JP3115915B2 - Method for producing rare earth oxide superconductor - Google Patents

Method for producing rare earth oxide superconductor

Info

Publication number
JP3115915B2
JP3115915B2 JP03248864A JP24886491A JP3115915B2 JP 3115915 B2 JP3115915 B2 JP 3115915B2 JP 03248864 A JP03248864 A JP 03248864A JP 24886491 A JP24886491 A JP 24886491A JP 3115915 B2 JP3115915 B2 JP 3115915B2
Authority
JP
Japan
Prior art keywords
oxide superconductor
component
temperature
rare earth
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03248864A
Other languages
Japanese (ja)
Other versions
JPH0585723A (en
Inventor
均 酒井
均 吉田
尚之 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP03248864A priority Critical patent/JP3115915B2/en
Publication of JPH0585723A publication Critical patent/JPH0585723A/en
Application granted granted Critical
Publication of JP3115915B2 publication Critical patent/JP3115915B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、希土類系酸化物超電導
体の製造方法に関し、更に詳しくは、Ag成分が超電導結
晶相中に均一に分散され、優れた超電導特性を有するRE
−Ba−Cu−O系酸化物超電導体(REは、希土類元素
を表す。)の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a rare earth oxide superconductor, and more particularly, to a RE having excellent superconducting properties in which an Ag component is uniformly dispersed in a superconducting crystal phase.
The present invention relates to a method for producing a Ba-Cu-O-based oxide superconductor (RE represents a rare earth element).

【0002】[0002]

【従来の技術】酸化物超電導体は臨界温度が高いことか
ら実用化への研究が盛んに行われている。近年、バルク
材で高い臨界電流密度(Jc)を有する酸化物超電導体を得
るために、種々の提案がなされている。例えば、非超電
導相の微細構造粒子を超電導相中に分散させ、侵入した
磁束線を固定させるいわゆるピンニングセンターを導入
する溶融法があり、その代表としてMTG法(MeltText
ured Growth法) が提案されているが、この方法で得ら
れる酸化物超電導体は、Y2 BaCuO5 (211相)
の粒径が大きく、且つその分布が不均一であり結晶成長
方向に沿ったクラックが存在する等の不都合がある。
2. Description of the Related Art Oxide superconductors have been actively studied for practical use because of their high critical temperature. In recent years, various proposals have been made to obtain an oxide superconductor having a high critical current density (Jc) in a bulk material. For example, there is a melting method in which fine structure particles of a non-superconducting phase are dispersed in a superconducting phase, and a so-called pinning center is introduced to fix a penetrating magnetic flux line.
ured Growth method) has been proposed, but the oxide superconductor obtained by this method is Y 2 BaCuO 5 (211 phase).
Are disadvantageous in that the grain size is large, their distribution is not uniform, and cracks exist along the crystal growth direction.

【0003】MTG法の上記欠点を改良した方法とし
て、特開平2−153803号公報には、211相がY
Ba2 Cu37 (123相)粒子中に微細に分散する
QMG法(Quench and Melt Growth法) が提案されてい
る。この方法で得られる超電導体は、極めて強力なピン
止め効果を発揮し高磁場中で優れたJcを示すが、調製操
作が煩雑である等の欠点がある。また、上記QMG法の
改良として、Ag粉末を添加して超電導特性、機械的特性
を向上させる方法も提案されている。
As a method for improving the above-mentioned disadvantages of the MTG method, Japanese Patent Application Laid-Open No. 2-153803 discloses a method in which
A QMG method (Quench and Melt Growth method) in which fine particles are dispersed in Ba 2 Cu 3 O 7 (123 phase) particles has been proposed. The superconductor obtained by this method exhibits an extremely strong pinning effect and exhibits excellent Jc in a high magnetic field, but has disadvantages such as complicated preparation operations. Further, as an improvement of the above-mentioned QMG method, there has been proposed a method of adding superconducting properties and mechanical properties by adding Ag powder.

