JPH0450103A - Oxide superconducting material and production thereof - Google Patents

Oxide superconducting material and production thereof

Info

Publication number
JPH0450103A
JPH0450103A JP2158556A JP15855690A JPH0450103A JP H0450103 A JPH0450103 A JP H0450103A JP 2158556 A JP2158556 A JP 2158556A JP 15855690 A JP15855690 A JP 15855690A JP H0450103 A JPH0450103 A JP H0450103A
Authority
JP
Japan
Prior art keywords
superconductor
axboy
substrate
intermediate layer
hastelloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2158556A
Other languages
Japanese (ja)
Inventor
Toshiya Matsubara
俊哉 松原
Eiji Yanagisawa
栄治 柳沢
Junichi Shimoyama
淳一 下山
Takeshi Morimoto
剛 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2158556A priority Critical patent/JPH0450103A/en
Publication of JPH0450103A publication Critical patent/JPH0450103A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To obtain the title superconducting material with improved critical current density by forming an intermediate layer of a compound of specific composition formula on a substrate followed by laminating thereon a thick filmy form of an oxide superconductor and then melting and coagulating said thick film. CONSTITUTION:Using a CVD film-forming equipment, (A) an intermediate layer of a compound of composition formula AxBOy (A is at least one of Mg, Ca, Sr and Ba; B is at least one of Sn, Si, Ce, Ti and Zr; 1<=x<=2; 3<=y<=4) (e.g. BaSnO3) is formed on a substrate consisting of a heat-resistant alloy such as Hastelloy heated to a specified temperature. 0.5-20wt.% of AxBOy fine particles is added to calcined stock oxide powder with a specified atomic ratio capable of forming an oxide superconductor of e.g. RE-Ba-Cu-0 (RE is rare earth element such as Y or La) base followed by mixing a binder and dispersant into a paste. This paste is then made into a green tape using a doctor blade, which is then superposed on the AxBOy layer on the substrate. The system is then calcined in an O2 gas stream and further heated, melted and then coagulated, thus giving the objective oxide superconductor with high critical current density.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、中間層を有する酸化物超電導材料およびその
製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an oxide superconducting material having an intermediate layer and a method for manufacturing the same.

[従来の技術] 従来、RE−Ba−Cu−0(REはY、 La、 N
d、 Sm、 Eu、 Gd。
[Prior art] Conventionally, RE-Ba-Cu-0 (RE is Y, La, N
d, Sm, Eu, Gd.

Dy、 Ho、 Er、 Tm、 Yb、 Luからな
る群から選ばれた1種以上)系超電導体(以下希土類系
超電導体ともいう) 、 B1−5r−Ca−Cu−0
系超電導体(以下Bi系超電導体ともいう) 、Tl−
Ba−Ca−Cu−0系超電導体(以下Tl系超電導体
ともいう)などの酸化物超電導体が知られている。
one or more selected from the group consisting of Dy, Ho, Er, Tm, Yb, and Lu) based superconductor (hereinafter also referred to as rare earth superconductor), B1-5r-Ca-Cu-0
system superconductor (hereinafter also referred to as Bi system superconductor), Tl-
Oxide superconductors such as Ba-Ca-Cu-0-based superconductors (hereinafter also referred to as Tl-based superconductors) are known.

酸化物超電導体の製造方法としては、所定の組成を有す
る結晶粉末を合成した後、これを成形し焼結させる方法
がある。他にも、ゾルゲル法、溶融凝固法にて製造する
ことが知られている。
As a method for producing an oxide superconductor, there is a method in which crystal powder having a predetermined composition is synthesized, and then this is formed and sintered. In addition, it is known to manufacture by a sol-gel method and a melt solidification method.

これらの方法により製造された超電導体は、通常多結晶
体であり、それぞれの結晶粒が無秩序な方向に配列し、
かつ粒界に、超電導を示す相思外の粒界相を含んだ組織
となっている。また、粒界相には、非超電導体の結晶相
や非晶質相、さらに多くの場合気孔が含まれている。
Superconductors produced by these methods are usually polycrystalline, with individual crystal grains arranged in random directions,
Moreover, the grain boundaries contain an unexpected grain boundary phase exhibiting superconductivity. Further, the grain boundary phase includes a non-superconducting crystalline phase, an amorphous phase, and, in many cases, pores.

ところが、上記の酸化物超電導体は、結晶粒内で電流が
流れやすい方向が決まっているため、向きが異なる結晶
粒子間の粒界では電流が流れに(いという欠点を有して
いる。さらに粒界相は絶縁層として作用する。このため
、従来の多結晶の酸化物超電導体では、高い臨界電流密
度を示すものが得られていない。
However, the above-mentioned oxide superconductor has a drawback in that the direction in which current flows easily within the crystal grains is determined, and therefore current does not flow easily at grain boundaries between crystal grains with different orientations. The grain boundary phase acts as an insulating layer.For this reason, conventional polycrystalline oxide superconductors have not been able to exhibit high critical current densities.

