶構造のab面に配向して結
晶成長させることができる。前記従来のQMG法におい
ては、原料粉末を溶融急冷工程を経由させない場合、分
解溶融温度でRE2 BaCuO5 相が生成し、更にその凝
集・粗大化のため、高Jcを示す超電導体を得られていな
いことに比し、本発明のRE−Ba−Cu−O系酸化物超
電導体は、バルク体であっても、結晶粒界が少なく、表
面結晶相が極めて単結晶に近似するため高Jcを得ること
ができる。
In the present invention, in particular, by incorporating Ce component in the raw material powder, it is possible to RE 2 BaCuO 5 phase generated in REBa 2 Cu 3 in O y particles are uniform and fine structure, By arranging a specific seed crystal in the decomposition melting, slow cooling, and heat treatment processes, REBa 2
The grain structure of Cu 3 O y has few crystal grain boundaries, and the crystal can be grown with its surface oriented in the ab plane of the REBa 2 Cu 3 O y crystal structure. In the conventional QMG method, when the raw material powder does not pass through a melting and quenching step, a RE 2 BaCuO 5 phase is generated at a decomposition melting temperature, and further, due to its aggregation and coarsening, a superconductor having a high Jc can be obtained. In contrast to the above, the RE-Ba-Cu-O-based oxide superconductor of the present invention has a low crystal grain boundary even in a bulk body, and has a high Jc Can be obtained.

【0011】以下、本発明について更に詳しく説明す
る。本発明のRE−Ba−Cu−O系酸化物超電導体は、
REがY、Gd、Ho、Er及びYbから選ばれる少なく
とも1種の希土類元素を含む多層ペロブスカイト構造を
有し、例えばYBa2 Cu37 等のREBa2 Cu3
y 酸化物超電導体である。本発明におけるREで表される
希土類元素成分は上記のY、Gd、Ho、ErまたはY
bであり、希土類元素のうちCe、Nd、Eu、Sm、
Sc、Tb、Dy、Tm、La、Lu及びPrは、本発
明の目的の効果を得ることができないため除かれる。
Hereinafter, the present invention will be described in more detail. RE-Ba-Cu-O-based oxide superconductor of the present invention,
RE has a multilayer perovskite structure containing at least one rare earth element selected from Y, Gd, Ho, Er, and Yb, and includes, for example, REBa 2 Cu 3 O such as YBa 2 Cu 3 O 7.
y It is an oxide superconductor. The rare earth element component represented by RE in the present invention is Y, Gd, Ho, Er or Y
b, and among the rare earth elements, Ce, Nd, Eu, Sm,
Sc, Tb, Dy, Tm, La, Lu and Pr are excluded because the effects of the present invention cannot be obtained.

【0012】本発明の酸化物超電導体は、下記する原料
粉末を用いて所定の形状に成形した後、対応するREBa
2 Cu3y 酸化物超電導体の分解溶融温度以上の温度
で加熱処理する分解溶融工程、徐冷工程及び酸素雰囲気
下での熱処理工程において、種結晶を成形体に接触配置
することにより得ることができる。本発明は、種結晶を
配置する以外の分解溶融加熱処理、徐冷及び酸素雰囲気
下熱処理は、公知の溶融法と同様であり極めて簡便な操
作工程で、10mmオーダーの比較的大型のバルク体で
あって、所望の高Jcを示すRE−Ba−Cu−O系超電導
体を得ることができる。
The oxide superconductor of the present invention is formed into a predetermined shape using the following raw material powder,
(2) In a decomposition melting step of heating at a temperature equal to or higher than the decomposition melting temperature of the Cu 3 Oy oxide superconductor, a slow cooling step, and a heat treatment step in an oxygen atmosphere, the seed crystal is obtained by placing the seed crystal in contact with the compact. Can be. In the present invention, the decomposition melting heat treatment other than disposing the seed crystal, the slow cooling, and the heat treatment under an oxygen atmosphere are the same as the known melting method, and are extremely simple operation steps. Thus, a RE-Ba-Cu-O-based superconductor exhibiting a desired high Jc can be obtained.