【0004】[0004]

【発明が解決しようとする課題】上記QMG法等従来法
の殆どは、希土類系超電導体を構成する結晶相の成長
が、大気雰囲気中、約1000℃近辺で始まるため、溶
融加熱工程に引続いて同様の雰囲気下で、約950〜1
000℃の範囲で徐冷を開始して超電導体の結晶を成長
させていた。しかし、発明者等によれば、上記のように
Ag粉末を添加して超電導特性を高める方法において、上
記結晶成長の温度範囲で降温速度を低下して超電導結晶
相の成長を促進させるために徐冷した場合には、Ag成分
が凝集及び粗大化し結晶相の外周辺部に固化する現象が
知見された。そのため、超電導特性や機械的特性の向上
のためにAg成分を添加するにも拘らず、Ag成分の分散性
が劣り優れた超電導特性を発揮することができないこと
が分かった。発明者等は、上記の知見された現象を解明
しつつ、Ag成分を超電導結晶相中に均一に分散させる方
法を鋭意検討した結果、本発明を完成した。
In most of the conventional methods such as the above-mentioned QMG method, the growth of the crystal phase constituting the rare earth-based superconductor starts at about 1000 ° C. in the air atmosphere, so that the melt heating step is continued. Under the same atmosphere, about 950-1
Slow cooling was started in the range of 000 ° C. to grow a superconductor crystal. However, according to the inventors, as described above,
In the method of increasing the superconducting properties by adding Ag powder, when the cooling rate is lowered in the above-mentioned crystal growth temperature range and the cooling is performed slowly to promote the growth of the superconducting crystal phase, the Ag component aggregates and coarsens. The phenomenon of solidification in the outer periphery of the crystal phase was found. Therefore, it was found that despite the addition of the Ag component for the purpose of improving the superconductivity and mechanical properties, the dispersibility of the Ag component was inferior and the superconductivity was not excellent. The present inventors have intensively studied a method of uniformly dispersing the Ag component in the superconducting crystal phase while elucidating the above-mentioned phenomenon, and as a result, completed the present invention.

【0005】[0005]

【課題を解決するための手段】本発明によれば、RE−B
a−Cu−O系酸化物超電導体(REは、希土類元素を表
す。)を構成するRE、Ba及びCu成分とAg成分とから
なる原料粉末を成形してなる成形体を、該酸化物超電導
体の分解溶融温度以上で加熱処理し、その後酸素分圧が
0.001〜0.05気圧の雰囲気中、Ag成分の凝固点
以下の温度から徐冷して、該酸化物超電導結晶相を成長
させることを特徴とする希土類系酸化物超電導体の製造
方法が提供される。
According to the present invention, RE-B
An a-Cu-O-based oxide superconductor (RE represents a rare-earth element) is formed by molding a raw material powder comprising RE, Ba and Cu components and an Ag component. Heat treatment at a temperature not lower than the decomposition melting temperature of the body, and then gradually cooling from a temperature below the freezing point of the Ag component in an atmosphere having an oxygen partial pressure of 0.001 to 0.05 atm to grow the oxide superconducting crystal phase A method for producing a rare earth-based oxide superconductor is provided.

【0006】[0006]

