JPS63303851A - Sintered body of superconducting ceramic - Google Patents

Sintered body of superconducting ceramic

Info

Publication number
JPS63303851A
JPS63303851A JP62139683A JP13968387A JPS63303851A JP S63303851 A JPS63303851 A JP S63303851A JP 62139683 A JP62139683 A JP 62139683A JP 13968387 A JP13968387 A JP 13968387A JP S63303851 A JPS63303851 A JP S63303851A
Authority
JP
Japan
Prior art keywords
weight
oxide
sintered body
bi2o3
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62139683A
Other languages
Japanese (ja)
Inventor
Masaaki Sugiyama
昌章 杉山
Tatsuyuki Suyama
壽山 竜之
Takayuki Inuzuka
孝之 犬塚
Hiroshi Kubo
紘 久保
Hiroshi Tanemoto
種本 啓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP62139683A priority Critical patent/JPS63303851A/en
Publication of JPS63303851A publication Critical patent/JPS63303851A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:A sintered body having a thin insulative layer on the surface and rhombic crystalline parts in the inside, having thus superior superconductive characteristics, produced by calcining a mixture consisting of a specified compsn. consisting of an oxide of a rare earth element, an oxide of an alkaline earth metal, an oxide of Cu, etc., and sintering a mixture after adding a specified proportion of Bi2O3 to the calcined product. CONSTITUTION:The sintered body of the superconducting ceramic of this invention is formed by adding 0.01-10pts.wt. Bi2O3 or 0.01-10pts.wt. Bi2O3 plus 0.01-16pts.wt. Pr6O11 to 100pts.wt. specified calcined product, molding the mixture, and then sintering the molded body. Said calcined product is obtd. by calcining a mixture consisting of 0.5-30wt.% oxide of a rare earth element, 20-80wt.% carbonate or oxide of an alkaline earth metal, and 10-50wt.% oxide of Cu.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、超電導セラミックス焼結体に関する。超電導
セラミックスは線状あるいは帯状等に成形され、発電機
、変圧器その他の電気機器やジ1セフソン素子などの電
子デバイスなどに用いられる。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a superconducting ceramic sintered body. Superconducting ceramics are formed into linear or strip shapes and are used in generators, transformers, other electrical equipment, and electronic devices such as D1Cefson elements.

従来の技術 最近、典型的な機能材料である超電導材料の開発が急ピ
ッチで行われている。
BACKGROUND OF THE INVENTION Recently, superconducting materials, which are typical functional materials, have been rapidly developed.

従来、超電導材料としては、幾つかの金属元素、或いは
これらの金属の合金や金属間化合物、有機材料、セラミ
ックスなどが知られている。
Conventionally, several metal elements, alloys of these metals, intermetallic compounds, organic materials, ceramics, and the like have been known as superconducting materials.

しかしながら、一般にその超電導転移温度は低く、例え
ば、ニオブチタン合金、バナジウム・ガリウム化合物、
ニオブチタン合金などで、超電導マグネ−2トなどへの
応用研究が進められていたが、絶対温度25に以下に冷
却する必要があり、高価な液体ヘリウムが冷却材として
不可欠であった。
However, their superconducting transition temperatures are generally low; for example, niobium titanium alloys, vanadium-gallium compounds,
Research was underway to apply niobium titanium alloys to superconducting magnets, etc., but they needed to be cooled to below an absolute temperature of 25, and expensive liquid helium was indispensable as a coolant.

最近では、特にLa、 Sr、 Cu酸化物やY、 H
a、 Cu酸化物などのセラミックス系超電導材料が開
発され注目されている。これらは、比較的に安価な酸化
物系で、代表的なY−Ba−Cu−0系においては80
に以上の高温で超電導の性質を示すため、冷却材として
安価な液体窒素が使用できる利点がある。
Recently, La, Sr, Cu oxides, Y, H
a. Ceramic superconducting materials such as Cu oxide have been developed and are attracting attention. These are relatively inexpensive oxide systems, and the typical Y-Ba-Cu-0 system is 80
Since it exhibits superconducting properties at temperatures above 200 ft, it has the advantage of being able to use inexpensive liquid nitrogen as a coolant.

