JPH0446053A - Oxide superconductor and its production - Google Patents

Oxide superconductor and its production

Info

Publication number
JPH0446053A
JPH0446053A JP2151607A JP15160790A JPH0446053A JP H0446053 A JPH0446053 A JP H0446053A JP 2151607 A JP2151607 A JP 2151607A JP 15160790 A JP15160790 A JP 15160790A JP H0446053 A JPH0446053 A JP H0446053A
Authority
JP
Japan
Prior art keywords
superconductor
crystal
group
phase
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2151607A
Other languages
Japanese (ja)
Inventor
Junichi Shimoyama
淳一 下山
Toshiya Matsubara
俊哉 松原
Eiji Yanagisawa
栄治 柳沢
Takeshi Morimoto
剛 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2151607A priority Critical patent/JPH0446053A/en
Publication of JPH0446053A publication Critical patent/JPH0446053A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To improve the critical current density of the superconductor in a strong magnetic field by dispersing a specified multiple oxide in a crystal contg. Bi, Sr, Ca, Cu and O. CONSTITUTION:The superconducting material contg. Bi, Sr, Ca, Cu and O and 0.5-20wt.% of the multiple oxide of >=1 kind of metal selected from group IIa elements such as ABO3 (A is >=1 kind selected from Mg, Ca, Sr and Ba, and B is >=1 kind selected from Zr, Sn, Ce and Ti) and >=1 kind of metal selected from group IVa, group IVb and rare-earth elements are mixed. The mixture is heated above the partial melting temp. (880-900 deg.C) of the superconducting phase, a crystal contg. Bi, Sr, Ca, Cu and O is unidirectionally solidified from the melt at the temp. gradient of >=20 deg.C/cm and at the crystal growth rate of <=20mm/hr, and an oxide superconductor in which the multiple oxide is insularly dispersed in the matrix in which the plate crystals of the oriented superconductor are present in layers in obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は新規な組織を有するB1づr−Ca−Cu−0
系酸化物超t、!J1体およびその製造方法に賀するも
のである。
Detailed Description of the Invention [Industrial Application Field] The present invention provides B1zr-Ca-Cu-0 having a novel structure.
System oxide super t,! This article describes the J1 body and its manufacturing method.

[従来の技術] 従来、B1−5r−Ca−Cu−0系超電導体(以下B
i系起電導体ともいう)に、BizSr2Ca2Cum
Oy (以下2223相ともいう) 、 BiaSri
CaC+gOy  (以下2212相ともいう) 、 
Bi*5rtCuOy (以下2201相ともいう)の
3種の構造があり、それぞれの臨界温度がおよそll0
K 90K 20にであることが知られている。液体窯
素温度(77K)における実用をめざした研究開発は臨
界温度が高い2223相、2212相を中心に行われて
いる。Bi類系超電導体のバルク体の製造方法としては
、上言己の組成を有する結晶粉末を合成した後、これを
成形し焼結させる方法がある。他にも、ゾルゲル法、溶
融凝固法にて製造することが知られている。
[Prior art] Conventionally, B1-5r-Ca-Cu-0 superconductor (hereinafter referred to as B
(also referred to as i-based electromotive conductor), BizSr2Ca2Cum
Oy (hereinafter also referred to as 2223 phase), BiaSri
CaC+gOy (hereinafter also referred to as 2212 phase),
There are three types of structures of Bi*5rtCuOy (hereinafter also referred to as 2201 phase), each with a critical temperature of approximately ll0.
It is known that K 90 K 20. Research and development aimed at practical use at the liquid kiln temperature (77K) is being conducted mainly on the 2223 phase and 2212 phase, which have high critical temperatures. As a method for producing a bulk body of a Bi-based superconductor, there is a method in which a crystal powder having the above-mentioned composition is synthesized, and then this is formed and sintered. In addition, it is known to manufacture by a sol-gel method and a melt solidification method.

[発明が解決しようとする問題点] 焼結する方法により製造された超電導体は、通常多孔質
な多結晶体で、それぞれの結晶粒が無秩序な方向に配列
し、かつ粒間の結合が弱い。Bi系超電導体は、結晶粒
子内で電流の流れやすい方向が決まっているので、向き
が異なる結晶粒子間では電流が流れにくい性質がある。
[Problems to be solved by the invention] Superconductors manufactured by the sintering method are usually porous polycrystalline bodies with crystal grains arranged in random directions and weak bonds between the grains. . In a Bi-based superconductor, the direction in which current flows easily within the crystal grains is determined, so that it is difficult for current to flow between crystal grains having different orientations.

また粒同士の結合面積が小さいことは実効的な電流経路
が細(なっていることを意味する。このため、焼結法に
よる多結晶のBi系超電導体では高い臨界電流密度を有
するものが得られなかった0 これらの多結晶体をプレスなどして、結晶粒の方向を制
置すると結晶粒の方向が揃うため、臨界電流密度は向上
する。また同様に、溶融凝固法により製造すると、結晶
粒が太き(成長すること、緻密になり、粒同士の結合が
強くなることにより臨界電流密度が向上する。
In addition, a small bonding area between grains means that the effective current path is narrow.For this reason, polycrystalline Bi-based superconductors made by sintering can have a high critical current density. 0 If these polycrystals are pressed or the like to control the direction of the crystal grains, the direction of the crystal grains will be aligned, which will improve the critical current density.Similarly, if manufactured by the melt solidification method, The critical current density improves as the grains become thicker (grow), become denser, and the bonds between grains become stronger.

結晶粒の方向の制置と溶融凝固を組み合わせた一方向凝
固法により製造するとBi系超電導体の臨界電流密度は
さらに高められるが、これらいずれの手法において製造
した場合にも、液体窒素温度での臨界電流密度は磁場中
において著しく低下してしまう。これはBi系超電導体
の下部臨界磁場以上の磁場中で結晶を貫通する磁束のビ
ン止め力が弱いことによると考えられている。
The critical current density of Bi-based superconductors can be further increased if manufactured by a unidirectional solidification method that combines the control of grain direction and melt solidification, but when manufactured by any of these methods, the The critical current density decreases significantly in a magnetic field. This is thought to be due to the weak binding force of the magnetic flux penetrating the crystal in a magnetic field higher than the lower critical magnetic field of the Bi-based superconductor.

超電導体の応用分野としては、線材またはテープ材料を
コイル状に加工し、強力な磁場を作る電磁石としての利
用が中心に考えられている。そこで、Bi系超電導体の
実用化には、綾密に結晶の方向が揃った組織を作り、さ
らにビン止め力を強くするためのビン止め中心を結晶中
に導入することにより、強磁場中で高い臨界電流密度を
有する材料を作製することが必要と考えられている。
The main field of application for superconductors is considered as electromagnets that create strong magnetic fields by processing wire or tape materials into coils. Therefore, in order to put Bi-based superconductors into practical use, it is necessary to create a dense structure with crystals aligned in the same direction, and to introduce a binding center into the crystal to strengthen the binding force. It is considered necessary to create materials with high critical current densities.

Bi系超電導体は釣880℃以上の温度で部分溶融し、
凝固初期には2201相結晶が生成し、そのまま徐冷す
ると容易に2212相に相変態する。しかし、Bi系超
電導体の溶融凝固法により製造する方法で現在のところ
、2223相を凝固成長する手法は確立されていない。
Bi-based superconductors partially melt at temperatures above 880°C,
At the initial stage of solidification, 2201 phase crystals are formed, and when the mixture is allowed to cool slowly, it easily undergoes a phase transformation to 2212 phase. However, at present, a method for solidifying and growing the 2223 phase has not been established in the manufacturing method of Bi-based superconductors by the melt-solidifying method.

ビン止め中心としては微析出物、粒界、各種欠陥が考え
られる。希土類系超電導体については、RE2BaCu
Oi相(REは希土類元素)ほか結晶中に細か(分散し
た非超電導相の微粒子がビン止め中心になりうることが
知られている。Bi系超電導体にはREzBaCuOs
相のような超電導結晶中に析土する非超電導相がなく、
超電導体と全く別の非超電導物質を結晶中に導入した報
告もない。
Fine precipitates, grain boundaries, and various defects are considered to be the center of bottle fixation. For rare earth superconductors, RE2BaCu
It is known that Oi phase (RE is a rare earth element) and other fine particles of non-superconducting phase (dispersed in the crystal) can become the center of bottle fixation.
There is no non-superconducting phase deposited in the superconducting crystal like a phase,
There are also no reports of introducing a non-superconducting substance completely different from a superconductor into a crystal.

しかし、Bi系超電導体の溶融状態において存在する、
あらゆる固相、液相と反応せず、かつ溶融温度という高
温で粒成長しない非超電導物質の微粒子を凝固前の材料
中に均質に分散させ、これを一方向凝固し超電導相結晶
中に均質に分散させる方法は材料のビン止め中心の強化
に優れていると考えられる。
However, in the molten state of Bi-based superconductors,
Fine particles of a non-superconducting substance that does not react with any solid phase or liquid phase and do not grow at high temperatures (melting temperature) are homogeneously dispersed in the material before solidification, and are unidirectionally solidified to become homogeneous in the superconducting phase crystal. The method of dispersion is considered to be excellent in strengthening the center of the bottled material.

[課題を解決するための手段] 本発明は、Bi、 Sr、 Ca、 Cu、 Oを構成
元素として含む結晶中に、2A族元素から選ばれた少な
くとも1種以上の金属と4A族、4B族および希土類元
素から選ばれた少なくとも1種以上の金属との複合酸化
物が分散した組織を有する酸化物超電導体を提供するも
のである。
[Means for Solving the Problems] The present invention includes at least one metal selected from Group 2A elements and Group 4A and Group 4B elements in a crystal containing Bi, Sr, Ca, Cu, and O as constituent elements. The present invention provides an oxide superconductor having a structure in which a composite oxide with at least one metal selected from rare earth elements is dispersed.

本発明において2A族元素から選ばれた少な(とも1種
以上の金属と4A族、4B族および希土類元素から選ば
れた少な(とも1種以上の金属との複合酸化物は^BO
,(AはMg、 Ca、 Sr、 Baから選ばれる1
種以上、BはZr、 Sn、 Ce、 Tiから選ばれ
る1種以上)の組成式で表される(のであることが好ま
しい、この場合^Bowはペロブスカイト型構造の結晶
となる。この結晶はいずれも大気中では1200℃付近
まで組成的に安定な物質でBi系超電導体の部分溶融温
度である880〜900℃の温度ではBi系超電導体の
融液と反応せず、またほとんど粒成長しない。
In the present invention, a composite oxide of a metal selected from group 2A elements (all metals) and one or more metals selected from group 4A, group 4B, and rare earth elements is ^BO.
, (A is 1 selected from Mg, Ca, Sr, Ba
(B is preferably one or more selected from Zr, Sn, Ce, and Ti). In this case, Bow is a crystal with a perovskite structure. It is a substance that is compositionally stable up to around 1200°C in the atmosphere, and does not react with the Bi-based superconductor melt at temperatures of 880 to 900°C, which is the partial melting temperature of the Bi-based superconductor, and hardly causes grain growth.

本発明の超電導体は、例えば2212相組成の原料をア
ルカリ土類金属のうち1種以上とそれ以外の金属との複
合酸化物と混合し、これを2212相の部分溶融温度以
上に加熱した後、冷却して凝固することにより好適に製
造することができる。
The superconductor of the present invention can be produced by mixing, for example, a raw material with a 2212 phase composition with a composite oxide of one or more alkaline earth metals and other metals, and heating this to a temperature equal to or higher than the partial melting temperature of the 2212 phase. It can be suitably manufactured by cooling and solidifying.

2212相と上記複合酸化物の混合物を2212相の部
分溶融温度以上に加熱した後、これを冷却して凝固した
場合、仕込時に添加した粒径な保った状態で上記複合酸
化物結晶が2212相結晶中に島状に取り込まれる。こ
のとき、細かい粒子だけ選粒した上記複合酸化物を用い
れば、これと同じ大きさの非超電導物質を2212相結
晶中に分散させることができるわけでビン止め力の強化
という観点から望ましい。特に0.5μm以下の粒子だ
けを用いた場合は、臨界電流密度は飛躍的に増大し磁場
を印加してもあまり低下しない。
When a mixture of the 2212 phase and the composite oxide is heated to a temperature higher than the partial melting temperature of the 2212 phase and then cooled and solidified, the composite oxide crystals form the 2212 phase while maintaining the particle size added at the time of preparation. It is incorporated into the crystal in the form of islands. At this time, if the above-mentioned composite oxide in which only fine particles are selected is used, a non-superconducting substance of the same size as the composite oxide can be dispersed in the 2212 phase crystal, which is desirable from the viewpoint of strengthening the bottle-holding force. In particular, when only particles of 0.5 μm or less are used, the critical current density increases dramatically and does not decrease much even when a magnetic field is applied.

ABO,を用いる場合は、その添加量は、0.5wt%
以上かつ20wt%以下が好ましい。添加量が05wt
%未滴の場合は本発明の効果が十分発現しない恐れがあ
り、また添加量が20wt%を越える場合は材料中の一
部にABO,相が偏析してしまい超電導体の不連続が生
じる恐れがあるので好ましくない。さらに好ましいAB
O3の添加量は1〜10wt%である。
When using ABO, the amount added is 0.5 wt%
It is preferably at least 20 wt%. Added amount is 05wt
%, there is a risk that the effect of the present invention will not be fully expressed, and if the amount added exceeds 20 wt%, there is a risk that the ABO phase will segregate in a part of the material, resulting in discontinuity of the superconductor. I don't like it because there is. More preferable AB
The amount of O3 added is 1 to 10 wt%.

本発明の超電導体は、温度勾配が20℃/cm以上、結
晶成長速度が20mm/h以下の条件で融液から超電導
体相結晶を一方向装置することにより製造することが好
ましい。この結果、配置した超電導体の板状結晶が層状
に重なり合ったマトリックス中に、上記複合酸化物の粒
状結晶が島状に分散した組織の凝固物が得られる。
The superconductor of the present invention is preferably produced by unidirectionally producing superconductor phase crystals from a melt under conditions of a temperature gradient of 20° C./cm or more and a crystal growth rate of 20 mm/h or less. As a result, a solidified product having a structure in which the granular crystals of the composite oxide are dispersed in the form of islands in a matrix in which the plate-shaped crystals of the superconductor arranged are superimposed in a layered manner is obtained.

[実施例] 実施例I Bi : Sr : Ca :Cuの原子比が2:2:
1:2となるような酸化物の仮焼粉末を作り、これに表
1に示したAとBの組合せからなるABO,の粉末(平
均粒径0.5μm)を5wt%加え混合した後、その粉
末を金型ブレスにより70mmX 40mmX 2mm
に成型し、酸素気流中において860°Cで10時間焼
成を行い、冷却後ダイヤモンドカッターを用いて切りま
し、70mmx 4mm X 2mmの角柱状の焼結体
を得た。
[Example] Example I Bi:Sr:Ca:Cu atomic ratio is 2:2:
A calcined powder of oxide with a ratio of 1:2 was prepared, and 5 wt% of ABO powder (average particle size 0.5 μm) consisting of the combination of A and B shown in Table 1 was added and mixed. The powder is molded into 70mm x 40mm x 2mm using a mold press.
It was molded into a shape, fired at 860°C for 10 hours in an oxygen stream, and after cooling was cut using a diamond cutter to obtain a prismatic sintered body measuring 70 mm x 4 mm x 2 mm.

次に、この角柱状の焼結体の一端を固定し、酸素気流下
で最高温度部分が890°Cで50’ C/cmの温度
勾配を有する電気炉を用いて、この中を長軸方向に3 
mm/hの速度で移動させた。この結果得られた凝固物
をさらに酸素分圧0001気圧の雰囲気中で500“C
まで加熱し10時間保持した後急冷した。
Next, one end of this prismatic sintered body was fixed, and it was heated in the long axis direction using an electric furnace with a temperature gradient of 50'C/cm and a maximum temperature of 890°C under an oxygen stream. to 3
It was moved at a speed of mm/h. The resulting solidified product was further heated at 50"C in an atmosphere with an oxygen partial pressure of 0001 atm.
The mixture was heated to 100 mL, held for 10 hours, and then rapidly cooled.

このようにして得た凝固物の走査型電子顕微鏡およびX
線元素分析装置を用いて観察したところ第1図に示した
ような板状の2212相の結晶粒子が層状に重なり合い
、その中に粒径0.5μm程度のABO,粒子が島状に
分数した組織を有していることが確認された。試料の全
体にわたり上記のような良好な組−織が認められた。
Scanning electron microscope and X
When observed using a line elemental analyzer, as shown in Figure 1, plate-shaped 2212-phase crystal grains overlapped in a layered manner, and within these, ABO particles with a grain size of approximately 0.5 μm were found in island-like fractions. It was confirmed that the tissue was present. The above-mentioned good structure was observed throughout the sample.

超電導特性の測定結果を表1に示す。これらの測定には
試料を1mm X 0.1mm X 10mmの大きさ
に切断したものを用いた。臨界温度は直流四端子法によ
り測定し零抵抗を示した温度で、臨界電流密度は液体窒
素温度において、外部磁場を2テスラ印加した状態で同
じく直流四端子法で測定したものである。磁場は起電J
結晶のC軸に平行にビカロした。
Table 1 shows the measurement results of superconducting properties. For these measurements, a sample cut into a size of 1 mm x 0.1 mm x 10 mm was used. The critical temperature is the temperature at which zero resistance was measured using the DC four-probe method, and the critical current density was measured using the same DC four-probe method at liquid nitrogen temperature with an external magnetic field of 2 Tesla applied. The magnetic field is an electromotive force J
Bicaro was parallel to the C axis of the crystal.

表 1 実施例2 Bi二Sr:Ca Cu の原子比が2 となるよう な酸化物の仮焼粉末を作り、これに表2に示したAとB
の組合せからなるABO,を平均粒径0.15μmに選
粒したものを5wt%加え混合した後、その粉末を金型
ブレスにより70闘X 40mmX 2no11に成型
し、酸素気流中において860’ Cで10時間焼成を
行い、冷却後ダイヤモンドカッターを用いて切り出し、
70mロX 4mm X 2mmの角柱状の焼結体を得
た。
Table 1 Example 2 A calcined powder of an oxide with an atomic ratio of Bi2Sr:CaCu of 2 was prepared, and A and B shown in Table 2 were added to it.
After adding and mixing 5 wt% of ABO, which consists of a combination of After baking for 10 hours and cooling, cut out using a diamond cutter.
A prismatic sintered body measuring 70 mm x 4 mm x 2 mm was obtained.

次に、この角柱状の焼結体の一端を固定し、酸素気流下
で最高温度部分が890’Cで50℃/cmの温度勾配
を有する電気炉を用いて、この中を長軸方向に3 mm
/hの速度で移動させた。この結果得られた凝固物をさ
らに酸素分圧0.001気圧の雰囲気中で500°Cま
で加熱し10時間保持した後急冷した。
Next, one end of this prismatic sintered body was fixed, and it was heated in an electric furnace with a temperature gradient of 50°C/cm and a maximum temperature of 890'C under an oxygen stream in the longitudinal direction. 3mm
It was moved at a speed of /h. The resulting solidified product was further heated to 500°C in an atmosphere with an oxygen partial pressure of 0.001 atm, held for 10 hours, and then rapidly cooled.

このようにして得た凝固物の走査型電子顕微鏡およびX
線元素分析装置を用いて観察したところ第1図に示した
ような板状の2212相の結晶粒子が層状に重なり合い
、その中に粒径0.15μm程度のABOa粒子が島状
に分散した組織を有していることが確認された。試料の
全体にわたり上記のような良好な組織が認められた。
Scanning electron microscope and X
Observation using a line elemental analyzer revealed a structure in which plate-shaped 2212-phase crystal grains overlapped in a layered manner as shown in Figure 1, and ABOa particles with a grain size of approximately 0.15 μm were dispersed in islands within the layered crystal grains. It was confirmed that it has. A good structure as described above was observed throughout the sample.

実施例1と同様にして測定した超電導特性をを表2に示
す。
Table 2 shows the superconducting properties measured in the same manner as in Example 1.

表2 比較例 Bi:Sr:Ca:Cuの原子比が2+2:l:2とな
るような酸化物の仮焼粉末を作り、これを金型ブレスに
より7[)mmX 40mmX 2mmに成型し、酸素
気流中において860’Cで10時間焼成を行い、冷却
後ダイヤモンドカッターを用いて切り出し、70mmX
4mmX2mmの角柱状の焼結体を得た。
Table 2 Comparative Example A calcined powder of an oxide with an atomic ratio of Bi:Sr:Ca:Cu of 2+2:l:2 was prepared, and this was molded into a size of 7[) mm x 40 mm x 2 mm using a mold press, and Fired at 860'C in air flow for 10 hours, cut out using a diamond cutter after cooling, and cut into 70mm
A 4 mm x 2 mm prismatic sintered body was obtained.

次に、この角柱状の焼結体の一端を固定し、酸素気流下
で最高温度部分が890’ Cで50’ C/cmの温
度勾配を有する電気炉を用いて、この中を長軸方向に3
)/hの速度で移動させた。この結果得られた凝固物を
さらに酸素分圧0001気圧の雰囲気中で500’ C
まで加熱し10時間保持した後急冷した。
Next, one end of this prismatic sintered body was fixed, and the interior was heated in the longitudinal direction using an electric furnace with a temperature gradient of 50'C/cm and a maximum temperature of 890'C under an oxygen stream. to 3
)/h. The resulting solidified product was further heated at 500'C in an atmosphere with an oxygen partial pressure of 0001 atm.
The mixture was heated to 100 mL, held for 10 hours, and then rapidly cooled.

このようにして得た凝固物の走査型電子顕微鏡およびX
線元素分析装置を用いて観察したところ第2図に示した
ような板状の2212相の結晶粒子が層状に重なり合っ
た組織を有していることが確認された。試料の全体にわ
たり上記のような良好な組織が認められた。また221
2相結中になんらかの微細な析出物は特に認められなか
ったゆ 実施例1と同様に測定したところ、臨界温度は89にで
、臨界電流密度は20OA/cm2であった。
Scanning electron microscope and X
When observed using a line elemental analyzer, it was confirmed that the structure had a structure in which plate-shaped 2212 phase crystal grains overlapped in layers as shown in FIG. A good structure as described above was observed throughout the sample. Also 221
No particular fine precipitates were observed during the two-phase bonding. Measurements were made in the same manner as in Example 1, and the critical temperature was 89, and the critical current density was 20 OA/cm2.

[発明の効果] 本発明の超電導体は、非常に細かい非超電導体の結晶粒
子が分散しており、これが磁束の良好なビン止め中心と
して作用するため、強磁場中でも臨界電流密度が高い。
[Effects of the Invention] The superconductor of the present invention has very fine non-superconductor crystal grains dispersed therein, and this acts as a center for good binding of magnetic flux, so that the critical current density is high even in a strong magnetic field.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、実施例において得られた超電導体の組織を示
す模式図である。 第2図は、比較例において得られた超電導体の組織を示
す模式図である。
FIG. 1 is a schematic diagram showing the structure of a superconductor obtained in an example. FIG. 2 is a schematic diagram showing the structure of a superconductor obtained in a comparative example.

Claims (3)

【特許請求の範囲】[Claims] 1.Bi,Sr,Ca,Cu,Oを構成元素として含む
結晶中に、2A族元素から選ばれた少なくとも1種以上
の金属と4A族、4B族および希土類元素から選ばれた
少なくとも1種以上の金属との複合酸化物が分散した組
織を有する酸化物超電導体。
1. At least one metal selected from Group 2A elements and at least one metal selected from Group 4A, Group 4B, and rare earth elements in a crystal containing Bi, Sr, Ca, Cu, and O as constituent elements. An oxide superconductor with a structure in which a composite oxide of
2.2A族元素から選ばれた少なくとも1種以上の金属
と4A族、4B族および希土類元素から選ばれた少なく
とも1種以上の金属との複合酸化物がABO_3(Aは
Mg,Ca,Sr,Baから選ばれた1種以上、BはZ
r,Sn,Ce,Tiから選ばれた1種以上)である請
求項1の酸化物超電導体。
2. A composite oxide of at least one metal selected from group 2A elements and at least one metal selected from group 4A, group 4B, and rare earth elements is ABO_3 (A is Mg, Ca, Sr, One or more types selected from Ba, B is Z
2. The oxide superconductor according to claim 1, wherein the oxide superconductor is one or more selected from r, Sn, Ce, and Ti.
3.温度勾配が20℃/cm以上、結晶成長速度が20
mm/h以下の条件で融液からBi,Sr,Ca,Cu
,Oを含む結晶を一方向凝固することを特徴とする請求
項1または2の酸化物超電導体の製造方法。
3. Temperature gradient is 20℃/cm or more, crystal growth rate is 20℃/cm or more
Bi, Sr, Ca, Cu from the melt under conditions of less than mm/h
, O. The method for producing an oxide superconductor according to claim 1 or 2, characterized in that the crystal containing O is unidirectionally solidified.
JP2151607A 1990-06-12 1990-06-12 Oxide superconductor and its production Pending JPH0446053A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2151607A JPH0446053A (en) 1990-06-12 1990-06-12 Oxide superconductor and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2151607A JPH0446053A (en) 1990-06-12 1990-06-12 Oxide superconductor and its production

Publications (1)

Publication Number Publication Date
JPH0446053A true JPH0446053A (en) 1992-02-17

Family

ID=15522230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2151607A Pending JPH0446053A (en) 1990-06-12 1990-06-12 Oxide superconductor and its production

Country Status (1)

Country Link
JP (1) JPH0446053A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100415558B1 (en) * 2000-03-31 2004-01-24 삼성전기주식회사 Dielectric ceramic composition, ceramic capacitor using the composition and process of producing same
WO2020040309A1 (en) 2018-08-24 2020-02-27 昭和電工株式会社 Method for producing silicon-containing oxide-coated aluminum nitride particles, and silicon-containing oxide-coated aluminum nitride particles

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100415558B1 (en) * 2000-03-31 2004-01-24 삼성전기주식회사 Dielectric ceramic composition, ceramic capacitor using the composition and process of producing same
WO2020040309A1 (en) 2018-08-24 2020-02-27 昭和電工株式会社 Method for producing silicon-containing oxide-coated aluminum nitride particles, and silicon-containing oxide-coated aluminum nitride particles

Similar Documents

Publication Publication Date Title
EP0374263B1 (en) Oxide superconductive material and process for its production
US5084436A (en) Oriented superconductor containing a dispersed non-superconducting phase
JPH02133367A (en) Oriented polycrystalline superconductor
US5508253A (en) REBa2 Cu3 O7-y type oxide superconductive material having high critical current density and process for preparation thereof
EP0456116B1 (en) Oxide superconductor and process for its production
JP2871258B2 (en) Oxide superconductor and manufacturing method thereof
JP4113113B2 (en) Oxide superconductor joining method and oxide superconductor joined body
JPH04224111A (en) Rare earth type oxide superconductor and its production
JPH0446053A (en) Oxide superconductor and its production
JP2874278B2 (en) Oxide superconductor and manufacturing method thereof
JPH0365509A (en) Rare earth metal oxide superconductor
JPH0446054A (en) Superconductor and its production
JP2518043B2 (en) Method for producing ceramics by melt solidification method
US20160351779A1 (en) Bulk oxide superconductor and method of production of bulk oxide superconductor
JP3159764B2 (en) Manufacturing method of rare earth superconductor
JP2692614B2 (en) Oxide superconductor with new structure
JP3174847B2 (en) Superconducting whisker and manufacturing method thereof
JP4071860B2 (en) Superconducting bulk material and manufacturing method thereof
JPH02204322A (en) Oxide superconductor having novel structure
JPH0446052A (en) Oxide superconductor tape
JPH0450103A (en) Oxide superconducting material and production thereof
JPH06183730A (en) Production of oxide superconductive bulky material
Cardwell et al. Single grain (LRE)-Ba-Cu-O superconductors fabricated by top seeded melt growth in air
JPH0524825A (en) Production of rare earth-based oxide us superconductor and raw material powder therefor
JPH0446055A (en) Oxide superconducting tape material