【作用】本発明は上記のように構成され、従来法が溶融
加熱工程の雰囲気下で引続き徐冷していたのに対し、徐
冷時の雰囲気中の酸素分圧を0.001〜0.05気圧
に制御することにより、希土類系超電導結晶の成長温度
範囲を、通常の950〜1000℃からAg成分の凝固点
960℃以下とすることができる。それにより、徐冷開
始温度をAg成分の凝固点以下として超電導結晶を成長さ
せることができるため、徐冷開始に先立ちAg成分が均一
に分散された成形体において均一な分散状態のまま固化
させられ、その後、超電導結晶が成長するものと推定す
ることできる。従って、得られる希土類系超電導体は、
その超電導結晶相中にAg成分が均一に分散され固定され
ており、高Jcの優れた超電導特性を有することになる。
これに対し、従来の方法においては、Ag成分の凝固より
先に希土類系超電導結晶相の成長が起こり、溶融状態で
分散されていたAg成分が、次第に結晶相の外周に凝集し
Ag成分の分散性が悪くなり、高Jcを発揮することができ
ないものと推定される。
The present invention is constructed as described above, whereas the conventional method continuously cools down in the atmosphere of the melting and heating step, whereas the oxygen partial pressure in the atmosphere at the time of slow cooling is 0.001 to 0. By controlling the pressure to 05 atm, the growth temperature range of the rare-earth superconducting crystal can be reduced from the normal 950 to 1000 ° C to the freezing point of Ag component of 960 ° C or lower. Thereby, since the superconducting crystal can be grown with the slow cooling start temperature being equal to or lower than the freezing point of the Ag component, the Ag component is solidified in a uniformly dispersed state in the molded body in which the Ag component is uniformly dispersed before the slow cooling is started, Thereafter, it can be assumed that the superconducting crystal grows. Therefore, the obtained rare earth superconductor is
The Ag component is uniformly dispersed and fixed in the superconducting crystal phase, and has a high Jc and excellent superconducting characteristics.
In contrast, in the conventional method, the growth of the rare-earth superconducting crystal phase occurs before the solidification of the Ag component, and the Ag component dispersed in the molten state gradually aggregates on the outer periphery of the crystal phase.
It is presumed that the dispersibility of the Ag component deteriorated and high Jc could not be exhibited.

【0007】以下、本発明について更に詳しく説明す
る。本発明のRE−Ba−Cu−O系酸化物超電導体は、
REがSc、Y、La、Ce、Pr、Nd、Sm、Eu、
Gd、Tb、Dy、Ho、Er、Tm、Yb及びLuの
希土類元素を1種または2種以上含む多層ペロブスカイ
ト構造(但し、Sc、Ce、PrまたはTbの1種のみ
を含む組成は除く。)を有する、例えば(YCe)1
2 Cu37 等の酸化物超電導体である。
Hereinafter, the present invention will be described in more detail. RE-Ba-Cu-O-based oxide superconductor of the present invention,
RE is Sc, Y, La, Ce, Pr, Nd, Sm, Eu,
Multilayer perovskite structure containing one or more rare earth elements of Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu (excluding compositions containing only one of Sc, Ce, Pr or Tb) For example, (YCe) 1 B
It is an oxide superconductor such as a 2 Cu 3 O 7 .

【0008】上記RE−Ba−Cu−O系酸化物超電導体
を構成するためのRE、Ba及びCu成分を含む原料粉末
は、RE即ち希土類元素の酸化物、Baの炭酸塩、酸化物
あるいは過酸化物及びCuの酸化物を混合した酸化物超
電導体各成分の酸化物混合粉末、その酸化物混合粉末の
仮焼粉末、その酸化物混合粉末のフリット粉末等を、焼
成後REBa2 Cu3y とRE2 BaCuO5 を構成する
ように配合されたものであればよく特に制限されるもの
でない。また、本発明の原料粉末には、上記RE−Ba−
Cu−O系酸化物超電導体を構成する各成分の混合粉末
に、更にAg成分粉末を添加、含有させ、全体を均一な混
合状態として用いるのが好ましい。Ag成分の添加量は、
特に制限されるものでない。通常、1〜20重量%の範
囲で添加、含有させることができる。また、添加するAg
成分の形態も、特に制限されるものでない。例えば、Ag
単体の粉末、酸化銀(Ag2O)粉末で添加してもよいし、ま
た、水溶性銀化合物、例えば、硝酸銀等の水溶液を用い
て添加してもよい。
[0008] The raw material powder containing RE, Ba and Cu components for constituting the RE-Ba-Cu-O-based oxide superconductor is RE, that is, an oxide of a rare earth element, a carbonate, an oxide of Ba or an oxide of Ba. An oxide mixed powder of each component of the oxide superconductor mixed with an oxide and an oxide of Cu, a calcined powder of the oxide mixed powder, a frit powder of the oxide mixed powder, and the like are fired, and then subjected to REBa 2 Cu 3 O. There is no particular limitation as long as y and RE 2 BaCuO 5 are blended. In addition, the raw material powder of the present invention contains the above RE-Ba-
It is preferable that the Ag component powder is further added to and contained in the mixed powder of the components constituting the Cu-O-based oxide superconductor, and the whole is used in a uniform mixed state. The addition amount of the Ag component
There is no particular limitation. Usually, it can be added and contained in the range of 1 to 20% by weight. Ag to be added
The form of the components is not particularly limited. For example, Ag
It may be added as a simple powder or a silver oxide (Ag 2 O) powder, or may be added using an aqueous solution of a water-soluble silver compound, for example, silver nitrate.