これらのセラミックス系超電導材料の製造において従来
ではLa203 、Y203 、SrCO3、BaCO
3、Cu Oなどの酸化物あるいは炭酸塩の形態の原料
粉末を仮焼し、粉砕し、加圧成形した後、焼結する方法
が採用されていた。
Conventionally, in the production of these ceramic superconducting materials, La203, Y203, SrCO3, BaCO
3. A method has been adopted in which raw material powder in the form of oxides or carbonates such as Cu 2 O is calcined, pulverized, pressure-molded, and then sintered.

その原料となる粉末は、粒度が小さく、かつ分散性が高
い程、緻密な超電導材料を得ることができる。
The smaller the particle size and the higher the dispersibility of the raw material powder, the more dense the superconducting material can be obtained.

発明が解決しようとする問題点 これらのセラミックス材料が優れた超電導特性を示すた
め′には、当該セラミックス材料中の酸素濃度を十分高
めることが必要である。またその結果、Y Ba2Cu
 307型ノY−Ha−Cu−0系セラミツクス等では
斜方晶の層状ペロブスカイト型構造が安定となり、この
構造が高いTc (超電導の臨界温度)を可佳とする結
晶構造であると考えられている。
Problems to be Solved by the Invention In order for these ceramic materials to exhibit excellent superconducting properties, it is necessary to sufficiently increase the oxygen concentration in the ceramic materials. Moreover, as a result, Y Ba2Cu
In 307-type Y-Ha-Cu-0 ceramics, etc., the orthorhombic layered perovskite structure is stable, and this structure is thought to be the crystal structure that enables a high Tc (critical temperature for superconductivity). There is.

このように酸素富化した状態で処理し、酸素を十分に原
料粉末中に供給し結晶格子中に酸素原子を入り込ませ格
子を形成させれば、純粋の斜方晶となり、高密度で、臨
界温度(τC)が高く、また電流密度も大の超電導特性
が良好なものとなる。
If the material is treated in an oxygen-enriched state, sufficient oxygen is supplied to the raw material powder, and the oxygen atoms enter the crystal lattice to form a lattice, it becomes a pure orthorhombic crystal, with high density and critical The temperature (τC) is high and the current density is high, resulting in good superconducting properties.

しかし、酸素富化した状態で処理しても、原料粉末の状
態によっては酸素が十分供給されず、斜方晶、正方晶の
混在した焼結体となり、低密度でチョーク(白墨)状の
ものとなり、優れた超電導性を示さないことがある。
However, even when processed in an oxygen-enriched state, depending on the state of the raw material powder, sufficient oxygen may not be supplied, resulting in a sintered body containing a mixture of orthorhombic and tetragonal crystals, with a low density and chalk-like structure. Therefore, it may not exhibit excellent superconductivity.

本発明は超電導特性を損わずに、密度の高い焼結体を得
ることを目的とし、さらには焼結後の冷却過程における
材料への酸素の供給を促進する手段を提供しようとする
ものである。
The present invention aims to obtain a sintered body with high density without impairing its superconducting properties, and furthermore, it aims to provide a means for promoting the supply of oxygen to the material during the cooling process after sintering. be.

問題点を解決するための手段 本発明は、これらの問題、特に焼結体の密度が高く、安
定して得る方法について検討したところ、Bi2O3を
少量原料粉末に配合し、成形することで、液相焼結を促
進させ、また酸素の供給を十分に行いながら焼結すれば
斜方晶の超電導性セラミックス焼結体が得られるという
知見に基き本発明を完成したものである。
Means for Solving the Problems The present invention has investigated these problems, particularly a method for stably obtaining a sintered body with high density, and found that by blending a small amount of Bi2O3 into raw material powder and molding it, a liquid can be produced. The present invention was completed based on the knowledge that an orthorhombic superconducting ceramic sintered body can be obtained by promoting phase sintering and sintering while supplying sufficient oxygen.