【0013】本発明の種結晶は、SrTiO3 、Mg
O、LaAlO3 、LaGaO3 、NdGaO3 及びP
rGaO3 の単結晶(以下、単にSrTiO3 等の単結
晶とする。)のいずれかを用いることができる。これら
酸化物単結晶は、臨界温度の高い酸化物超電導素子の薄
膜形成させる研究において、結晶基板として用いられて
いる(日本結晶成長学会誌、第17巻、第2号、第86
〜94頁(1990年)参照)。本発明は、これら薄膜
の酸化物超電導体形成に使用されている単結晶を、RE−
Ba−Cu−O系超電導バルク体の製造に初めて応用し
たものであり、その適用により得られる効果は予測し得
るものでなかった。上記の種結晶として用いるSrTi
3 等の単結晶は、いずれも融点が1500℃以上であ
り、本発明のRE−Ba−Cu−O系超電導体を構成する
希土類系酸化物の分解溶融温度以上であり、好適に用い
ることができる。また、酸化物超電導素子の薄膜形成用
として市販されているSrTiO3 等の単結晶を適宜選
択して使用することができる。
The seed crystal of the present invention is made of SrTiO 3 , Mg
O, LaAlO 3 , LaGaO 3 , NdGaO 3 and P
Any of single crystals of rGaO 3 (hereinafter, simply referred to as single crystals of SrTiO 3 or the like) can be used. These oxide single crystals are used as a crystal substrate in a study for forming a thin film of an oxide superconducting element having a high critical temperature (Journal of the Japan Society for Crystal Growth, Vol. 17, No. 2, No. 86).
Pp. 94 (1990)). The present invention provides a single crystal used for forming an oxide superconductor of these thin films by RE-
This was the first application to the production of a Ba-Cu-O-based superconducting bulk body, and the effects obtained by its application were not predictable. SrTi used as the above seed crystal
Single crystals such as O 3 have a melting point of at least 1500 ° C. and are at or above the decomposition melting temperature of the rare-earth oxide constituting the RE-Ba—Cu—O-based superconductor of the present invention, and are preferably used. Can be. Further, a single crystal such as SrTiO 3 which is commercially available for forming a thin film of an oxide superconducting element can be appropriately selected and used.

【0014】上記RE−Ba−Cu−O系酸化物超電導体
を構成するためのRE、Ba及びCu成分を含む原料粉末
は、焼成後にREBa2 Cu3y 及びRE2 BaCuO5
を構成するように配合されたものであればよく特に限定
されるものでない。各成分の原料としては、希土類元素
であるRE、即ちY、Gd、Ho、Er、またはYbの酸
化物、Baの炭酸塩、酸化物あるいは過酸化物、及びC
uの酸化物を、上記のように配合・混合した酸化物混合
粉末、その酸化物混合粉末の仮焼粉末、またはその酸化
物混合粉末のフリット粉末等を用いることができる。ま
た、原料粉末の粒径も特に制限されるものでないが、一
般的には、20μm以下、特に1〜5μmの細かいもの
が好ましい。20μmを超える原料粉末は、分解溶融温
度時に組成の不均一が生じるため好ましくない。1μm
以下の原料粉末としては、例えば、共沈法で生成された
粉末等を使用することが好ましいが、1μm以下の微細
粉末であれば、他の方法で得られたものでも用いること
ができる。
[0014] The REBa-Cu-O system RE for constituting the oxide superconductor, a raw material powder containing Ba and Cu components, REBa 2 Cu 3 O y and RE 2 BaCuO 5 after firing
Is not particularly limited as long as it is blended so as to constitute. The raw material of each component is RE, which is a rare earth element, that is, an oxide of Y, Gd, Ho, Er, or Yb, a carbonate, oxide or peroxide of Ba, and C
An oxide mixed powder obtained by mixing and mixing the oxides of u as described above, a calcined powder of the oxide mixed powder, a frit powder of the oxide mixed powder, and the like can be used. Also, the particle size of the raw material powder is not particularly limited, but is generally 20 μm or less, particularly preferably 1 to 5 μm. Raw material powders having a diameter of more than 20 μm are not preferred because the composition becomes non-uniform at the time of decomposition and melting. 1 μm
As the following raw material powder, for example, it is preferable to use a powder or the like generated by a coprecipitation method, but as long as it is a fine powder of 1 μm or less, a powder obtained by another method can be used.

【0015】更に、本発明の上記原料粉末には、Ce成
分を添加配合するのが好ましい。Ce成分は、得られる
焼成体である酸化物超電導体中に、元素基準で0.01
〜5重量%含有するように添加量を換算して配合するの
が好ましい。添加量が上記範囲を外れるとRE2 BaCu
5 相の粒成長抑制効果が乏しく、特に5重量%を超え
ると異相の析出が多くなり好ましくない。Ce成分は、
原料粉末に金属単体または酸化物等の化合物として添加
することができる。通常は、単体粉末が用いられ、原料
粉末に合わせ粉末状で添加するのが好ましく、更に好ま
しくは、粒径約20μm以下の微粉末状で添加する。C
e成分が、粒径約20μm以下の微粉末であれば、凝集
物としての残留することなく、得られる酸化物超電導体
の均質性が向上し、均一性よくバラツキの無い優れた超
電導特性を得ることができる。
Further, it is preferable to add a Ce component to the raw material powder of the present invention. The Ce component is contained in the oxide superconductor that is the fired body to be obtained in an amount of 0.01 on an element basis.
It is preferable to add and convert the amount to be contained so as to contain 55% by weight. If the added amount is out of the above range, RE 2 BaCu
The effect of suppressing the grain growth of the O 5 phase is poor. In particular, if it exceeds 5% by weight, the precipitation of foreign phases increases, which is not preferable. The Ce component is
It can be added to the raw material powder as a simple metal or a compound such as an oxide. Usually, a single powder is used, and it is preferable to add it in powder form according to the raw material powder, and more preferably, to add it in fine powder form having a particle size of about 20 μm or less. C
If the component e is a fine powder having a particle size of about 20 μm or less, the resulting oxide superconductor will have improved homogeneity without remaining as agglomerates, and excellent superconductivity with good uniformity and no variation will be obtained. be able to.