【0009】上記の原料粉末の粒径も特に制限されるも
のでないが、一般的には、20μm以下、特に1〜5μ
mの細かいものが好ましい。20μmを超える原料粉末
は、分解溶融温度時に組成の不均一が生じるため好まし
くない。1μm以下の原料粉末としては、例えば、共沈
法で生成された粉末等を使用することが好ましいが、1
μm以下の微細粉末であれば、他の方法で得られたもの
でも用いることができる。また、本発明においては、上
記の希土類系酸化物超電導体を構成する各成分とAg成分
からなる原料粉末には、更に211相の微細分散性や1
23相の結晶成長を促進させるために、公知の添加剤を
添加して用いることができる。例えば、Pt、Pd、Au等の
貴金属元素、超電導体を構成する希土類元素以外の他の
希土類元素、カリウム等である。
Although the particle size of the raw material powder is not particularly limited, it is generally 20 μm or less, especially 1 to 5 μm.
Those having a small m are preferable. Raw material powders having a diameter of more than 20 μm are not preferred because the composition becomes non-uniform at the time of decomposition and melting. As the raw material powder having a size of 1 μm or less, for example, it is preferable to use a powder generated by a coprecipitation method.
As long as it is a fine powder of μm or less, a powder obtained by another method can be used. Further, in the present invention, the raw material powder comprising the respective components constituting the rare earth oxide superconductor and the Ag component further has a fine dispersibility of 211 phases and a
In order to promote the crystal growth of the 23 phases, known additives can be added and used. For example, noble metal elements such as Pt, Pd, and Au, rare earth elements other than the rare earth elements constituting the superconductor, potassium, and the like.

【0010】本発明の酸化物超電導体は、上記原料粉末
を用いて所定の形状に成形する。成形方法は、ドクター
ブレード法、プレス成形法、泥しょう鋳込成形法等公知
の成形方法を用い酸化物超電導体のバルク体として得る
ことができる。また、金属、セラミックス等の基板上に
上記混合粉末によりスプレー塗布、パウダー塗布等で成
形体層を形成した成形体として得ることもできる。
The oxide superconductor of the present invention is formed into a predetermined shape using the above-mentioned raw material powder. As the molding method, a known molding method such as a doctor blade method, a press molding method, and a slurry casting method can be used to obtain a bulk oxide superconductor. Alternatively, a molded article can be obtained by forming a molded article layer on a substrate of a metal, ceramics, or the like by spray coating, powder coating, or the like using the mixed powder.