すなわち、本発明の要旨は次のとおりである。That is, the gist of the present invention is as follows.

(1)希土類元素の酸化物0.5〜30重量%、アルカ
リ土類金属の炭酸塩または酸化物20〜80重量%、及
び銅の酸化物10〜50重量%の割合で含有する混合物
を仮焼したもの100重量部にBi2O30,01〜1
0重量部を配合したものを成形、焼結してなる超電導セ
ラミックス焼結体。
(1) A mixture containing 0.5 to 30% by weight of rare earth element oxide, 20 to 80% by weight of alkaline earth metal carbonate or oxide, and 10 to 50% by weight of copper oxide is prepared. Bi2O30.01~1 to 100 parts by weight of baked product
A superconducting ceramic sintered body formed by molding and sintering a mixture containing 0 parts by weight.

(2)希土類元素の酸化物0.5〜30重量%、アルカ
リ土類金属の炭酸塩または酸化物20〜80重量%、及
び銅の酸化物10〜50重量%の割合で含有する混合物
を仮焼したもの100重量部にBi2O3及びPr6 
ouそれぞれ0.01〜10重量部を配合したものを成
形、焼結してなる超電導セラミックス焼結体。
(2) A mixture containing 0.5 to 30% by weight of a rare earth element oxide, 20 to 80% by weight of an alkaline earth metal carbonate or oxide, and 10 to 50% by weight of a copper oxide is prepared. Bi2O3 and Pr6 to 100 parts by weight of the baked product
A superconducting ceramic sintered body formed by molding and sintering a mixture of 0.01 to 10 parts by weight of each of ou and ou.

(3)希土類元素の酸化物0.5〜30重量%、アルカ
リ土類金属の炭酸塩または酸化物20〜80重量%及び
銅の酸化物10〜50重量%の割合で含有する混合物を
仮焼したもの100重量部にBi2O30−01〜10
重量部を配合して成形、焼結した焼結体表面の少なくと
も一部分を研磨してなる超電導セラミックス焼結体。
(3) Calcining a mixture containing 0.5 to 30% by weight of rare earth element oxide, 20 to 80% by weight of alkaline earth metal carbonate or oxide, and 10 to 50% by weight of copper oxide. Bi2O30-01 to 10 to 100 parts by weight of
A superconducting ceramic sintered body prepared by blending parts by weight, molding and sintering, and polishing at least a part of the surface of the sintered body.

(4)希土類元素の酸化物0.5〜30重量%、アルカ
リ土類金属の炭酸塩または酸化物20〜80重量%及び
銅の酸化物10〜50重量%の割合で含有する混合物を
仮焼したもの10033量部にBi2O3及びPr60
11それぞれ0.01〜10重量部を配合して成形、焼
結した焼結体表面の少なくとも一部分を研磨してなる超
電導セラミックス焼結体。
(4) Calcining a mixture containing 0.5 to 30% by weight of rare earth element oxide, 20 to 80% by weight of alkaline earth metal carbonate or oxide, and 10 to 50% by weight of copper oxide. Bi2O3 and Pr60 in 10033 parts of the
A superconducting ceramic sintered body prepared by blending 0.01 to 10 parts by weight of each of 11 to 10% by weight, molding and sintering, and polishing at least a portion of the surface of the sintered body.

作用 本発明は、第1図に示したように、希土類元素の酸化物
、アルカリ土類金属の炭酸塩または酸化物及び銅の酸化
物を特定の割合で含有する混合物を仮焼し原料粉末とす
る。これに焼結助材および酸素供給源としてBi2O3
単独またはBi2O3及びPr6O11を少量配合した
混合物を成形し、焼結する。
Function As shown in FIG. 1, the present invention involves calcining a mixture containing a rare earth element oxide, an alkaline earth metal carbonate or oxide, and a copper oxide in a specific ratio to form a raw material powder. do. Bi2O3 is added to this as a sintering aid and oxygen source.
A mixture of Bi2O3 and Pr6O11 alone or a small amount of Bi2O3 and Pr6O11 is molded and sintered.