【0016】本発明における成形方法は、特に制限され
るものでない。例えば、ドクターブレード法、プレス成
形法、泥しょう鋳込成形法等公知の成形方法を用いて、
所望の酸化物超電導体を10mmオーダー以上のバルク
成形体として得ることができる。また、金属、セラミッ
クス等の基板上に上記混合粉末によりスプレー塗布、パ
ウダー塗布等で成形体層を形成した成形体として得るこ
ともできる。
The molding method in the present invention is not particularly limited. For example, using a known molding method such as a doctor blade method, a press molding method, a slurry casting molding method,
A desired oxide superconductor can be obtained as a bulk molded body of the order of 10 mm or more. Alternatively, a molded article can be obtained by forming a molded article layer on a substrate of a metal, ceramics, or the like by spray coating, powder coating, or the like using the mixed powder.

【0017】本発明において、上記成形方法により得ら
れた成形バルク体は、次いで、上記したSrTiO3
の単結晶を、種結晶として成形体の表面に接触配置して
分解溶融以降の工程で処理する。種結晶の配置は、種結
晶を配置した成形バルク体の表面が、REBa2 Cu3
結晶のab面に一致して結晶成長するように配置する。
例えば、分解溶融工程、徐冷工程、熱処理工程を施す焼
成炉中において、被焼成体を設置する支持台、即ちセッ
ター上に成形バルク体を設置したときに、図1に示した
ように成形バルク体の上側表面上のほぼ中央に、SrT
iO3 等の単結晶を種結晶として載置するか、または、
図2に示したように、SrTiO3 等の単結晶板の上に
成形バルク体を載置するようにすればよい。
In the present invention, the formed bulk body obtained by the above-mentioned forming method is then treated in a step after decomposition and melting by disposing the above-mentioned single crystal such as SrTiO 3 as a seed crystal on the surface of the formed body. I do. The seed crystal is arranged in such a manner that the surface of the shaped bulk body on which the seed crystal is arranged is REBa 2 Cu 3 O
The crystal is arranged so as to grow in accordance with the ab plane of the crystal.
For example, in a firing furnace for performing a decomposition melting step, a slow cooling step, and a heat treatment step, when a molded bulk body is placed on a support base on which a body to be fired is placed, that is, on a setter, as shown in FIG. Near the center of the upper body surface, SrT
A single crystal such as iO 3 is placed as a seed crystal, or
As shown in FIG. 2, the formed bulk body may be placed on a single crystal plate of SrTiO 3 or the like.

【0018】本発明におけるRE−Ba−Cu−O系超電
導体の分解溶融温度以上の温度は、含有するRE元素成分
の種類により異なるが、一般的には1050〜1200
℃であり、加熱条件や成形体の大きさ等により適宜選択
すればよい。上記分解溶融温度以上の温度への昇温速度
は、特に制限されることはない。特に大型のRE−Ba−
Cu−O系超電導体の焼成物を得る場合は、大型の電気
炉等を用い、通常、昇温速度約10〜300℃/時で昇
温すればよい。更にまた、分解溶融加熱処理は上記温度
範囲のRE元素成分に応じた温度において、所定時間保持
することにより行うことができる。この場合、保持時間
はとくに制限されるものでなく、上記の温度範囲と同様
に加熱条件等により適宜選択することができる。通常
は、10分〜3時間保持して処理することができる。
The temperature above the decomposition melting temperature of the RE-Ba-Cu-O-based superconductor in the present invention varies depending on the type of the RE element component contained, but is generally from 1050 to 1200.
° C and may be appropriately selected depending on the heating conditions, the size of the molded body, and the like. The rate of temperature rise to a temperature equal to or higher than the decomposition melting temperature is not particularly limited. Especially large RE-Ba-
When obtaining a fired product of a Cu-O-based superconductor, the temperature may be raised usually at a rate of about 10 to 300 ° C / hour using a large electric furnace or the like. Furthermore, the decomposition melting heat treatment can be performed by holding at a temperature corresponding to the RE element component in the above temperature range for a predetermined time. In this case, the holding time is not particularly limited, and can be appropriately selected according to the heating conditions and the like in the same manner as in the above temperature range. Usually, the treatment can be carried out for 10 minutes to 3 hours.