【0011】本発明においては、上記のようにして希土
類系酸化物超電導体を構成する各成分とAg成分、更に要
すれば添加剤の含有された原料粉末を所定形状に成形し
た成形体を、対応するRE−Ba−Cu−O系酸化物超電
導体の分解溶融温度以上の温度に加熱処理し、その後、
所定の酸素含有雰囲気下で徐冷し、更に従来法と同様に
酸素含有雰囲気下で熱処理して超電導体を得ることがで
きる。
In the present invention, a compact obtained by molding the raw material powder containing the components constituting the rare earth oxide superconductor, the Ag component, and, if necessary, the additive, as described above, into a predetermined shape, Heat treatment to a temperature higher than the decomposition melting temperature of the corresponding RE-Ba-Cu-O-based oxide superconductor,
The superconductor can be obtained by slow cooling in a predetermined oxygen-containing atmosphere and heat treatment in an oxygen-containing atmosphere similarly to the conventional method.

【0012】本発明において、加熱処理時の当該酸化物
超電導体の分解溶融温度は、含有するRE元素成分の種類
や組合わせにより異なるが、一般的には1050〜12
00℃であり、加熱条件や成形体の大きさ等により適宜
選択すればよい。本発明において、上記分解溶融温度以
上の温度への昇温等を含む溶融加熱処理及びその後の熱
処理等は、通常、表1に示すようなスケジュールで行う
ことができる。
In the present invention, the decomposition melting temperature of the oxide superconductor during the heat treatment varies depending on the type and combination of the RE element components contained, but generally ranges from 1050 to 12 hours.
The temperature is 00 ° C. and may be appropriately selected depending on the heating conditions, the size of the molded body, and the like. In the present invention, the melting heat treatment including the temperature rise to a temperature equal to or higher than the decomposition melting temperature and the subsequent heat treatment and the like can be usually performed according to the schedule shown in Table 1.

【0013】[0013]

【表1】 [Table 1]

【0014】本発明は、表1に示したような熱処理スケ
ジュールで行うことができ、従来法の徐冷工程が大気雰
囲気下、950〜1000℃で行われるに対して、特
に、表1の工程No.4の徐冷工程を、酸素分圧0.0
01〜0.05気圧の雰囲気下で、Ag成分の凝固点の9
60℃以下の温度、即ち900〜960℃の温度範囲で
行う点において異なり、他の熱処理スケジュールは従来
法と大きく異ならない。しかしながら、後記の実施例及
び比較例から明らかなように、本発明においては、上記
の徐冷工程の条件が極めて重要であり、それにより得ら
れる希土類系酸化物超電導体の超電導特性に大きな影響
を及ぼすことになる。本発明の徐冷工程において、酸素
分圧が0.001気圧未満であると、123相が生成す
るために十分な酸素が供給されないことになり好ましく
ない。また、0.05気圧を超える酸素分圧ではAg成分
の凝固より先に希土類系超電導結晶の成長が開始され、
960℃以下の温度での徐冷開始で十分な結晶成長がで
きなくなり、超電導特性の優れた希土類系酸化物超電導
体を得ることができない。
The present invention can be carried out according to the heat treatment schedule shown in Table 1. In the conventional method, the slow cooling step is carried out at 950 to 1000 ° C. in an air atmosphere. No. The slow cooling step 4 was performed using an oxygen partial pressure of 0.0
Under an atmosphere of 01 to 0.05 atm, the freezing point of the Ag component is 9
The difference is that the heat treatment is performed at a temperature of 60 ° C. or less, that is, a temperature range of 900 to 960 ° C., and other heat treatment schedules are not significantly different from the conventional method. However, as is clear from the examples and comparative examples described below, in the present invention, the conditions of the above-described slow cooling step are extremely important, and have a great effect on the superconducting properties of the rare earth-based oxide superconductor obtained thereby. Will have an effect. In the slow cooling step of the present invention, if the oxygen partial pressure is less than 0.001 atm, it is not preferable because sufficient oxygen is not supplied to generate the 123 phase. Further, at an oxygen partial pressure exceeding 0.05 atm, the growth of the rare-earth superconducting crystal starts before the solidification of the Ag component,
Slow cooling at a temperature of 960 ° C. or less prevents sufficient crystal growth, making it impossible to obtain a rare-earth oxide superconductor having excellent superconducting properties.

【0015】[0015]

【実施例】以下、本発明を実施例により詳細に説明す
る。但し、本発明は下記実施例により制限されるもので
ない。 実施例1〜5及び比較例1〜4 Y23 、BaCO3 、CuO粉末を原子比Y:Ba:
Cu=1.50:2.3:3.2となるように調合し、
大気中、800℃で10時間仮焼した。得られた仮焼粉
末に、外配でAg粉末を4重量%、Pt粉末を0.1重量%
添加し、エタノール中、ジルコニア玉石を用いた回転ミ
ルで15時間粉砕した。得られた粉末の平均粒径は4μ
mであった。得られた混合粉末を原料に用い、1トン/
cm2 の圧力でプレス成形し、厚さ20mmで、直径40
mmφのペレットを、9個得た。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to embodiments. However, the present invention is not limited by the following examples. Examples 1 to 5 and Comparative Examples 1 to 4 Y 2 O 3 , BaCO 3 , and CuO powder were prepared by mixing the atomic ratio Y: Ba:
Formulated so that Cu = 1.50: 2.3: 3.2,
Calcination was performed at 800 ° C. for 10 hours in the air. 4% by weight of Ag powder and 0.1% by weight of Pt powder in the obtained calcined powder
The resulting mixture was ground in a rotary mill using zirconia cobblestone in ethanol for 15 hours. The average particle size of the obtained powder is 4μ.
m. 1 ton /
Pressed under pressure of 2 cm2, thickness 20mm, diameter 40
Nine pellets of mmφ were obtained.

【0016】得られた各ペレットを電気炉内の緻密質の
アルミナセッター上で、窒素雰囲気中で1100℃まで
5℃/分で昇温した。その後、電気炉内に乾燥空気を導
入して雰囲気ガスを窒素から大気に変更し、1100℃
で30分保持し分解溶融した。次いで、表2に示した各
徐冷開始温度まで2℃/分で降温させながら雰囲気酸素
分圧を調整し、表2に示した所定の酸素分圧にした。そ
れぞれ徐冷開始温度及び酸素分圧に達した後、各徐冷開
始温度から50℃低い温度まで、1℃/時間の極めて遅
い降温速度で温度を降下させて、超電導相を結晶化させ
た。その後、500℃まで1℃/分で降温して、炉内に
酸素を導入し雰囲気を純酸素雰囲気として500℃で2
4時間熱処理した後、炉冷して各焼結ペレットを得た。
Each of the obtained pellets was heated up to 1100 ° C. at a rate of 5 ° C./min in a nitrogen atmosphere on a dense alumina setter in an electric furnace. Thereafter, dry air was introduced into the electric furnace to change the atmospheric gas from nitrogen to air, and the temperature was changed to 1100 ° C.
For 30 minutes. Next, the atmospheric oxygen partial pressure was adjusted while the temperature was lowered at a rate of 2 ° C./min to each of the slow cooling start temperatures shown in Table 2, and the predetermined oxygen partial pressure shown in Table 2 was obtained. After reaching the slow cooling start temperature and the oxygen partial pressure, respectively, the temperature was lowered from each slow cooling start temperature to a temperature lower by 50 ° C. at an extremely slow cooling rate of 1 ° C./hour to crystallize the superconducting phase. Thereafter, the temperature was decreased to 500 ° C. at a rate of 1 ° C./min, oxygen was introduced into the furnace, and the atmosphere was changed to a pure oxygen atmosphere at 500 ° C. for 2 hours.
After the heat treatment for 4 hours, each sintered pellet was obtained by furnace cooling.

【0017】得られた各焼結ペレットの断面を研磨し、
電子線マイクロアナライザー(EPMA)を用い、Ag成
分の分散状態を観察した。その結果を表2に示した。ま
た、各焼結ペレットから1mm立方の試料片を切り出
し、振動型磁束計により磁気ヒステリシスを測定し、液
体窒素温度、磁場1T(テスラ)における臨界電流密度
Jcを算出した。その結果を表2に示した。
The cross section of each of the obtained sintered pellets is polished,
The dispersion state of the Ag component was observed using an electron beam microanalyzer (EPMA). The results are shown in Table 2. A 1 mm cube sample was cut out from each sintered pellet, and magnetic hysteresis was measured using a vibrating magnetometer. The critical current density at liquid nitrogen temperature and magnetic field 1T (tesla) was measured.
Jc was calculated. The results are shown in Table 2.

【0018】[0018]

【表2】 [Table 2]

【0019】上記の実施例から明らかなように、本発明
の方法で得られた希土類系酸化物超電導体は、Ag成分の
分散状態が良好であり、Jcが高く、優れた超電導特性を
有することが分かる。一方、本発明の方法から外れた比
較例においては、いずれも好ましい超電導特性の超電導
体が得られない。即ち、比較例3及び4において、酸素
分圧が0.20気圧以上と本発明の0.05より高い場
合に、960℃から徐冷を開始すると、Ag成分の分散状
態は良好であるが超電導相の結晶成長が殆ど認められ
ず、Jcが著しく低下する。また、比較例2において、酸
素分圧を本発明の0.05気圧としても、徐冷開始を9
80℃とすると、超電導相の結晶成長は良好であるが、
Ag成分の凝集が認められ、Jcが低い。比較例1では、酸
素分圧が0.0005気圧と本発明の0.001気圧よ
り低いと、950℃から徐冷を開始しても、超電導相の
結晶成長が認められず、Jcが低い。
As is clear from the above examples, the rare-earth oxide superconductor obtained by the method of the present invention has a good dispersion state of the Ag component, a high Jc, and has excellent superconducting properties. I understand. On the other hand, in Comparative Examples deviating from the method of the present invention, a superconductor having favorable superconducting properties cannot be obtained. That is, in Comparative Examples 3 and 4, when the oxygen partial pressure was 0.20 atm or higher and higher than 0.05 of the present invention, when the cooling was started from 960 ° C., the dispersion state of the Ag component was good, but the superconductivity was high. Crystal growth of the phase is hardly observed, and Jc is remarkably reduced. Further, in Comparative Example 2, even when the oxygen partial pressure was set to 0.05 atm of the present invention, the slow cooling was started at 9 atm.
At 80 ° C., the crystal growth of the superconducting phase is good,
Ag component aggregation was observed and Jc was low. In Comparative Example 1, when the oxygen partial pressure is 0.0005 atm, which is lower than 0.001 atm of the present invention, crystal growth of the superconducting phase is not observed and Jc is low even if the cooling is started from 950 ° C.

【0020】[0020]

【発明の効果】本発明の希土類系酸化物超電導体の製造
方法は、従来の溶融法のような煩雑な操作工程を採る必
要がなく、RE−Ba−Cu−O系酸化物超電導体の各成
分とAg成分とからなる原料粉末を用いることにより、溶
融加熱処理後、所定の徐冷工程を経ることにより高Jcを
有し、優れた超電導特性の希土類系酸化物超電導体を得
ることができる。
According to the method for producing a rare-earth oxide superconductor of the present invention, it is not necessary to employ a complicated operation step as in the conventional melting method, and each of the RE-Ba-Cu-O-based oxide superconductors is required. By using a raw material powder composed of a component and an Ag component, after a heat treatment for melting, a predetermined slow cooling step is performed, thereby having a high Jc and obtaining a rare-earth oxide superconductor having excellent superconducting properties. .

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C01G 1/00 - 3/00 C04B 35/00 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) C01G 1/00-3/00 C04B 35/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 RE−Ba−Cu−O系酸化物超電導体
(REは、希土類元素を表す。)を構成するRE、Ba及び
Cu成分とAg成分とからなる原料粉末を成形してなる成
形体を、該酸化物超電導体の分解溶融温度以上で加熱処
理し、その後酸素分圧が0.001〜0.05気圧の雰
囲気中、Ag成分の凝固点以下の温度から徐冷して、該酸
化物超電導結晶相を成長させることを特徴とする希土類
系酸化物超電導体の製造方法。
1. A molding obtained by molding a raw material powder comprising RE, Ba and Cu components and an Ag component constituting a RE-Ba-Cu-O-based oxide superconductor (RE represents a rare earth element). The body is subjected to a heat treatment at a temperature not lower than the decomposition melting temperature of the oxide superconductor, and then gradually cooled in an atmosphere having an oxygen partial pressure of 0.001 to 0.05 atm from a temperature not higher than the freezing point of the Ag component. A method for producing a rare earth oxide superconductor, comprising growing a superconductor crystal phase.
JP03248864A 1991-09-27 1991-09-27 Method for producing rare earth oxide superconductor Expired - Fee Related JP3115915B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03248864A JP3115915B2 (en) 1991-09-27 1991-09-27 Method for producing rare earth oxide superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03248864A JP3115915B2 (en) 1991-09-27 1991-09-27 Method for producing rare earth oxide superconductor

Publications (2)

Publication Number Publication Date
JPH0585723A JPH0585723A (en) 1993-04-06
JP3115915B2 true JP3115915B2 (en) 2000-12-11

Family

ID=17184561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03248864A Expired - Fee Related JP3115915B2 (en) 1991-09-27 1991-09-27 Method for producing rare earth oxide superconductor

Country Status (1)

Country Link
JP (1) JP3115915B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5230925B2 (en) * 2006-11-02 2013-07-10 新日鐵住金株式会社 Superconducting current-carrying member with excellent deformability

Also Published As

Publication number Publication date
JPH0585723A (en) 1993-04-06

Similar Documents

Publication Publication Date Title
JP2871258B2 (en) Oxide superconductor and manufacturing method thereof
US5496799A (en) Method for making rare earth superconductive composite
JP2688455B2 (en) Rare earth oxide superconductor and method for producing the same
CN116903369A (en) Preparation method of rare earth alkaline earth manganese-based perovskite electronic phase-change ceramic material
JP3115915B2 (en) Method for producing rare earth oxide superconductor
EP0287064A2 (en) Process for producing superconductive ceramics
JP2931446B2 (en) Method for producing rare earth oxide superconductor
JP2980650B2 (en) Method for producing rare earth oxide superconductor
JP2920001B2 (en) Method for producing rare earth oxide superconductor
JP3159764B2 (en) Manufacturing method of rare earth superconductor
US5200387A (en) Superconducting materials of high density and crystalline structure produced from a mixture of YBa2 Cu3 O7-x and CuO
JP2854758B2 (en) Oxide superconductor with large magnetic levitation force
JP3242350B2 (en) Oxide superconductor and manufacturing method thereof
JPS63303851A (en) Sintered body of superconducting ceramic
JP3155334B2 (en) Oxide superconductor having high magnetic levitation force and method of manufacturing the same
JP3394297B2 (en) Method for producing superconductive composition
JPH01160860A (en) Production of sintered material of oxide superconductor
JP2760999B2 (en) Oxide superconducting sintered body and method for producing the same
JP3115357B2 (en) Manufacturing method of oxide superconducting material
JPH0248459A (en) Production of compound oxide superconductor
JPH013063A (en) Method for manufacturing superconducting materials
JPH06271317A (en) Rare-earth based superconductive material and production thereof
JPH08245297A (en) Oxide superconductor
JPH01160858A (en) Sintered material of oxide superconductor
JPH05286718A (en) Oxide superconductor containing rare-earth element and its production

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000919

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070929

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080929

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090929

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees