JPH01148794A - Production of oxide superconductor crystal - Google Patents

Production of oxide superconductor crystal

Info

Publication number
JPH01148794A
JPH01148794A JP62304631A JP30463187A JPH01148794A JP H01148794 A JPH01148794 A JP H01148794A JP 62304631 A JP62304631 A JP 62304631A JP 30463187 A JP30463187 A JP 30463187A JP H01148794 A JPH01148794 A JP H01148794A
Authority
JP
Japan
Prior art keywords
oxide superconductor
flux
crystal
superconductor crystal
crystals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62304631A
Other languages
Japanese (ja)
Inventor
Katsuyoshi Fukuda
福田 勝義
Kazutaka Terajima
一高 寺嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62304631A priority Critical patent/JPH01148794A/en
Priority to US07/205,177 priority patent/US5162297A/en
Publication of JPH01148794A publication Critical patent/JPH01148794A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To grow a multicomponent oxide superconductor crystal of high quality at a low temp. by adopting a liq. phase growth method using two kinds of oxides including a transition metal oxide as a flux. CONSTITUTION:A multicomponent oxide superconductor crystal is grown by a liq. phase growth method using two kinds of oxides including a transition metal oxide as a flux. The multicomponent oxide superconductor may be represented by a general formula ABa2Cu3O7-delta(where A is Y, Yb, Ho, Dy, Eu, Er, Tm or Lu). The flux may be a liq. mixture of PbO-B2O or CuO-V2O5.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、多元系酸化物超電導体結晶の製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to a method for producing a multi-component oxide superconductor crystal.

(従来の技術) 最近、液体窒素温度程度の高温で超電導を示す高温超電
導体材料として、ペロブスカイト構造の多元系酸化物超
電導体が注目されている。これまでに報告されている酸
化物超電導体の代表的なものは、YBa  Cu  O
や2 37−δ (La、Ba)  CuO等である。これら4−y の酸化物超電導材料は、焼結法、蒸着法、スパッタ法等
により得られている。
(Prior Art) Recently, multi-component oxide superconductors with a perovskite structure have attracted attention as high-temperature superconductor materials that exhibit superconductivity at temperatures as high as liquid nitrogen temperatures. Typical oxide superconductors reported so far are YBa Cu O
and 2 37-δ (La, Ba) CuO. These 4-y oxide superconducting materials are obtained by sintering, vapor deposition, sputtering, or the like.

今後これらの酸化物超電導体を具体的な素子に応用する
に当たって、超電導転移温度を高く安定に保ち、また大
きい臨界電流を得、素子特性の均一性、信頼性を優れた
ものとするためには、ある程度大きい面積の単結晶基板
或いは単結晶層として実現することが強く望まれる。こ
の種の酸化物超電導体の製造には、誘電体酸化物単結晶
の場合と同様にチョクラルスキー法(CZ法)を用いる
ことが考えられる。しかし、結晶材料融液を用いるCZ
法では非常に高い温度での結晶成長になり、酸化物超電
導体は相転移を生じるため、所望の超電導体を得ること
ができない。
When applying these oxide superconductors to specific devices in the future, it is necessary to maintain a high and stable superconducting transition temperature, obtain a large critical current, and achieve excellent uniformity and reliability of device characteristics. It is strongly desired to realize this as a single-crystal substrate or a single-crystal layer with a relatively large area. For the production of this type of oxide superconductor, it is possible to use the Czochralski method (CZ method) as in the case of dielectric oxide single crystals. However, CZ using a crystalline material melt
This method requires crystal growth at extremely high temperatures, which causes a phase transition in the oxide superconductor, making it impossible to obtain the desired superconductor.

(発明が解決しようとする問題点) 以上のように、多元系酸化物超電導材料の素子応用に当
たっては、その単結晶化が望まれるが、これまでそのよ
うな酸化物単結晶を形成する有効な方法は提案されてい
ない。
(Problems to be Solved by the Invention) As described above, when applying multi-component oxide superconducting materials to devices, it is desirable to make them into single crystals, but so far there has been no effective way to form such oxide single crystals. No method has been proposed.

本発明は−に記した点に鑑み、多元系酸化物超電導体の
結晶の製造方法を提供することを目的とする。
In view of the points mentioned in -, an object of the present invention is to provide a method for producing a crystal of a multi-component oxide superconductor.

[発明の構成] (問題点を解決するための手段) 本発明の方法は、遷移金属を含む2元系酸化物をフラッ
クスとして用いた液相成長法(キポラス法)により多元
系酸化物超電導体結晶を製造することを特徴とする。
[Structure of the Invention] (Means for Solving the Problems) The method of the present invention is to produce a multi-component oxide superconductor by a liquid phase growth method (Kiporas method) using a binary oxide containing a transition metal as a flux. It is characterized by producing crystals.

具体的に本発明で用いるフラックスとしては、Pb 0
−B2o3系混合液中Cu0−V205系混合液がある
Specifically, the flux used in the present invention is Pb 0
-There is a Cu0-V205 based mixed solution in the B2o3 based mixed solution.

(作用) 本発明によれば、キポラス法を用いることにより、低い
温度で多元系酸化物超電導体結晶の成長が可能である。
(Function) According to the present invention, multi-component oxide superconductor crystals can be grown at low temperatures by using the Kiporus method.

例えば、Pb 0−B2o3系フラックスを用いると、
493〜800℃の7H度で結晶成長が可能であり、C
u0−V205系フラックスを用いると、630〜72
0℃で結晶成長が可能である。この結果本発明によれば
、超電導体の相転移が効果的に防止され、良好な多元系
酸化物超電導体結晶を得ることができる。
For example, if Pb 0-B2o3-based flux is used,
Crystal growth is possible at 493-800°C, 7H degree, and C
When u0-V205 series flux is used, 630-72
Crystal growth is possible at 0°C. As a result, according to the present invention, phase transition of the superconductor is effectively prevented, and a good multi-component oxide superconductor crystal can be obtained.

(実施例) 以下、本発明の詳細な説明する。実施例では、YBa 
 Cu  O結晶の製造法を説明す2 37−δ る。
(Example) The present invention will be described in detail below. In the example, YBa
A method for producing CuO crystals will be explained below.

第1図は、その結晶の引上げ装置を示す。第1図におい
て1は、アルミナシールド材であり、この中に白金ヒー
タ2が配置され、その中心部に白金ルツボ3が支持台4
上に配置されている。支持台4は炉外部とつながる支持
棒5と一体化され、回転可能になっている。6は熱電対
である。ルツボ3内には、PbOB2O3混合液(B2
03が50〜70モル%)からなるフラックスを形成し
、これに、Y203 、Ba O,Cu Oを溶解した
溶液7を形成する。
FIG. 1 shows the crystal pulling apparatus. In FIG. 1, reference numeral 1 denotes an alumina shield material, in which a platinum heater 2 is arranged, and a platinum crucible 3 is placed in the center of the material on a support base 4.
placed above. The support stand 4 is integrated with a support rod 5 connected to the outside of the furnace, and is rotatable. 6 is a thermocouple. Inside the crucible 3 is a PbOB2O3 mixed solution (B2
A solution 7 is formed by dissolving Y203, BaO, and CuO in this flux.

第2図は、Pb 0−B2o3の相図であり、この系で
適当なモル比を選ぶことにより、900℃以下で液11
状態が得られる。従ってこの系をフラックスとして用い
ることにより、比較的低温でY−Ba −Cu −0系
結晶を引上げるための溶液を得ることが可能である。
Figure 2 is a phase diagram of Pb0-B2o3, and by selecting an appropriate molar ratio in this system, the liquid 11
The state is obtained. Therefore, by using this system as a flux, it is possible to obtain a solution for pulling Y-Ba-Cu-0 system crystals at a relatively low temperature.

このよ・フにしてルツボ3内に所望の溶液7を形成し、
これを900〜1000℃で約10時間放置した後、溶
液温度を下げて約800〜900℃に設定する。そして
この溶液7に引上げ軸8の先端に取付けられたYCu 
O’ド結晶からなる種子結晶を浸し、十分にこの種子結
晶を馴染ませる。その後、0,1〜0.5℃/hという
小さい冷却速度で結晶9を引上げる。この引上げに際し
、溶液7の表面にはガス導入バイブ12を介して酸素ガ
スを100m1!/lll1n程度供給する。10は内
部観察用光入射窓であり、11は内部観察窓である。
In this way, a desired solution 7 is formed in the crucible 3,
After leaving this at 900-1000°C for about 10 hours, the solution temperature is lowered and set at about 800-900°C. Then, the YCu plate attached to the tip of the pulling shaft 8 is added to this solution 7.
Seed crystals made of O' do crystals are immersed in the solution and thoroughly absorbed. Thereafter, the crystal 9 is pulled up at a low cooling rate of 0.1 to 0.5°C/h. During this pulling, 100 ml of oxygen gas is applied to the surface of the solution 7 via the gas introducing vibrator 12! /lll1n is supplied. 10 is a light entrance window for internal observation, and 11 is an internal observation window.

こうしてこの実施例によれば、キポラス法によって比較
的低温で、従って相転移を生じることなく、良質のYB
a  Cu  O結晶を引上げる2  37−δ ことができる。この場合、結晶引上げに際して酸素ガス
を供給することにより、溶液中および成長結晶中の酸素
欠陥の発生を防止することができる。
Thus, according to this example, good quality YB can be obtained by the Kiporus method at a relatively low temperature and therefore without phase transition.
a CuO crystal can be pulled up 237-δ. In this case, by supplying oxygen gas during crystal pulling, it is possible to prevent the generation of oxygen defects in the solution and in the grown crystal.

次に、フラックスとして、Cu0−V205混合液を用
いた場合を説明する。第3図は、Cu0−V2O3系の
相図であり、この系で適当なモル比を選ぶことにより、
やはり900℃程度で液相状態が得られる。このCub
−V2Q5混合液(Cu Oが40モル%以下)をフラ
ックスとして用いて先の実施例と同様に必要な原料を溶
解した溶液を形成し、900〜1000℃で約10時間
放置した後、溶液温度を下げて800〜900℃に設定
する。この後先の実施例と同様にして、YBa  Cu
  O結晶を引上げる。
Next, a case will be described in which a Cu0-V205 mixed solution is used as the flux. Figure 3 is a phase diagram of the Cu0-V2O3 system, and by selecting an appropriate molar ratio in this system,
After all, a liquid phase state is obtained at about 900°C. This Cub
-V2Q5 mixed solution (40 mol% or less of CuO) was used as a flux to form a solution in which the necessary raw materials were dissolved in the same manner as in the previous example, and after being left at 900 to 1000 °C for about 10 hours, the solution temperature was Lower the temperature and set it to 800-900℃. After this, in the same manner as in the previous example, YBa Cu
Pull up the O crystal.

2 37づ この実施例によっても先の実施例と同様、良質のYBa
  Cu  O結晶を得ることができる。
2 In this example, as well as in the previous example, high quality YBa was used.
CuO crystals can be obtained.

2 37−δ 以上の実施例では、YBa  Cu  O結晶2 37
−δ を引上げる場合を説明したが、Yの代わりにYb。
2 37-δ In the above examples, YBa Cu O crystal 2 37
We have explained the case where -δ is raised, but Yb is used instead of Y.

Ho、Dy、Eu、Er、Tm、Luなど他の希土類元
素が入った酸化物超電導体結晶の場合にも本発明は有効
であり、また、Sc −Ba −Cu −0系、Sr 
−La −Cu−0系、更にSrをBa。
The present invention is also effective in the case of oxide superconductor crystals containing other rare earth elements such as Ho, Dy, Eu, Er, Tm, and Lu.
-La -Cu-0 system, further Sr and Ba.

Caなとで置換した系等、他のペロブスカイト構造を有
する多元系酸化物超電導体結晶を成長させる場合にも本
発明は有効である。また実施例では結晶引上げを説明し
たが、本発明は多元系酸化物超電導体のエピタキシャル
成長にも有効である。
The present invention is also effective when growing multi-component oxide superconductor crystals having other perovskite structures, such as those substituted with Ca. Furthermore, although crystal pulling has been explained in the embodiment, the present invention is also effective for epitaxial growth of multi-component oxide superconductors.

その池水発明はその趣旨を逸脱しない範囲で種々変形し
て実施することができる。
The pond water invention can be implemented with various modifications without departing from the spirit thereof.

[発明の効果] 以上述べたように本発明によれば、遷移金属を含む2元
系酸化物をフラックスとするキボラス法により、多元系
酸化物超電導体の良質の結晶を得ることができる。
[Effects of the Invention] As described above, according to the present invention, high-quality crystals of a multi-component oxide superconductor can be obtained by the Quiboras method using a binary oxide containing a transition metal as a flux.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のY−Ba −Cu−0系結
晶の引上げ装置を示す図、第2図は、Pb 0−820
3系の相図、第3図は、Cu0−V2O3系の相図であ
る。 1・・・アルミナシールド材、2・・・白金ヒータ、3
・・・白金ルツボ、4・・・支持台、5・・・支持棒、
6・・・熱電対、7・・・フラックスを含む溶液、8・
・・引上げ軸、9・・・YBa  Cu  O結晶、1
0・・・内部観察2 37−δ 用光照射窓、11・・・内部観察窓、12・・・ガス導
入パイプ。 出願人代理人 弁理士 鈴江武彦 第1図 浸宸(°C)
FIG. 1 is a diagram showing a pulling apparatus for Y-Ba-Cu-0 system crystal according to an embodiment of the present invention, and FIG.
Figure 3 is a phase diagram of the Cu0-V2O3 system. 1... Alumina shield material, 2... Platinum heater, 3
...Platinum crucible, 4...Support stand, 5...Support rod,
6... Thermocouple, 7... Solution containing flux, 8...
... Pulling shaft, 9 ... YBa Cu O crystal, 1
0... Light irradiation window for internal observation 2 37-δ, 11... Internal observation window, 12... Gas introduction pipe. Applicant's representative Patent attorney Takehiko Suzue Figure 1 (°C)

Claims (4)

【特許請求の範囲】[Claims] (1)遷移金属を含む2元系酸化物をフラックスとして
用いた液相成長法により多元系酸化物超電導体結晶を成
長させることを特徴とする酸化物超電導体結晶の製造方
法。
(1) A method for producing an oxide superconductor crystal, which comprises growing a multi-component oxide superconductor crystal by a liquid phase growth method using a binary oxide containing a transition metal as a flux.
(2)前記多元系酸化物超電導体は、 ABa_2Cu_3O_7_−_δ(Aは、Y、Yb、
Ho、Dy、Eu、Er、Tm、Luから選ばれた一種
)である特許請求の範囲第1項記載の酸化物超電導体結
晶の製造方法。
(2) The multi-component oxide superconductor is ABa_2Cu_3O_7_-_δ (A is Y, Yb,
The method for producing an oxide superconductor crystal according to claim 1, wherein the oxide superconductor crystal is one selected from Ho, Dy, Eu, Er, Tm, and Lu.
(3)前記フラックスは、PbO−B_2O_3系混合
液である特許請求の範囲第1項記載の酸化物超電導体結
晶の製造方法。
(3) The method for producing an oxide superconductor crystal according to claim 1, wherein the flux is a PbO-B_2O_3-based mixed liquid.
(4)前記フラックスは、CuO−V_2O_5系混合
液である特許請求の範囲第1項記載の酸化物超電導体結
晶の製造方法。
(4) The method for producing an oxide superconductor crystal according to claim 1, wherein the flux is a CuO-V_2O_5-based mixed liquid.
JP62304631A 1987-06-11 1987-12-03 Production of oxide superconductor crystal Pending JPH01148794A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP62304631A JPH01148794A (en) 1987-12-03 1987-12-03 Production of oxide superconductor crystal
US07/205,177 US5162297A (en) 1987-06-11 1988-06-10 Liquid phase epitaxial growth of high temperature superconducting oxide wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62304631A JPH01148794A (en) 1987-12-03 1987-12-03 Production of oxide superconductor crystal

Publications (1)

Publication Number Publication Date
JPH01148794A true JPH01148794A (en) 1989-06-12

Family

ID=17935358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62304631A Pending JPH01148794A (en) 1987-06-11 1987-12-03 Production of oxide superconductor crystal

Country Status (1)

Country Link
JP (1) JPH01148794A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5602081A (en) * 1993-05-10 1997-02-11 International Superconductivity Technology Center Method of preparing metal oxide crystal

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS606913A (en) * 1983-06-24 1985-01-14 Matsushita Electric Ind Co Ltd Lens moving device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS606913A (en) * 1983-06-24 1985-01-14 Matsushita Electric Ind Co Ltd Lens moving device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5602081A (en) * 1993-05-10 1997-02-11 International Superconductivity Technology Center Method of preparing metal oxide crystal

Similar Documents

Publication Publication Date Title
Klemenz et al. Liquid phase epitaxy of high-Tc superconductors
JP2651481B2 (en) How to make superconducting materials
US5407907A (en) Method of preparing metal oxide crystal
JPH09100193A (en) Preparation of oxide crystal
JP2672533B2 (en) Method for producing oxide superconductor crystal
JPH01148794A (en) Production of oxide superconductor crystal
JP2637123B2 (en) Method for producing oxide superconductor crystal
JPS63310799A (en) Production of oxide superconducting crystal
JPH01131098A (en) Production of oxide superconductor crystal
JPS63310798A (en) Production of oxide superconducting element wafer
JP2550253B2 (en) Method for producing oxide high temperature superconductor
JP3936767B2 (en) Preparation method of oxide crystals
JP2833640B2 (en) Method for producing Pr123 crystal
JP3205646B2 (en) Method for producing Sm-based 123 crystal
JP2733197B2 (en) Method for producing rare earth element-containing single crystal
JP2963604B2 (en) Method for producing ReBa2Cu3Oy crystal from melt
JPH059059A (en) Production of oxide superconductor
JP2833639B2 (en) Preparation method of oxide crystal
JP2852405B2 (en) Bi (2) (Sr, Ca) (3) Cu (2) O (8) Single crystal production method by solution pulling method
JP2000247795A (en) Production of re123 oxide superconductive bulk body
RU2051210C1 (en) High-temperature super-conducting material and method for production thereof
JPH0818910B2 (en) Method for producing oxide superconducting single crystal
JPH0471876B2 (en)
JPS63310796A (en) Oxide superconducting element wafer
JPH04182394A (en) Production of single crystal superconductor