【0019】上記分解溶融の加熱処理工程後は、通常の
溶融法と同様に徐冷工程を経た後、酸素雰囲気下、所定
温度で保持して熱処理する熱処理工程を経てREBa2
3y 酸化物超電導体を得ることができる。この場
合、徐冷工程は、REBa2 Cu3y 結晶を成長させる
工程であり、通常、所定の冷却速度以下で、次工程の熱
処理工程温度まで降温して行えばよい。好ましくは、冷
却速度5℃/時以下で0.5℃/時以上で行うことがで
きる。また、徐冷工程後の熱処理工程は、所定の酸素量
を酸化物超電導結晶相中に充分導入するための工程であ
り、通常、酸素雰囲気下、500℃以下で、できるだけ
長時間保持すればよい。一般に、300〜500℃で、
約10〜100時間保持するのが好ましい。
[0019] After the heat treatment step of the incongruent melting is passed through the conventional melt method as well as annealing step, under oxygen atmosphere, through a heat treatment step of heat-treating and held at a predetermined temperature REBa 2 C
A u 3 O y oxide superconductor can be obtained. In this case, the slow cooling step is a step of growing REBa 2 Cu 3 O y crystals, and it is usually sufficient to lower the temperature to the temperature of the next heat treatment step at a predetermined cooling rate or less. Preferably, the cooling can be performed at a cooling rate of 5 ° C./hour or less and 0.5 ° C./hour or more. In addition, the heat treatment step after the slow cooling step is a step for sufficiently introducing a predetermined amount of oxygen into the oxide superconducting crystal phase, and is usually performed under an oxygen atmosphere at 500 ° C. or lower and for as long as possible. . Generally, at 300-500 ° C,
It is preferable to hold for about 10 to 100 hours.

【0020】本発明は、上記したように、従来の溶融法
とほぼ同様な分解溶融加熱処理工程、徐冷工程及び熱処
理工程において、所定の原料粉末から成形した成形バル
ク体に種結晶を接触配置することにより、バルク体表面
のRE−Ba−Cu−O系超電導結晶相をab面に一致し
て結晶成長させることができる。従って、本発明で得ら
れるRE−Ba−Cu−O系超電導バルク体の表面は、RE
Ba2 Cu3 O結晶のab面が層状に配向してなり、超
電導特性が優れ高Jcを示すため、例えば、磁気シールド
体として使用する場合、高磁気シールド能を発揮するこ
とができる。
According to the present invention, as described above, a seed crystal is brought into contact with a molded bulk body molded from a predetermined raw material powder in a decomposition melting heat treatment step, a slow cooling step, and a heat treatment step substantially similar to the conventional melting method. By doing so, the RE-Ba-Cu-O-based superconducting crystal phase on the surface of the bulk body can be crystal-grown in accordance with the ab plane. Therefore, the surface of the RE-Ba-Cu-O-based superconducting bulk material obtained in the present invention is
Since the ab plane of the Ba 2 Cu 3 O crystal is oriented in a layered manner and has excellent superconducting properties and high Jc, for example, when used as a magnetic shield, it can exhibit high magnetic shielding ability.

【0021】[0021]