その結果、焼結温度においてBi2O3が液相となり粒
界に浸透し焼結を促進する。またBi2O3相自身が酸
素を通し易い性質を有する為、粒界を通じて十分な酸素
拡散が焼結中に可能となる。また焼結後の冷却時には、
添加したPr6O11が還元され酸素を放出するので、
外部からのみならず内部からの酸素供給がおこなわれる
0以上のようなり1203および/もしくはPr6O1
1の作用により、斜方晶構造の安定度が増し、優れた超
電導材料を得ることができる。
As a result, Bi2O3 becomes a liquid phase at the sintering temperature, penetrates into grain boundaries, and promotes sintering. Furthermore, since the Bi2O3 phase itself has the property of easily passing oxygen, sufficient oxygen diffusion through the grain boundaries becomes possible during sintering. Also, during cooling after sintering,
Since the added Pr6O11 is reduced and releases oxygen,
1203 and/or Pr6O1, such as 0 or more, where oxygen is supplied not only from the outside but also from the inside
1 increases the stability of the orthorhombic structure, making it possible to obtain an excellent superconducting material.

原料粉末を形成するための前記希土類元素としては、例
えばLa%Eu、 Dy、HOlEr、 Tm、Ybま
たはYであり、アルカリ土類金属としては、例えばCa
、 SrまたはBaが挙げられる。銅の酸化物としては
代表的にはCuO1Cu20が挙げられる。
The rare earth element for forming the raw material powder is, for example, La%Eu, Dy, HOlEr, Tm, Yb or Y, and the alkaline earth metal is, for example, Ca.
, Sr or Ba. A typical example of the copper oxide is CuO1Cu20.

前記原料粉末を得る方法は、特に限定するものではなく
、たとえば本発明者らが先に提案したシュウ酸エタノー
ル法や通常の酸化物・炭酸塩固相混練法によって製造す
ることができる。
The method for obtaining the raw material powder is not particularly limited, and can be produced by, for example, the oxalic acid ethanol method previously proposed by the present inventors or the usual oxide/carbonate solid phase kneading method.

なお、シュウ酸エタノール法は、シュウ酸のアルコール
溶液に希土類元素、アルカリ土類金属およびCuの硝酸
塩水溶液を加えて希土類元素、アルカリ土類金属および
Cuのシュウ酸塩を沈澱させ、シュウ酸塩が沈澱した溶
液にアンモニア水を滴下してPHを2〜7に調整し、前
記溶液をろ過して得られた前記希土類元素、アルカリ土
類金属およびCuのシュウ酸塩の混合物を仮焼した後、
粉砕する方法である。
In addition, in the oxalic acid ethanol method, an aqueous solution of nitrates of rare earth elements, alkaline earth metals, and Cu is added to an alcoholic solution of oxalic acid to precipitate the oxalates of rare earth elements, alkaline earth metals, and Cu. Aqueous ammonia was added dropwise to the precipitated solution to adjust the pH to 2 to 7, and the mixture of the rare earth element, alkaline earth metal, and Cu oxalate obtained by filtering the solution was calcined.
This is a method of crushing.

本発明に用いられるBi2O3は、市販品を用いること
ができるが、アルコキシド法により合成した− ものは
粒度がサブミクロン程度のものが得られるので好ましい
Although Bi2O3 used in the present invention can be commercially available, it is preferable to use Bi2O3 synthesized by an alkoxide method because it yields particles with a particle size on the order of submicrons.

Bi2O3は融点825℃で酸素を通し易い物質であり
、これを前記原料粉末に添加すると粒界層を形成するが
、前記添加量の範囲では各結晶粒全体を覆うことはない
ので、本来超電導性を示さないBi2O3を用いても超
電導特性を損うことはない。
Bi2O3 is a substance that has a melting point of 825°C and is easily permeable to oxygen, and when added to the raw material powder, it forms a grain boundary layer, but within the range of the amount added, it does not cover the entire grain, so it is inherently superconducting. Even if Bi2O3, which does not exhibit this, is used, the superconducting properties will not be impaired.