そこで、多結晶の超電導体の上述の問題点を解決する目
的で、溶融凝固法の適用が考えられている。溶融凝固法
により製造すると、結晶粒が太き(成長すること、緻密
になり、粒同士の結合が強(なることにより臨界電流密
度が向上する。
Therefore, in order to solve the above-mentioned problems of polycrystalline superconductors, application of the melt solidification method is being considered. When manufactured by the melt solidification method, the crystal grains become thicker (grow), denser, and the bonds between the grains become stronger, which improves the critical current density.

一方、超電導体をマグネットなどの用途に応用しようと
する場合は、線状あるいはテープ状の形状に加工するこ
とが必要である。したがって、線状あるいはテープ状に
加工した酸化物超電導体粉末の成形体を、溶融凝固処理
して、緻密性と配向性を向上させる方法が試みられてい
る。この場合、強度や取扱上の問題から、酸化物自体の
みを線状あるいはテープ状の形態で溶融凝固することは
困難である。このため、線状あるいはテープ状の基体上
に超電導体の多結晶体を形成させて溶融凝固することが
考えられている。
On the other hand, when applying superconductors to applications such as magnets, it is necessary to process them into a linear or tape-like shape. Therefore, attempts have been made to improve the density and orientation of a molded body of oxide superconductor powder processed into a linear or tape shape by melting and solidifying it. In this case, it is difficult to melt and solidify only the oxide itself in the form of a line or tape due to problems in strength and handling. For this reason, it has been considered to form a polycrystalline superconductor on a linear or tape-shaped substrate and then melt and solidify it.

[発明が解決しようとする課題] このような基体としては、例えば銀や金が考えられる。[Problem to be solved by the invention] Such a substrate may be, for example, silver or gold.

しかし、溶融凝固処理をする場合、RE−Ba−Cu−
0酸化物超電導体では1000℃以上の温度で溶融する
必要があり、銀や金は溶解してしまうので使用できない
。また、ハステロイ等の耐熱合金や、テープ状のZrO
2多結晶体を基体として用いることも考えられるが、こ
の温度では希土類系に限らず超電導体の構成元素と基体
との反応が著しく、特性の良好な超電導体結晶は得られ
ない。
However, when performing melt solidification treatment, RE-Ba-Cu-
Zero oxide superconductors must be melted at a temperature of 1000° C. or higher, and silver and gold cannot be used because they will dissolve. In addition, heat-resistant alloys such as Hastelloy, tape-shaped ZrO
Although it is conceivable to use a 2-polycrystal as a substrate, at this temperature, the constituent elements of the superconductor, not just rare earth elements, react significantly with the substrate, making it impossible to obtain a superconductor crystal with good properties.

B1−5r−Ca−Cu−0系あるいはTl−Ba−C
a−Cu−0系超電導体の場合は、基体として銀あるい
は金を使用することは特性の面からは問題はないが、銀
や金の価格が高いこと、機械的強度が充分でないことな
ど実用的な面からは問題点がある。
B1-5r-Ca-Cu-0 system or Tl-Ba-C
In the case of a-Cu-0-based superconductors, using silver or gold as a substrate has no problems in terms of properties, but it is not practical due to the high price of silver and gold and insufficient mechanical strength. There are problems from a practical standpoint.

[課題を解決するための手段] そこで本発明者らは、耐熱合金などの基体上に超電導体
の多結晶体を形成したのち溶融凝固処理して配向性で緻
密な組織を得ることを目的として種々検討した結果、超
電導体構成元素との反応性が低く溶融温度で安定な特定
の化合物を中間層として用いることにより前記目的を達
成することを見いだした。
[Means for Solving the Problems] Therefore, the inventors of the present invention aimed to form a polycrystalline superconductor on a substrate such as a heat-resistant alloy and then melt and solidify it to obtain an oriented and dense structure. As a result of various studies, it has been found that the above object can be achieved by using a specific compound as the intermediate layer, which has low reactivity with the superconductor constituent elements and is stable at the melting temperature.

本発明は、基体上に、AxBOy(Aは、Mg、 Ca
、Sr、 Baからなる群から選ばれた1種以上、Bは
、Sn、Si、 Ce、 Ti、 Zrからなる群から
選ばれた1種以上、 1≦X≦2.3≦y≦4)の組成
式で表される化合物の中間層を形成し、さらに酸化物超
電導体層を形成したことを特徴とする酸化物超電導材料
を提供するものである。
In the present invention, AxBOy (A is Mg, Ca
, Sr, and Ba; B is one or more selected from the group consisting of Sn, Si, Ce, Ti, and Zr; 1≦X≦2.3≦y≦4) The present invention provides an oxide superconducting material characterized in that an intermediate layer of a compound represented by the composition formula is formed, and an oxide superconductor layer is further formed.

本発明において、A、BOyとしては上記の元素の組合
せのものがいずれも好適に使用できるが、酸化物超電導
体として、希土類系超電導体を採用する場合は、13a
snoa、BaZr03、BaTiO3、Bace’s
、Ba2SiO4などBaを含むものが、超電導体の構
成元素の一つであるので元素の置換反応が生じても実質
的に超電導体内に他のアルカリ土類元素が混入しないの
で超電導特性に悪影響を与えないので好ましい。
In the present invention, any combination of the above elements can be suitably used as A and BOy, but when a rare earth superconductor is used as the oxide superconductor, 13a
snoa, BaZr03, BaTiO3, Bace's
, Ba2SiO4 and other elements containing Ba are one of the constituent elements of the superconductor, so even if an element substitution reaction occurs, other alkaline earth elements do not substantially mix into the superconductor, so it does not adversely affect the superconducting properties. It is preferable because there is no.

本発明の超電導材料は、次のような方法で製造するのが
好ましい。先ず、基体上にA、BOyの組成式で表わさ
れる化合物の中間層を形成し、これに酸化物超電導体の
厚膜状成形体を積層する。次に、厚膜を溶融凝固すると
厚膜が緻密化しかつ超電導体結晶の配向性が向上する。
The superconducting material of the present invention is preferably manufactured by the following method. First, an intermediate layer of a compound represented by the compositional formulas A and BOy is formed on a substrate, and a thick film shaped body of an oxide superconductor is laminated thereon. Next, when the thick film is melted and solidified, the thick film becomes dense and the orientation of the superconductor crystals improves.

これにより、臨界電流密度の高い超電導体が得られる。As a result, a superconductor with a high critical current density can be obtained.

溶融凝固を温度勾配下に行う場合は、緻密性配向性が更
に増大するのでより好ましい。
It is more preferable to perform the melt solidification under a temperature gradient because the compactness and orientation further increase.

厚膜状成形体は、超電導体組成を有する原料粉末を、ド
クターブレード法などで成形することによって得られる
。あるいは基体上に直接スクリーン印刷法などで厚膜を
形成しても良い。
The thick film shaped body is obtained by molding raw material powder having a superconducting composition using a doctor blade method or the like. Alternatively, a thick film may be formed directly on the substrate by screen printing or the like.

あるいは、AxBOyで内面を被覆した金属管中に超電
導体の原料粉を充填し、これを熱処理することによって
も製造することができる。熱処理の前および/または後
で金属管をプレスすることにより超電導体の配向性を向
上させることができる。
Alternatively, it can be manufactured by filling a metal tube whose inner surface is coated with AxBOy with superconductor raw material powder and heat-treating this. The orientation of the superconductor can be improved by pressing the metal tube before and/or after heat treatment.

基体の材質としては種々のものが使用できるが、各種の
耐熱合金、セラミックスを使用することが好ましい。
Although various materials can be used for the substrate, it is preferable to use various heat-resistant alloys and ceramics.

中間層としてはAxBOy層のみでも構わないが、さら
に貴金属よりなる第2の中間層を設けると超電導体層を
溶融凝固する際に超電導体層の配向性を高めるので好ま
しい。
Although only the AxBOy layer may be used as the intermediate layer, it is preferable to further provide a second intermediate layer made of a noble metal because this improves the orientation of the superconductor layer when melting and solidifying the superconductor layer.

超電導体としては、超電導を示す結晶相の内部に非超電
導体の粒子を含んだ組織を有する場合は、この粒子がビ
ン止め中心として作用するので、磁場中においても高い
臨界電流密度を示すことができ好ましい。このような非
超電導体の粒子としては、超電導体結晶との反応性が少
ない点で、本発明中間層と同様に、A、BOyが好まし
い。AxBOyの粒子は、溶融凝固処理の前に酸化物超
電導体の厚膜中に混合しておく方法により、超電導体結
晶に導入することができる。
When a superconductor has a structure containing non-superconductor particles inside a crystalline phase that exhibits superconductivity, these particles act as a center of binding, so it can exhibit a high critical current density even in a magnetic field. It's good to be able to do it. As such non-superconductor particles, A and BOy are preferable, as in the intermediate layer of the present invention, since they have little reactivity with superconductor crystals. The AxBOy particles can be introduced into the superconductor crystal by mixing them into the thick film of the oxide superconductor before the melt-solidification process.

AxBOyの添加料は、超電導体に対して0.5〜20
wt%が好ましい。添加料が0.5 wt%に満たない
場合は、添加の効果が表われないので好ましくない。添
加量が20wt%を超える場合は、材料中の一部にA、
BOy相が偏析してしまい超電導体の不連続を生じるの
で好ましくない。さらに好ましいAxBOyの添加量は
2〜10wt%である。
The additive of AxBOy is 0.5 to 20 to the superconductor.
wt% is preferred. If the amount of the additive is less than 0.5 wt%, the effect of the addition will not be apparent, which is not preferable. When the amount added exceeds 20wt%, some of the materials contain A,
This is not preferable because the BOy phase segregates and causes discontinuity in the superconductor. A more preferable addition amount of AxBOy is 2 to 10 wt%.

超電導相とAxBOyの混合物を超電導相の部分溶融温
度以上に加熱した後、これを冷却して凝固した場合、仕
込時に添加した粒径な保った状態でAxBOy結晶が超
電導相結晶中に取り込まれる。即ち、細かい粒子だけに
選粒した上記A、BOうを用いれば、これと同じ大きさ
の非超電導物質を超電導相結晶中に分散させることがで
きるわけでビン止め力の強化という観点から望ましい。
When a mixture of the superconducting phase and AxBOy is heated above the partial melting temperature of the superconducting phase and then cooled and solidified, the AxBOy crystals are incorporated into the superconducting phase crystals while maintaining the particle size added at the time of preparation. That is, if the above-mentioned A and BO grains selected to have only fine particles are used, a non-superconducting substance of the same size can be dispersed in the superconducting phase crystal, which is desirable from the viewpoint of strengthening the bottle-holding force.

特に0.5μm以下の粒子だけを用いた場合は、臨界電
流密度は飛躍的に増大し磁場を印加してもあまり低下し
ない。
In particular, when only particles of 0.5 μm or less are used, the critical current density increases dramatically and does not decrease much even when a magnetic field is applied.

本発明において、酸化物超電導体は特に限定されず希土
類系、ビスマス系、タリウム系等種々のものが、好適に
適用できる。
In the present invention, the oxide superconductor is not particularly limited, and various types such as rare earth-based, bismuth-based, thallium-based, etc. can be suitably applied.

希土類系超電導体の場合は、溶融凝固した際非超電導体
のREJaCuOs結晶(以下211相という。)が凝
固物の組織中に存在してビン止め効果を発現する。超電
導体厚膜の組成として、超電導を示す結晶の組成に対し
て211相に富んだ組成を採用する場合は、凝固物中の
211相の量が増大し、ビン止め効果が増大するので好
ましい。211相に冨んだ組成から希土類系超電導体を
得る場合は、超電導を示すREBaaCusO,結晶の
配向性も向上するので好ましい。希土類系超電導体にお
いて、希土類元素を2種類以上含む場合は、211相の
析出物の粒径な0.5〜数μmと小さくさせることがで
き、臨界電流密度の大きな材料が得られるのでさらに好
ましい。
In the case of a rare earth superconductor, when it is melted and solidified, non-superconducting REJaCuOs crystals (hereinafter referred to as 211 phase) are present in the structure of the solidified material and exhibit a bottling effect. It is preferable to employ a composition rich in 211 phase as the composition of the superconductor thick film compared to the composition of crystals exhibiting superconductivity, since this increases the amount of 211 phase in the solidified material and increases the bottling effect. When obtaining a rare earth superconductor from a composition rich in the 211 phase, it is preferable because the orientation of REBaaCusO crystals exhibiting superconductivity is also improved. When the rare earth superconductor contains two or more types of rare earth elements, the particle size of the 211 phase precipitates can be reduced to 0.5 to several μm, which is more preferable since a material with a large critical current density can be obtained. .

[実施例] 実施例1 厚さ1mmのハステロイを70mmX 5mmに切り呂
し図2に示すCVD成膜装置を用い、原料にBaのジピ
バロイルメタン錯体とテトラフェニルスズを使用してハ
ステロイを900℃に加熱しながら成膜し、ハステロイ
基板上に厚さ0.2μmのBa5nOs層を形成した。
[Example] Example 1 Hastelloy with a thickness of 1 mm was cut into a size of 70 mm x 5 mm, and using the CVD film forming apparatus shown in Fig. 2, Hastelloy was produced using dipivaloylmethane complex of Ba and tetraphenyltin as raw materials. A Ba5nOs layer with a thickness of 0.2 μm was formed on the Hastelloy substrate by forming a film while heating to 900° C.

一方、Y:Ho:Ba:Cuの原子比が3:4:8:1
1となるような酸化物の仮焼粉末を作り、これに平均粒
径0,5μmのBa5nOsを5wt%加え混合した後
、アクリル系バインダー、界面活性剤(分散剤)、トリ
クロルエチレンを加えペーストを得た。該ペーストをド
クターブレードを用いポリエステルフィルム上に幅10
0mm厚さ50μmの形状にキャストしてグリーンテー
プを得た。グリーンテープを70mmX 5mmに切り
出し、上記基体のBaSnO3を形成した面に重ね、酸
素気流中において930℃で10時間焼成を行った。
On the other hand, the atomic ratio of Y:Ho:Ba:Cu is 3:4:8:1
A calcined powder of oxide such as No. 1 is prepared, 5 wt% of Ba5nOs with an average particle size of 0.5 μm is added and mixed, and then an acrylic binder, a surfactant (dispersant), and trichlorethylene are added to form a paste. Obtained. Spread the paste onto a polyester film using a doctor blade in a width of 10 mm.
A green tape was obtained by casting into a shape with a thickness of 0 mm and a thickness of 50 μm. The green tape was cut into a size of 70 mm x 5 mm, placed on the surface of the above substrate on which BaSnO3 was formed, and fired at 930° C. for 10 hours in an oxygen stream.

次に、このテープ状の焼結体の一端を固定し酸素気流下
で最高温度部分が1080℃で50℃/cmの温度勾配
を有する電気炉中を用いて2mm/hの速度でテープの
長さ方向に移動させた。
Next, one end of this tape-shaped sintered body was fixed, and the length of the tape was heated at a speed of 2 mm/h in an electric furnace with a temperature gradient of 50 °C/cm and the highest temperature part was 1080 °C under an oxygen stream. I moved it in the opposite direction.

この結果、ハステロイと超電導体との反応は認められず
、得られた超電導体層の厚さは20μmであった。さら
に酸素雰囲気中で700℃まで加熱し15℃/hで徐冷
し、450℃で40時間保持した。
As a result, no reaction between Hastelloy and the superconductor was observed, and the thickness of the obtained superconductor layer was 20 μm. Further, it was heated to 700°C in an oxygen atmosphere, slowly cooled at a rate of 15°C/h, and held at 450°C for 40 hours.

このようにして得た試料を走査型電子顕微鏡およびX線
元素分析装置を用いて観察したところ第1図に示したよ
うな板状の超電導体結晶(123相)の結晶粒子が層状
に重なり合い、その中に粒径0,5μm程度のBa5n
Os粒子と211相の非超電導体結晶粒子が島状に分散
した組織を有していることが確認された。試料の全体に
わたり上記のような良好な組織が認められBa5nOs
の析出は認められなかった。
When the sample thus obtained was observed using a scanning electron microscope and an X-ray elemental analyzer, it was found that the crystal grains of the plate-shaped superconductor crystal (123 phase) overlapped in a layered manner as shown in Figure 1. In it, Ba5n with a particle size of about 0.5 μm
It was confirmed that the sample had a structure in which Os particles and 211 phase non-superconductor crystal particles were dispersed in an island shape. The above-mentioned good structure was observed throughout the sample, indicating that Ba5nOs
No precipitation was observed.

上記のようにして得た試料から20mmx 2mmの大
きさに試料を切り出し、直流四端子法により臨界温度お
よび、77に5テスラにおける臨界電流密度を測定した
結果、それぞれ、92K、6200A/cm2であった
A sample with a size of 20 mm x 2 mm was cut from the sample obtained as described above, and the critical temperature and critical current density at 5 Tesla in 1977 were measured using the DC four-terminal method, and the results were 92 K and 6200 A/cm2, respectively. Ta.

比較例1 ハステロイ上にBaSnO3の中間層を形成せずに直接
グリーンテープを重ねた以外は実施例1と同様にして試
料を作製したところ、ハステロイと超電導体が反応し図
1に示すような組織は形成できなかった。
Comparative Example 1 A sample was prepared in the same manner as in Example 1 except that the green tape was directly layered on Hastelloy without forming an intermediate layer of BaSnO3. When the sample was prepared in the same manner as in Example 1, Hastelloy and the superconductor reacted and a structure as shown in Figure 1 was formed. could not be formed.

実施例2 表1に示したR1.R2について、R1:R2:Ba:
Cuの原子比が3+4:8:11となるような酸化物の
仮焼粉末を作り、これに平均粒径0.3μmに選粒した
Ba5nO,を表1に示すように添加し、あるいは添加
せずして実施例1と同様にグリーンテープを得た。Ba
5nOsを添加する場合は、添加量を5wt%とした。
Example 2 R1. shown in Table 1. Regarding R2, R1:R2:Ba:
A calcined powder of oxide with a Cu atomic ratio of 3+4:8:11 was prepared, and Ba5nO, which had been selected to have an average particle size of 0.3 μm, was added or not added as shown in Table 1. A green tape was obtained in the same manner as in Example 1. Ba
When adding 5 nOs, the amount added was 5 wt%.

このグリーンテープを、表1に示す組成のAxBOy中
間層を実施例1と同様にして形成したハステロイの中間
層を形成した面に重ねた。そのあとさらに実施例1と同
様な熱処理を行って超電導体を得た。
This green tape was stacked on the surface on which the AxBOy intermediate layer having the composition shown in Table 1 was formed in the same manner as in Example 1, and on which the intermediate layer of Hastelloy was formed. Thereafter, the same heat treatment as in Example 1 was performed to obtain a superconductor.

実施例1と同様にして測定した臨界温度と、77に5テ
スラでの臨界電流密度を表1に示す。
Table 1 shows the critical temperature measured in the same manner as in Example 1 and the critical current density at 775 Tesla.

表  1 比較例2 ハステロイ上にAxBOyの中間層を形成せずに直接グ
リーンテープを重ねた以外は実施例2と同様にして試料
を作製したところ、いずれもハステロイと超電導体が反
応し図1に示すような組織は形成できなかった。
Table 1 Comparative Example 2 Samples were prepared in the same manner as in Example 2 except that green tape was directly layered on Hastelloy without forming an intermediate layer of AxBOy. It was not possible to form the type of organization shown.

実施例3 厚さ1mmのハステロイを10mmX 50mmの大き
さに切り出し、図2に示すCVD成膜装置を用い、原料
にテトラフェニルスズ、Srジピバロイルメタン錯体を
用いて、ハステロイを950℃に加熱しながらハステロ
イ基板上に厚さ0.2μmの5rSn03層を形成した
Example 3 Hastelloy with a thickness of 1 mm was cut into a size of 10 mm x 50 mm, and using the CVD film forming apparatus shown in Fig. 2, using tetraphenyltin and Sr dipivaloylmethane complex as raw materials, Hastelloy was heated to 950 ° C. A 0.2 μm thick 5rSn03 layer was formed on the Hastelloy substrate while heating.

Bi:Sr:Ca:Cuの原子比が2+2:1:2とな
るような酸化物の仮焼粉末を作り、さらに平均粒径0.
5gmの5rSnOaを5wt%加え混合した。
A calcined oxide powder with an atomic ratio of Bi:Sr:Ca:Cu of 2+2:1:2 is prepared, and the average particle size is 0.
5 wt % of 5 gm of 5rSnOa was added and mixed.

その粉末をオクチルアルコールと混合した後これを上記
ハステロイ上にスクリーン印刷し乾燥した。これを89
0℃で20分溶融し870℃まで3時間かけて冷却した
後、室温まで徐冷し、さらに500°Cに加熱し酸素分
圧0.001気圧の雰囲気中で10時間保持し急冷した
The powder was mixed with octyl alcohol and then screen printed onto the Hastelloy and dried. This is 89
After melting at 0° C. for 20 minutes and cooling to 870° C. over 3 hours, it was slowly cooled to room temperature, further heated to 500° C., and kept in an atmosphere with an oxygen partial pressure of 0.001 atm for 10 hours for rapid cooling.

このようにして得た試料の断面を走査型電子顕微鏡およ
びX線元素分析装置を用いて観察したところ第1図に示
したような板状の超電導体結晶(2212相)の結晶粒
子が層状に重なり合い、その中に粒径0.5μm程度の
非超電導体(SrSnOa)粒子が島状に分散した組織
を有していることが確認された。試料の全体にわたり上
記のような良好な組織が認められた。
When the cross section of the sample thus obtained was observed using a scanning electron microscope and an X-ray elemental analyzer, it was found that the crystal particles of the plate-shaped superconductor crystal (2212 phase) were layered as shown in Figure 1. It was confirmed that the structure had a structure in which non-superconductor (SrSnOa) particles with a particle size of about 0.5 μm were dispersed in an island shape. A good structure as described above was observed throughout the sample.

実施例1と同様にして測定したところ、この試料の臨界
温度は90K、77に2テスラでの臨界電流密度Sは4
500A/cm2であった。
When measured in the same manner as in Example 1, the critical temperature of this sample was 90 K, and the critical current density S at 77 and 2 Tesla was 4.
It was 500A/cm2.

実施例4 ハステロイ上に表3に示すようなAxBOy層を形成し
た以外は実施例3と同様にして超電導材料を得、超電導
特性を測定した結果を表2に示す。
Example 4 A superconducting material was obtained in the same manner as in Example 3 except that an AxBOy layer as shown in Table 3 was formed on Hastelloy, and the results of measuring the superconducting properties are shown in Table 2.

表  2 比較例3 ハステロイ上に中間層を形成させずに直接超電導層を形
成させた以外は実施例3と同様にして試料を作製したと
ころ、臨界温度は77に以下であった・ 実施例5 厚さ1 mmのハステロイを10mmX 50mmの大
きさに切り出し、図2に示すCVD成膜装置を用い、原
料にテトラフェニルスズ、Baジピバロイルメタン錯体
を用いて、ハステロイを950℃に加熱しながらハステ
ロイ基板上に厚さ0.2μmのBaSnO3層を形成し
た。
Table 2 Comparative Example 3 A sample was prepared in the same manner as in Example 3 except that a superconducting layer was directly formed on Hastelloy without forming an intermediate layer, and the critical temperature was 77 or less. Example 5 Hastelloy with a thickness of 1 mm was cut into a size of 10 mm x 50 mm, and using the CVD film forming apparatus shown in Fig. 2, the Hastelloy was heated to 950 °C using tetraphenyltin and Ba dipivaloylmethane complex as raw materials. Meanwhile, a 0.2 μm thick BaSnO3 layer was formed on the Hastelloy substrate.

Ba:Ca:Cuの原子比が2:3:4となるようにB
aCO3,CaC0a、 CuOを秤量、混合し、これ
を電気炉を用いて空気中880℃で10時間焼成した。
B such that the atomic ratio of Ba:Ca:Cu is 2:3:4.
aCO3, CaC0a, and CuO were weighed and mixed, and the mixture was fired in air at 880°C for 10 hours using an electric furnace.

この焼成した粉末にTl□03をTl:Ba:Ca:C
uの原子比が2:2:3:4となるように加え、さらに
平均粒径0.5μmのBa5nOa粉末を5wt%加え
混合した。
Tl□03 is added to this fired powder as Tl:Ba:Ca:C
U was added so that the atomic ratio was 2:2:3:4, and 5 wt % of Ba5nOa powder having an average particle size of 0.5 μm was added and mixed.

その粉末をオクチルアルコールと混合した後これを前記
のハステロイのBaSnOs層を形成した面にスクリー
ン印刷し乾燥した。これを内径16mmφのアルミナ管
中に封入し、950℃で5分溶融し室温まで急冷した後
、さらに890℃まで加熱し8時間保持し急冷した。
The powder was mixed with octyl alcohol, then screen printed on the surface of the Hastelloy on which the BaSnOs layer was formed and dried. This was sealed in an alumina tube with an inner diameter of 16 mmφ, melted at 950° C. for 5 minutes, rapidly cooled to room temperature, and then further heated to 890° C. and held for 8 hours for rapid cooling.

このようにして得た凝固テープの断面を走査型電子顕微
鏡およびX線元素分析装置を用いて観察したところ第1
図に示したような板状の超電導体結晶(2223相)の
結晶粒子が層状に重なり合い、その中に粒径0.5μm
程度の非超電導体(BaSnOs)粒子が島状に分散し
た組織を有していることが確認された。試料の全体にわ
たり上記のような良好な組織が認められた。
The cross section of the coagulated tape thus obtained was observed using a scanning electron microscope and an X-ray elemental analyzer.
As shown in the figure, crystal grains of plate-shaped superconductor crystals (2223 phase) overlap in a layered manner, and there are particles with a grain size of 0.5 μm in them.
It was confirmed that the non-superconductor (BaSnOs) particles had a structure in which particles of a non-superconductor (BaSnOs) were dispersed in the form of islands. A good structure as described above was observed throughout the sample.

実施例1と同様にして測定したところ、この超電導体の
臨界温度は123にで、77に2テスラでの臨界電流密
度は7200A/cm2であった。
When measured in the same manner as in Example 1, the critical temperature of this superconductor was 123, and the critical current density at 77.2 Tesla was 7200 A/cm2.

実施例6 ハステロイ上に表2に示すようなAxBOy層を形成し
た以外は実施例5と同様にして超電導材料を得、超電導
特性を測定した結果を表3に示す。
Example 6 A superconducting material was obtained in the same manner as in Example 5 except that an AxBOy layer as shown in Table 2 was formed on Hastelloy, and the superconducting properties were measured. Table 3 shows the results.

表  3 比較例4 ハステロイ上に中間層を形成させずに直接超電導層を形
成させた以外は実施例4と同様にして試料を作製したと
ころ、臨界温度は77に以下であった。
Table 3 Comparative Example 4 A sample was prepared in the same manner as in Example 4, except that a superconducting layer was directly formed on Hastelloy without forming an intermediate layer, and the critical temperature was 77 or lower.

[発明の効果コ 本発明の超電導材料は、超電導体との反応性が極めて低
い中間層を介して超電導体層を基体上に作製することに
より、貴金属以外の基体を用いても特性の劣化がない。
[Effects of the Invention] The superconducting material of the present invention has a superconductor layer formed on a substrate via an intermediate layer having extremely low reactivity with the superconductor, so that the properties of the superconducting material do not deteriorate even when a substrate other than noble metals is used. do not have.

本発明の超電導体を溶融凝固処理により製造する場合は
、超電導体と基体との反応を防止して、緻密で配向性の
高い、臨界電流密度等の特性の良好な超電導体が得られ
る。
When the superconductor of the present invention is produced by melt-solidification treatment, reaction between the superconductor and the substrate is prevented, and a dense, highly oriented superconductor with good properties such as critical current density can be obtained.

【図面の簡単な説明】 図1は、実施例で得られた超電導体の組織を示す模式図
である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram showing the structure of a superconductor obtained in an example.

Claims (1)

【特許請求の範囲】 1、基体上に、A_xBO_y(Aは、Mg、Ca、S
r、Baからなる群から選ばれた1種以上、Bは、Sn
、Si、Ce、Ti、Zrからなる群から選ばれた1種
以上、1≦x≦2、3≦y≦4)の組成式で表される化
合物の中間層を形成し、さらに酸化物超電導体層を形成
したことを特徴とする酸化物超電導材料。 2、基体上に、A_xBO_yの組成式で表わされる化
合物の中間層を形成し、酸化物超電導体の厚膜状成形体
を積層したあと、厚膜を溶融凝固することを特徴とする
請求項1の酸化物超電導体の製造方法。
[Claims] 1. A_xBO_y (A is Mg, Ca, S
r, one or more selected from the group consisting of Ba, B is Sn
, Si, Ce, Ti, and Zr, forming an intermediate layer of a compound represented by a composition formula of 1≦x≦2, 3≦y≦4), and further comprising an oxide superconductor. An oxide superconducting material characterized by forming a body layer. 2. Claim 1, characterized in that an intermediate layer of a compound represented by the composition formula A_xBO_y is formed on the substrate, a thick film shaped body of an oxide superconductor is laminated, and then the thick film is melted and solidified. A method for producing an oxide superconductor.
JP2158556A 1990-06-19 1990-06-19 Oxide superconducting material and production thereof Pending JPH0450103A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2158556A JPH0450103A (en) 1990-06-19 1990-06-19 Oxide superconducting material and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2158556A JPH0450103A (en) 1990-06-19 1990-06-19 Oxide superconducting material and production thereof

Publications (1)

Publication Number Publication Date
JPH0450103A true JPH0450103A (en) 1992-02-19

Family

ID=15674288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2158556A Pending JPH0450103A (en) 1990-06-19 1990-06-19 Oxide superconducting material and production thereof

Country Status (1)

Country Link
JP (1) JPH0450103A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000063926A1 (en) * 1999-04-15 2000-10-26 Fujikura Ltd. Oxide superconductor, method of manufacture thereof, and base material of oxide superconductor
JP2007257872A (en) * 2006-03-20 2007-10-04 Sharp Corp Composite base material for film-forming ybco-based high-temperature superconductor, and manufacturing method of ybco-based high-temperature superconductive film
JP2011243528A (en) * 2010-05-21 2011-12-01 Furukawa Electric Co Ltd:The Tape base material for superconducting wire rod and superconducting wire rod

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000063926A1 (en) * 1999-04-15 2000-10-26 Fujikura Ltd. Oxide superconductor, method of manufacture thereof, and base material of oxide superconductor
US6743533B1 (en) 1999-04-15 2004-06-01 Fujikura Ltd. Oxide superconductor, manufacturing method thereof, and base substrate therefor
JP2007257872A (en) * 2006-03-20 2007-10-04 Sharp Corp Composite base material for film-forming ybco-based high-temperature superconductor, and manufacturing method of ybco-based high-temperature superconductive film
JP2011243528A (en) * 2010-05-21 2011-12-01 Furukawa Electric Co Ltd:The Tape base material for superconducting wire rod and superconducting wire rod

Similar Documents

Publication Publication Date Title
JP2707499B2 (en) Manufacturing method of oxide superconductor
EP0456116B1 (en) Oxide superconductor and process for its production
EP0356722B1 (en) Oxide superconductor and method of producing the same
JP4113113B2 (en) Oxide superconductor joining method and oxide superconductor joined body
JPH0450103A (en) Oxide superconducting material and production thereof
JP3219563B2 (en) Metal oxide and method for producing the same
JP3979609B2 (en) Method for producing Tl-based oxide superconductor
JP2501281B2 (en) Method for producing superconductor with high critical current density
JP3889139B2 (en) Oxide superconductor containing silver and method for producing the same
JPH0791057B2 (en) Rare earth oxide superconductor
JP3242350B2 (en) Oxide superconductor and manufacturing method thereof
JPH0416511A (en) Oxide superconductor and its production
JP3115915B2 (en) Method for producing rare earth oxide superconductor
JPH04124032A (en) Superconductor and its synthesis
JP4071860B2 (en) Superconducting bulk material and manufacturing method thereof
JPH05319827A (en) Bismuth-containing oxide superconductor and its production
JP2590370B2 (en) Superconducting material and manufacturing method thereof
JPH10510799A (en) Improved superconductor
JP2525842B2 (en) Superconducting wire and its manufacturing method
JPH0238359A (en) Production of superconductor
JPH03112810A (en) Production of oxide superconducting film
JP2971504B2 (en) Method for producing Bi-based oxide superconductor
JPH0446053A (en) Oxide superconductor and its production
JPH0446052A (en) Oxide superconductor tape
EP0436723A1 (en) Oxide superconductor and method of producing the same