【実施例】以下、本発明を実施例により詳細に説明す
る。但し、本発明は下記実施例により制限されるもので
ない。 実施例1及び比較例1 Y23 、BaCO3 、CuO粉末をY、Ba及びCu
の原子比が1.50:2.25:3.25となるように
調合し、乾式混合器により1時間混合した。得られた原
料粉末をプレス成形により、1トン/cm2 の圧力で厚
さ15mmで、直径20mmφのペレットに成形した。上記
のようにして得られた2個のペレット成形体の一方の表
面上に、厚さ0.5mmで、3mm平方角のMgO単結
晶(100)板を、図1に示したように載置し(実施例
1)、他のペレット成形体上にはMgO単結晶板を載置
しないまま(比較例1)とした。MgO単結晶板を載置
したペレットと、しないペレットの両方のペレット成形
体を電気炉内の緻密質のアルミナセッター上で、窒素雰
囲気中で1100℃まで10時間で昇温し、昇温後電気
炉内に乾燥空気を導入し、大気雰囲気として1100℃
で20分間保持し分解溶融した。次いで、1000℃か
ら920℃まで80時間で徐冷した。その後、炉内に酸
素を導入し雰囲気を酸素100%雰囲気として600℃
まで20℃/時で冷却後、600から300℃まで48
時間かけて熱処理し、その後炉内で100℃以下まで放
置し焼結体を得た。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to embodiments. However, the present invention is not limited by the following examples. Example 1 and Comparative Example 1 Y 2 O 3 , BaCO 3 , and CuO powder were mixed with Y, Ba, and Cu.
Was adjusted to be 1.50: 2.25: 3.25, and mixed with a dry mixer for 1 hour. The obtained raw material powder was formed into a pellet having a thickness of 15 mm and a diameter of 20 mmφ under a pressure of 1 ton / cm 2 by press molding. A 0.5 mm-thick, 3 mm square MgO single crystal (100) plate was placed on one surface of the two pellet compacts obtained as described above as shown in FIG. (Example 1), but the MgO single crystal plate was not placed on another pellet compact (Comparative Example 1). The pellet compacts, both pellets on which the MgO single crystal plate was placed and pellets without, were heated on a dense alumina setter in an electric furnace to 1100 ° C. in a nitrogen atmosphere for 10 hours. Dry air is introduced into the furnace and the atmosphere is 1100 ° C.
For 20 minutes. Next, it was gradually cooled from 1000 ° C. to 920 ° C. in 80 hours. Thereafter, oxygen was introduced into the furnace, and the atmosphere was changed to a 100% oxygen atmosphere at 600 ° C.
After cooling at 20 ° C / hour to
Heat treatment was carried out over a period of time, and then the mixture was left in a furnace to 100 ° C. or lower to obtain a sintered body.

【0022】得られた2個の焼結体ペレットの上表面を
目視観察した。MgO単結晶板を載置した焼結体ペレッ
トは、MgO単結晶載置部分から成長したと推定される
粒界の無い大きな単一粒が認められ、表面はYBa2
3 O結晶のab面と一致していた。一方、MgO単結
晶板を載置しなかった焼結体ペレットは、5〜6方向に
ランダムに成長した結晶が認められた。また、得られた
各焼結体ペレットについて、超電導特性として磁気浮上
力を測定した。磁気浮上力は、図3に示した装置を用
い、磁気反発力(g/cm2 )として測定した。図3に
おいて、焼結体ペレット3を容器中の液体窒素5に浸漬
し、希土類磁石4(表面磁界4000ガウス)をロッド
6に取付けた後、クロスヘッド7を10mm/分の速度
で下降させ、焼結体ペレット3と希土類磁石4との間隔
が0.1mmとなったときの磁気反発力を測定した。そ
の結果、実施例1の焼結体ペレットは、370g/cm
2 で、比較例1の焼結体ペレットは、120g/cm2
であった。本発明の方法でMgO単結晶板を載置して得
られたYBa2 Cu3 O焼結体の浮上力が、MgO単結
晶を載置しない場合の約3倍となり、優れた超電導特性
を有することが分かる。
The upper surfaces of the obtained two sintered pellets were visually observed. In the sintered compact on which the MgO single crystal plate was mounted, large single grains without grain boundaries presumed to have grown from the MgO single crystal mounting portion were observed, and the surface was YBa 2 C.
It was consistent with the ab plane of the u 3 O crystal. On the other hand, in the sintered pellets on which the MgO single crystal plate was not placed, crystals that randomly grew in 5 to 6 directions were observed. In addition, the magnetic levitation force was measured as superconductivity for each of the obtained sintered compact pellets. The magnetic levitation force was measured as magnetic repulsion (g / cm 2 ) using the apparatus shown in FIG. In FIG. 3, after sintering the sintered pellet 3 in liquid nitrogen 5 in a container and attaching the rare earth magnet 4 (surface magnetic field 4000 Gauss) to the rod 6, the crosshead 7 is lowered at a speed of 10 mm / min. The magnetic repulsion when the distance between the sintered pellet 3 and the rare earth magnet 4 was 0.1 mm was measured. As a result, the sintered compact pellet of Example 1 was 370 g / cm.
2 , the sintered compact pellet of Comparative Example 1 was 120 g / cm 2
Met. The levitation force of the YBa 2 Cu 3 O sintered body obtained by mounting the MgO single crystal plate by the method of the present invention is about three times that in the case where the MgO single crystal is not mounted, and has excellent superconducting properties. You can see that.

【0023】実施例2及び比較例2 Y23 、BaCO3 、CuO粉末をY、Ba及びCu
の原子比が1.8:2.4:3.4となるように調合し
た以外は、実施例1と同様にして厚さ15mmで、直径2
0mmφのペレットを得た。得られた2個のペレット成形
体の一方を、厚さ0.5mmで、20mm平方角のMg
O単結晶(100)板上に、図2に示したように載置し
(実施例2)、他のペレット成形体はMgO単結晶板を
用いず、そのまま(比較例1)とした。MgO単結晶板
上に載置したペレットと、しないペレットを、実施例1
と同様にしてそれぞれの焼結体を得た。
Example 2 and Comparative Example 2 Y 2 O 3 , BaCO 3 , and CuO powder were mixed with Y, Ba and Cu.
Was 15 mm in thickness and 2 mm in diameter in the same manner as in Example 1 except that the atomic ratio was 1.8: 2.4: 3.4.
A 0 mmφ pellet was obtained. One of the two obtained pellet compacts is made of Mg having a thickness of 0.5 mm and a square of 20 mm square.
As shown in FIG. 2 (Example 2), it was placed on an O single crystal (100) plate (Comparative Example 1) without using another MgO single crystal plate for the other pellet molded body. The pellets placed on the MgO single crystal plate and the pellets not loaded were prepared in Example 1.
Each sintered body was obtained in the same manner as described above.

【0024】実施例1と同様に、得られた2個の焼結体
ペレットの上表面を目視観察した。MgO単結晶板上に
載置した焼結体ペレットは、MgO単結晶載置部分から
成長したと推定される粒界の無い大きな単一粒が認めら
れ、表面はYBa2 Cu3 O結晶のab面と一致してい
た。一方、MgO単結晶板上に載置しなかった焼結体ペ
レットは、5〜6方向にランダムに成長した結晶が認め
られた。また、得られた各焼結体ペレットについて、実
施例1と同様にして磁気浮上力を測定した。その結果、
実施例2の焼結体ペレットは、400g/cm2 で、比
較例2の焼結体ペレットは、150g/cm2 であっ
た。本発明の方法でMgO単結晶板上に載置して得られ
たYBa2 Cu3 O焼結体の浮上力が、MgO単結晶上
に載置しない場合の2.7倍と優れた超電導特性を有す
ることが分かる。
In the same manner as in Example 1, the upper surfaces of the two sintered pellets obtained were visually observed. In the sintered compact pellets mounted on the MgO single crystal plate, large single grains without grain boundaries presumed to have grown from the MgO single crystal mounting portion were observed, and the surface was ab of YBa 2 Cu 3 O crystal. Face was consistent. On the other hand, in the sintered body pellets not placed on the MgO single crystal plate, crystals that grew randomly in 5 to 6 directions were observed. The magnetic levitation force of each of the obtained sintered compact pellets was measured in the same manner as in Example 1. as a result,
The sintered body pellet of Example 2 was 400 g / cm 2 , and the sintered body pellet of Comparative Example 2 was 150 g / cm 2 . The superconducting property of the YBa 2 Cu 3 O sintered body obtained by mounting on the MgO single crystal plate by the method of the present invention is 2.7 times that of the case where the YBa 2 Cu 3 O sintered body is not mounted on the MgO single crystal. It can be seen that

【0025】実施例3及び比較例3 Y23 、BaCO3 、CuO粉末をY、Ba及びCu
の原子比が1.5:2.25:3.25となるように調
合し、更にCeO2 粉末を、外配で0.5重量%添加し
混合した。混合は、ボールミルを用い、エタノールを溶
媒として10時間行った。得られた混合粉末を、酸素気
流中、950℃で24時間仮焼した後、乾燥粉砕器によ
り粉砕し、原料粉末とした。得られた原料粉末をプレス
成形により、0.5トン/cm2 の圧力で厚さ20mm
で、直径30mmφのペレットに成形した。得られたペレ
ット成形体の2個を、実施例1と同様に、一方の上表面
には図1のように厚さ0.5mmで、3mm平方角のM
gOを表面上に載置し(実施例3)、他のペレット成形
体はそのまま(比較例3)で、窒素雰囲気中で1150
℃まで10時間で昇温し、昇温後電気炉内に乾燥空気を
導入し、大気雰囲気として1150℃で30分間保持し
分解溶融した。次いで、1000℃から920℃まで6
0時間で徐冷した。その後、炉内に酸素を導入し雰囲気
を酸素100%雰囲気として500℃まで20℃/時で
冷却後、500から400℃まで50時間かけ熱処理
し、その後炉内で100℃以下まで放置し焼結体を得
た。
Example 3 and Comparative Example 3 Y 2 O 3 , BaCO 3 , and CuO powder were mixed with Y, Ba, and Cu.
Was adjusted to be 1.5: 2.25: 3.25, and 0.5% by weight of CeO 2 powder was further added and mixed with the mixture. Mixing was performed using a ball mill for 10 hours using ethanol as a solvent. The obtained mixed powder was calcined at 950 ° C. for 24 hours in an oxygen stream, and then pulverized by a dry pulverizer to obtain a raw material powder. The obtained raw material powder was press-formed to a thickness of 20 mm at a pressure of 0.5 ton / cm 2.
To form a pellet having a diameter of 30 mmφ. As in Example 1, two of the obtained pellet molded bodies were formed on one upper surface with a thickness of 0.5 mm and a square of 3 mm square as shown in FIG.
gO was placed on the surface (Example 3), and the other pellet compact was left as it was (Comparative Example 3) in a nitrogen atmosphere at 1150 g.
The temperature was raised to 10 ° C. in 10 hours, and after the temperature was raised, dry air was introduced into the electric furnace, and maintained at 1150 ° C. for 30 minutes as an air atmosphere to decompose and melt. Then, from 1000 ° C to 920 ° C, 6
It cooled slowly in 0 hours. Thereafter, oxygen is introduced into the furnace, the atmosphere is changed to an atmosphere of 100% oxygen, cooled to 500 ° C. at 20 ° C./hour, heat-treated from 500 to 400 ° C. for 50 hours, and then left in the furnace to 100 ° C. or less for sintering I got a body.