また液相を経たBi2O3主成分相は試料表面に抜ける
。この結果、表面層は約1100JL程度の厚みで絶縁
層となっており、超電導特性は示さない。
Moreover, the Bi2O3 main component phase that has passed through the liquid phase escapes to the sample surface. As a result, the surface layer becomes an insulating layer with a thickness of about 1100 JL and does not exhibit superconducting properties.

しかしながら内部の組織は主に超電導特性を示す斜方晶
から成っている。これらの物質をX線回折で測定した結
果を第2図に示した。従って焼結後試料表面を約110
01L程度研磨することにより内部から緻密は超電体材
料を取り出すことができる。
However, the internal structure consists mainly of orthorhombic crystals that exhibit superconducting properties. The results of measuring these substances by X-ray diffraction are shown in FIG. Therefore, after sintering, the sample surface is approximately 110
By polishing to about 0.01L, a dense superelectric material can be extracted from the inside.

またこの絶縁層は非常に厚みがうすいので、例えば半導
体チップ、リード線、或いは焼結体を単体で使用する部
品等に使用する場合はあらためて絶縁層を被覆する必要
がなく、そのまま有効に活用することができる。さらに
は保護膜としての役割も果たし、経時変化に対して強い
超電導体となり得る。
In addition, this insulating layer is very thin, so when it is used for semiconductor chips, lead wires, or parts that use a sintered body alone, there is no need to coat it with an insulating layer and it can be used effectively as is. be able to. Furthermore, it also serves as a protective film, making it a superconductor that is resistant to changes over time.

本発明においては本来の原料粉末にBi2O3および、
還元反応により酸素を放出するPr6O11を添加する
ことによって、斜方晶の形成を有利に行うことができる
。そのためのPr6O11の配合量はBi2O3とほぼ
同様である。
In the present invention, Bi2O3 and
The formation of orthorhombic crystals can be advantageously achieved by adding Pr6O11, which releases oxygen by a reduction reaction. The blending amount of Pr6O11 for this purpose is almost the same as that of Bi2O3.

次に本発明のセラミックス組成物を用いて焼結体を製造
する方法についてさらに詳しく説明する。
Next, a method for producing a sintered body using the ceramic composition of the present invention will be explained in more detail.

まず、希土類元素の酸化物0.5〜30重量%、アルカ
リ土類金属の炭酸塩または酸化物20〜80重量%及び
銅の酸化物10〜50重量%の割合で含有する混合物を
仮焼する。
First, a mixture containing 0.5 to 30% by weight of a rare earth element oxide, 20 to 80% by weight of an alkaline earth metal carbonate or oxide, and 10 to 50% by weight of a copper oxide is calcined. .

仮焼温度としては、700〜1000℃、好ましくは8
50〜850℃である。温度が余り高すぎると、粒子径
が大きくなり、また銅が溶融するので好ましくないから
である。仮焼時間は1〜10時間、好ましくは2〜6時
間である。
The calcination temperature is 700 to 1000°C, preferably 8°C.
The temperature is 50 to 850°C. This is because if the temperature is too high, the particle size will increase and the copper will melt, which is not preferable. Calcination time is 1 to 10 hours, preferably 2 to 6 hours.

仮焼の雰囲気は、酸素20容量%以上、他は不活性ガス
を含有するものであればよいが、酸素含有量の多い方が
好ましい、その圧力は1〜10kgf/c■2程度で十
分である。
The atmosphere for calcination may contain at least 20% oxygen by volume and other inert gases, but a high oxygen content is preferable, and a pressure of about 1 to 10 kgf/c2 is sufficient. be.

仮焼によって原料粉末が得られ、本発明ではこれに焼結
助材並びに酸素供給剤としてBi2O3及び/又はPr
6O11を加え、成形後焼結する。
A raw material powder is obtained by calcination, and in the present invention, Bi2O3 and/or Pr are added to this as a sintering aid and an oxygen supplying agent.
6O11 is added and sintered after molding.

成形については、仮焼のままでは粒子が融着したりして
塊状となったりして均一な粒度の成形体とならないので
、適当な粉砕機によりサブミクロン程度の粒度とし、適
当な成形機により所望の寸法形状の成形体とすることが
好ましい。
Regarding molding, if the calcined state is left as it is, the particles will fuse and become lumpy, making it impossible to form a molded product with uniform grain size. Therefore, the grain size is reduced to submicron level using an appropriate pulverizer, and then molded using an appropriate molding machine. It is preferable to form a molded article with desired dimensions and shape.

この成形体を焼結温度825℃〜tooo℃、好ましく
は850℃〜950℃、焼結時間IH−48H,好まし
くは5H〜20H1雰囲気酸素20容量%以上1〜10
kgf/cm2で焼結する0以上の結果、薄い絶縁層を
表面に有し、内部は斜方晶の超電導特性に秀れた緻密な
焼結体を得ることができる。
This molded body is sintered at a temperature of 825°C to tooo°C, preferably 850°C to 950°C, a sintering time of IH-48H, preferably 5H to 20H, an atmosphere of oxygen of 20% by volume or more and 1 to 10
As a result of sintering at kgf/cm2 of 0 or more, a dense sintered body having a thin insulating layer on the surface and excellent orthorhombic superconducting properties inside can be obtained.

実施例 以下、実施例により本発明を具体的に説明する。Example Hereinafter, the present invention will be specifically explained with reference to Examples.

第1図に示したフロー図に従ってB12O3を2.5重
量%添加したY Ba2Gu30− Bi2O3焼結体
を製造して、まず、Y Ba2Cu307の組成になる
ようにY2O3、BaCO3、CuOを配合、混疎し、
850℃、5H,酸素ガス雰囲気中で仮焼して、これを
粉砕した後Bi2O3粉末を2.5重層%添加して再び
混練し、300kgf/cm2の1軸圧縮、2000k
gf/c112の冷間等方加圧で直径10m】、厚み2
mmの成形体を成形した。焼結は950  ℃、8H,
酸素気流中で実施し、焼結体を得た。また比較材として
Bi2O3粉末を用いない焼結体を同じ条件で製造した
A YBa2Gu30-Bi2O3 sintered body to which 2.5% by weight of B12O3 has been added is manufactured according to the flowchart shown in Fig. 1. First, Y2O3, BaCO3, and CuO are blended and mixed to have a composition of YBa2Cu307. death,
After calcining in an oxygen gas atmosphere at 850°C, 5H, and pulverizing it, 2.5% Bi2O3 powder was added and kneaded again, uniaxial compression at 300kgf/cm2, 2000k.
Diameter 10m], thickness 2 with cold isostatic pressure of gf/c112
A molded body of mm was molded. Sintering at 950℃, 8H,
This was carried out in an oxygen stream to obtain a sintered body. In addition, as a comparative material, a sintered body without using Bi2O3 powder was manufactured under the same conditions.

第1表に本発明による焼結体と比較材の嵩密度の測定結
果を示す。
Table 1 shows the measurement results of the bulk densities of the sintered bodies according to the present invention and comparative materials.

第1表からも明らかなように本発明による焼結体は嵩密
度の向上が認められ、走査型電子顕微鏡による観察でも
明らかに気孔の減少が認められた。
As is clear from Table 1, the sintered body according to the present invention showed an improvement in bulk density, and a clear reduction in pores was also observed when observed using a scanning electron microscope.

Bi2O3は先に説明したように超電導を示さない物質
であるのでその挙動を調査した。その結果、第2図のX
線回折結果に示したように旧203は焼結助材として作
用した後、焼結体の表面に抜けていくことが判明した。
As explained above, Bi2O3 is a substance that does not exhibit superconductivity, so its behavior was investigated. As a result, X in Figure 2
As shown in the line diffraction results, it was found that the old 203 acts as a sintering aid and then escapes to the surface of the sintered body.

 Bi2O3が移動した表面層は厚さ約100gm程度
の薄い層で、γ−Bi2O3相を含んだ層(第2図(b
))となっており、超電導を示さない絶縁層である。し
かしながら内部は正方晶+斜方晶の存在を示すX線回折
像が得られている(第2図(a) ) 、また、電子顕
微鏡観察を行うと内部双晶を伴う斜方晶が他の超電導材
料と同様観察された。
The surface layer to which Bi2O3 has migrated is a thin layer with a thickness of approximately 100 gm, and is a layer containing the γ-Bi2O3 phase (Fig. 2 (b)).
)), and is an insulating layer that does not exhibit superconductivity. However, an X-ray diffraction image showing the presence of tetragonal + orthorhombic crystals inside was obtained (Figure 2 (a)), and electron microscopic observation revealed that orthorhombic crystals with internal twins were present in other crystals. Similar observations were made to superconducting materials.

得られた焼結体の表面層を削りおとし超電導特性を測定
した。その結果を第3図に示す、このグラフに示すよう
に約90にで超電導現象を示し、82にで完全に抵抗が
0となった。
The surface layer of the obtained sintered body was ground down and its superconducting properties were measured. The results are shown in FIG. 3. As shown in this graph, a superconducting phenomenon was exhibited at about 90, and the resistance completely became zero at 82.

発明の効果 本発明によれば、薄い絶縁層を表面に有し、内部は斜方
晶の超電導特性に秀れた緻密な焼結体を得ることが出来
る。
Effects of the Invention According to the present invention, a dense sintered body having a thin insulating layer on the surface and excellent orthorhombic superconducting properties inside can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のフローチャート図、第2図(a) 、
 (b)は焼結体のX線回折チャート、第3図は電気抵
抗測定結果を示すグラフである。
FIG. 1 is a flowchart of the present invention, FIG. 2(a),
(b) is an X-ray diffraction chart of the sintered body, and FIG. 3 is a graph showing the results of electrical resistance measurement.

Claims (4)

【特許請求の範囲】[Claims] (1)希土類元素の酸化物0.5〜30重量%、アルカ
リ土類金属の炭酸塩または酸化物20〜80重量%、及
び銅の酸化物10〜50重量%の割合で含有する混合物
を仮焼したもの100重量部にBi_2O_30.01
〜10重量部を配合したものを成形、焼結してなる超電
導セラミックス焼結体。
(1) A mixture containing 0.5 to 30% by weight of rare earth element oxide, 20 to 80% by weight of alkaline earth metal carbonate or oxide, and 10 to 50% by weight of copper oxide is prepared. Bi_2O_30.01 to 100 parts by weight of baked product
A superconducting ceramic sintered body formed by molding and sintering a mixture of ~10 parts by weight.
(2)希土類元素の酸化物0.5〜30重量%、アルカ
リ土類金属の炭酸塩または酸化物20〜80重量%、及
び銅の酸化物10〜50重量%の割合で含有する混合物
を仮焼したもの100重量部にBi_2O_3及びPr
_6O_1_1をそれぞれ0.01〜10重量部を配合
したものを成形、焼結してなる超電導セラミックス焼結
体。
(2) A mixture containing 0.5 to 30% by weight of a rare earth element oxide, 20 to 80% by weight of an alkaline earth metal carbonate or oxide, and 10 to 50% by weight of a copper oxide is prepared. Bi_2O_3 and Pr are added to 100 parts by weight of the baked product.
A superconducting ceramic sintered body formed by molding and sintering a mixture of 0.01 to 10 parts by weight of _6O_1_1.
(3)希土類元素の酸化物0.5〜30重量%、アルカ
リ土類金属の炭酸塩または酸化物20〜80重量%及び
銅の酸化物10〜50重量%の割合で含有する混合物を
仮焼したもの100重量部にBi_2O_30.01〜
10重量部を配合して成形、焼結した焼結体表面の少な
くとも一部分を研磨してなる超電導セラミックス焼結体
(3) Calcining a mixture containing 0.5 to 30% by weight of rare earth element oxide, 20 to 80% by weight of alkaline earth metal carbonate or oxide, and 10 to 50% by weight of copper oxide. Bi_2O_30.01 to 100 parts by weight of
A superconducting ceramic sintered body prepared by blending 10 parts by weight, molding and sintering, and polishing at least a portion of the surface of the sintered body.
(4)希土類元素の酸化物0.5〜30重量%、アルカ
リ土類金属の炭酸塩または酸化物20〜80重量%及び
銅の酸化物10〜50重量%の割合で含有する混合物を
仮焼したもの100重量部にBi_2O_3及びPr_
6O_1_1をそれぞれ0.01〜10重量部を配合し
て成形、焼結した焼結体表面の少なくとも一部分を研磨
してなる超電導セラミックス焼結体。
(4) Calcining a mixture containing 0.5 to 30% by weight of rare earth element oxide, 20 to 80% by weight of alkaline earth metal carbonate or oxide, and 10 to 50% by weight of copper oxide. Bi_2O_3 and Pr_
A superconducting ceramic sintered body formed by blending 0.01 to 10 parts by weight of 6O_1_1, molding and sintering, and polishing at least a part of the surface of the sintered body.
JP62139683A 1987-06-05 1987-06-05 Sintered body of superconducting ceramic Pending JPS63303851A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62139683A JPS63303851A (en) 1987-06-05 1987-06-05 Sintered body of superconducting ceramic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62139683A JPS63303851A (en) 1987-06-05 1987-06-05 Sintered body of superconducting ceramic

Publications (1)

Publication Number Publication Date
JPS63303851A true JPS63303851A (en) 1988-12-12

Family

ID=15250998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62139683A Pending JPS63303851A (en) 1987-06-05 1987-06-05 Sintered body of superconducting ceramic

Country Status (1)

Country Link
JP (1) JPS63303851A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01224261A (en) * 1988-03-02 1989-09-07 Hitachi Ltd Production of superconducting material and superconductor
JPH03261647A (en) * 1990-03-10 1991-11-21 Dowa Mining Co Ltd Production of sintered y1ba2cu3o7-x oxide superconductor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01224261A (en) * 1988-03-02 1989-09-07 Hitachi Ltd Production of superconducting material and superconductor
JPH03261647A (en) * 1990-03-10 1991-11-21 Dowa Mining Co Ltd Production of sintered y1ba2cu3o7-x oxide superconductor

Similar Documents

Publication Publication Date Title
KR20110020292A (en) Oxide sintered object, sputtering target comprising the sintered object, process for producing the sintered object, and process for producing sputtering target comprising the sintered object
Gubser et al. Superconducting phase transitions in the La-M-Cu-O layered perovskite system, M= La, Ba, Sr, and Pb
JPH04224111A (en) Rare earth type oxide superconductor and its production
JPS63303851A (en) Sintered body of superconducting ceramic
Korczak et al. Superconductivity in Sr0. 85Ln0. 15CuO2: Extension to samarium
EP0287064A2 (en) Process for producing superconductive ceramics
US5270292A (en) Method for the formation of high temperature semiconductors
JP3115915B2 (en) Method for producing rare earth oxide superconductor
JPH0196055A (en) Superconductive ceramic composition
JPH07106893B2 (en) Manufacturing method of ceramics superconductor
JP2931446B2 (en) Method for producing rare earth oxide superconductor
JPH02217316A (en) High-temperature superconductive material and its manufacture
JP2978538B2 (en) Superconducting material with high density crystal structure
JPS63307156A (en) Method for synthesizing superconducting ceramics
EP0292940A2 (en) Superconductor
JP2854338B2 (en) Copper oxide superconductor
JP2590242B2 (en) Manufacturing method of oxide superconductor
JP2821568B2 (en) Method for producing superconducting whisker composite
JP2698689B2 (en) Oxide superconducting material and manufacturing method thereof
JP2761727B2 (en) Manufacturing method of oxide superconductor
JPH01157455A (en) Production of oxide superconducting sintered body
JPH01151169A (en) Oxide superconducting member
JPH04292418A (en) Oxide superconductor and its production
JPH01160825A (en) Production of oxide superconductor
JPH01131048A (en) Superconducting porcelain composition