【0026】各焼結体ペレットについて、実施例1と同
様にして磁気浮上力を測定した。その結果、実施例3の
焼結体ペレットは410g/cm2 で、比較例3の焼結
体ペレットは、220g/cm2 であった。本発明の方
法でMgO単結晶板上に載置して得られたYBa2 Cu
3 O焼結体の浮上力が、MgO単結晶を載置しない場合
の1.9倍と優れた超電導特性を有することが分かる。
The magnetic levitation force of each sintered pellet was measured in the same manner as in Example 1. As a result, the sintered body pellet of Example 3 was 410 g / cm 2 , and the sintered body pellet of Comparative Example 3 was 220 g / cm 2 . YBa 2 Cu obtained by mounting on an MgO single crystal plate by the method of the present invention
Levitation force 3 O sintered body, it is found to have a 1.9-fold and excellent superconducting characteristics when not placing a MgO single crystal.

【0027】[0027]

【発明の効果】本発明は、従来の溶融法とほぼ同様な分
解溶融加熱処理工程、徐冷工程及び熱処理工程の1段の
溶融操作において、所定の原料粉末から成形した成形バ
ルク体に種結晶を接触配置することにより、バルク体表
面のRE−Ba−Cu−O系超電導結晶相をab面に一致
して結晶成長させることができ、優れた超電導特性を有
するRE−Ba−Cu−O系超電導体を得ることができ
る。また、本発明で得られるRE−Ba−Cu−O系超電
導体において、特に、Ce成分を配合することによりRE
Ba2 Cu3y 相中にRE2 BaCuO5 相が均一に分
散してなり、超電導バルク体が全体的に均質となり優れ
た超電導特性が得られると共に、高いJcを有する。
According to the present invention, a seed crystal is formed in a molded bulk body formed from a predetermined raw material powder in a one-stage melting operation of a decomposition melting heat treatment step, a slow cooling step, and a heat treatment step substantially similar to the conventional melting method. Are placed in contact with each other, so that the RE-Ba-Cu-O-based superconducting crystal phase on the surface of the bulk body can be crystal-grown in conformity with the ab plane, and the RE-Ba-Cu-O-based A superconductor can be obtained. Further, in the RE-Ba-Cu-O-based superconductor obtained in the present invention, particularly, the RE component is mixed by mixing a Ce component.
The RE 2 BaCuO 5 phase is uniformly dispersed in the Ba 2 Cu 3 O y phase, and the superconducting bulk body is entirely homogeneous, so that excellent superconducting characteristics can be obtained and high Jc is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明における成形体への種結晶の配置の一実
施例を示す説明図
FIG. 1 is an explanatory view showing one embodiment of the arrangement of seed crystals on a compact according to the present invention.

【図2】本発明における成形体への種結晶の配置の他の
実施例を示す説明図
FIG. 2 is an explanatory view showing another embodiment of the arrangement of seed crystals on a compact according to the present invention.

【図3】本発明における超電導特性の磁気浮上力を測定
した装置の説明図
FIG. 3 is an explanatory view of an apparatus for measuring a magnetic levitation force of superconductivity according to the present invention.

【符号の説明】[Explanation of symbols]

1 成形体 2 種結晶 3 焼結体 4 希土類磁石 5 液体窒素 6 ロッド 7 クロスヘッド Reference Signs List 1 molded body 2 seed crystal 3 sintered body 4 rare earth magnet 5 liquid nitrogen 6 rod 7 crosshead

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 RE−Ba−Cu−O系酸化物超電導体
(REは、Y、Gd、Ho、ErまたはYbを表す。)を
構成するRE、Ba及びCu成分を含む原料粉末を用いて
成形した成形体に、種結晶としてSrTiO3 、Mg
O、LaAlO3 、LaGaO3 、NdGaO3 及びP
rGaO3 の単結晶のいづれか1種を接触配置し、該種
結晶配置の成形体を該酸化物超電導体の分解溶融温度以
上の温度で加熱処理する分解溶融工程、徐冷工程及び熱
処理工程で処理することを特徴とする希土類系酸化物超
電導体の製造方法。
1. A raw material powder containing RE, Ba and Cu components constituting a RE—Ba—Cu—O-based oxide superconductor (RE represents Y, Gd, Ho, Er or Yb). SrTiO 3 , Mg as seed crystals
O, LaAlO 3 , LaGaO 3 , NdGaO 3 and P
Any one of the rGaO 3 single crystals is arranged in contact with each other, and the formed body having the seed crystal arrangement is subjected to a heat treatment at a temperature not lower than the decomposition melting temperature of the oxide superconductor, a slow cooling step, and a heat treatment step. A method for producing a rare earth oxide superconductor.
【請求項2】 該RE−Ba−Cu−O系酸化物超電導体
中にCe成分が元素基準で0.01〜5.0重量%含有
するように該原料粉末に、Ceの元素単体または化合物
を、添加混合する請求項1記載の希土類系酸化物超電導
体の製造方法。
2. An elemental element or a compound of Ce in said raw material powder such that said RE-Ba-Cu-O-based oxide superconductor contains 0.01 to 5.0% by weight of a Ce component on an element basis. The method for producing a rare earth oxide superconductor according to claim 1, wherein
JP03502892A 1992-02-21 1992-02-21 Manufacturing method of rare earth superconductor Expired - Fee Related JP3159764B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03502892A JP3159764B2 (en) 1992-02-21 1992-02-21 Manufacturing method of rare earth superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03502892A JP3159764B2 (en) 1992-02-21 1992-02-21 Manufacturing method of rare earth superconductor

Publications (2)

Publication Number Publication Date
JPH05238731A JPH05238731A (en) 1993-09-17
JP3159764B2 true JP3159764B2 (en) 2001-04-23

Family

ID=12430613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03502892A Expired - Fee Related JP3159764B2 (en) 1992-02-21 1992-02-21 Manufacturing method of rare earth superconductor

Country Status (1)

Country Link
JP (1) JP3159764B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11268986A (en) * 1998-03-20 1999-10-05 International Superconductivity Technology Center Production of oxide single crystal

Also Published As

Publication number Publication date
JPH05238731A (en) 1993-09-17

Similar Documents

Publication Publication Date Title
Morita et al. Processing and properties of QMG materials
US5084436A (en) Oriented superconductor containing a dispersed non-superconducting phase
EP0374263B1 (en) Oxide superconductive material and process for its production
EP0562640B1 (en) Production of oxide superconductors having large magnetic levitation force
JP2871258B2 (en) Oxide superconductor and manufacturing method thereof
US5508253A (en) REBa2 Cu3 O7-y type oxide superconductive material having high critical current density and process for preparation thereof
JP2839415B2 (en) Method for producing rare earth superconducting composition
JP4113113B2 (en) Oxide superconductor joining method and oxide superconductor joined body
JP2688455B2 (en) Rare earth oxide superconductor and method for producing the same
EP0426164B1 (en) Process for preparing oxide superconductor
JP3159764B2 (en) Manufacturing method of rare earth superconductor
JP4628041B2 (en) Oxide superconducting material and manufacturing method thereof
JP2874278B2 (en) Oxide superconductor and manufacturing method thereof
DE3932423C2 (en)
US5981442A (en) Neodymium-barium-copper-oxide bulk superconductor and process for producing the same
JP4628042B2 (en) Oxide superconducting material and manufacturing method thereof
JP2931446B2 (en) Method for producing rare earth oxide superconductor
JP2828396B2 (en) Oxide superconductor and manufacturing method thereof
JP2854758B2 (en) Oxide superconductor with large magnetic levitation force
JP2914799B2 (en) Manufacturing method of oxide superconducting bulk material
JP3115915B2 (en) Method for producing rare earth oxide superconductor
JP2004161504A (en) Re-barium-copper-oxygen-based superconductive material precursor, re-barium-copper-oxygen-based superconductive material and method of manufacturing the same
JPH05279027A (en) Rare-earth superconductor
JPH04243917A (en) Preparation of oxide superconducting sintered compact
Morita et al. REBa2 Cu3 O7-y type oxide superconductive material having high critical current density and process for preparation thereof

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010130

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090216

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090216

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100216

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100216

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees