JP2000247795A - Production of re123 oxide superconductive bulk body - Google Patents

Production of re123 oxide superconductive bulk body

Info

Publication number
JP2000247795A
JP2000247795A JP11047338A JP4733899A JP2000247795A JP 2000247795 A JP2000247795 A JP 2000247795A JP 11047338 A JP11047338 A JP 11047338A JP 4733899 A JP4733899 A JP 4733899A JP 2000247795 A JP2000247795 A JP 2000247795A
Authority
JP
Japan
Prior art keywords
temperature
crystal
phase
bulk body
seed crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11047338A
Other languages
Japanese (ja)
Inventor
Yuichi Nakamura
雄一 中村
Hiroyuki Fujimoto
浩之 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP11047338A priority Critical patent/JP2000247795A/en
Publication of JP2000247795A publication Critical patent/JP2000247795A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a simplified and stabilized production process for a large sized bulk body of high orientation by decomposing and melting raw materials for the bulk body at a temperature higher than the decomposition and melting point of an oxide to be prepared, then reducing the temperature lower than the decomposition and melting point and sowing a seed crystal to the melt. SOLUTION: The bulk body of RE123 oxide superconductor that is represented by a general formula: REBa2Cu3Ox (RE is one or two or more kinds of rare earth elements) and has a 123 phase crystal structure is prepared by melting and coagulating method. In this preparation, raw materials (or their precursors) for the bulk body are held at a temperature higher than the decomposition and melting point of the 123 phase of REBa2Cu3Ox oxide to be prepared. Then, the molten product is cooled down below the crystallization temperature. By utilizing the time until the crystallization is initiated, seed crystals are brought into contact with the treated raw materials and they are kept at the crystal growth temperature or they are slowly cooled down along a temperature gradient, thereby obtaining the objective bulk body of RE123 oxide superconductor mainly comprising the RE123 phase from the seed crystals.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、溶融凝固法による大
型の配向したRE123系酸化物超電導バルク体の作製
方法に関し、特に種結晶として“作製するバルク体と同
種の結晶”を用いることができて全製造工程を簡略化す
ることが可能なRE123系酸化物超電導バルク体の安
定した作製方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a large-sized oriented RE123-based oxide superconducting bulk material by a melt-solidification method, and in particular, a "crystal of the same kind as the bulk material to be produced" can be used as a seed crystal. The present invention relates to a method for stably manufacturing an RE123-based oxide superconducting bulk body capable of simplifying all manufacturing steps.

【0002】近年、臨界温度(Tc)の高い酸化物超電導
材料が次々と発見され、強力な超電導マグネット,フラ
イホィ−ル,超電導磁気ベアリング等の各方面への実用
化が検討されている。
In recent years, oxide superconducting materials having a high critical temperature (Tc) have been discovered one after another, and practical application to various fields such as strong superconducting magnets, flywheels, and superconducting magnetic bearings has been studied.

【0003】ただ、超電導材料がこれらの分野等で実用
されるためには高い臨界温度(Tc)に加えて高い臨界電
流密度(Jc)を示すことも重要な要件とされており、実
用上有利な液体窒素温度での使用を考えると、現在知ら
れている超電導材料の中でも“REBa2Cu3x 系酸化物
超電導材料(REは希土類元素であってY,La,Pr,N
d,Sm,Eu,Gd,Dy,Ho,Er,Tm及びYbの1種又は2種
以上)”はその製造技術の開発や改良によって磁場中で
高い臨界電流密度が達成されるようになってきており、
最も注目される超電導材料の1つであると考えられてい
る。
However, in order for a superconducting material to be put to practical use in these fields, it is important to show a high critical current density (Jc) in addition to a high critical temperature (Tc), which is practically advantageous. Considering use at a liquid nitrogen temperature, among superconducting materials known at present, “REBa 2 Cu 3 O x -based oxide superconducting material (RE is a rare earth element and Y, La, Pr, N
One or more of d, Sm, Eu, Gd, Dy, Ho, Er, Tm and Yb) ”has achieved high critical current density in a magnetic field by development and improvement of its manufacturing technology. And
It is considered to be one of the most noticeable superconducting materials.

【0004】[0004]

【従来の技術】酸化物超電導体において高い臨界電流密
度(Jc)を達成するためには a) 結晶性の向上, b) 結晶粒の配向性の向上, c) 結晶粒界,不純物相,空孔,クラック等による弱結
合の除去, d) 超電導相中の酸素量の制御, e) 緻密化, f) 磁束ピン止め点の導入 等が必要であると考えられているが、これらの対策を講
じるために好適な方法の1つとして“溶融凝固法”によ
る超電導体結晶の作製手法が注目されている。この溶融
凝固法によると、結晶配向性の制御や緻密性の向上が比
較的容易であることに加えて、磁束ピン止め点を導入す
る上でも有利であり、REBa2Cu3x系酸化物超電導体
の高磁界電流密度化に大きな成果を挙げている。
2. Description of the Related Art In order to achieve a high critical current density (Jc) in an oxide superconductor, a) improvement in crystallinity, b) improvement in crystal grain orientation, c) crystal grain boundaries, impurity phases, and vacancies. It is considered necessary to remove weak bonds due to holes, cracks, etc., d) control the amount of oxygen in the superconducting phase, e) densify, f) introduce flux pinning points. As one of the suitable methods for taking this measure, a technique for producing a superconductor crystal by a “melt solidification method” has been attracting attention. According to this melting and solidification process, in addition to improving the control and compactness of the crystal orientation is relatively easy, it is also advantageous to introduce the magnetic flux pinning centers, REBa 2 Cu 3 O x based oxide It has achieved great results in increasing the magnetic field current density of superconductors.

【0005】上記“溶融凝固法”とは、半溶融状態から
の凝固を利用したプロセスであり、一般に大気中あるい
は低酸素分圧雰囲気中においてRE123系酸化物超電
導体の組成が得られるバルク体作製原料を“作製するR
EBa2Cu3x 酸化物の123相(以降、 RE123相と
呼ぶ)”が分解溶融する温度(一般には包晶点)以上に
昇温して分解溶融させた後、温度勾配下あるいは等温場
でゆっくりと徐冷するか、あるいはRE123相の成長
可能な過冷温度域に保持することによってバルク体結晶
を育成する方法である。この方法によると、大型のRE
123結晶の作製が比較的容易である上、RE123結
晶粒内に微細なRE−Ba−Cu−O酸化物の211相(R
EがLa,Ndの場合は422相であるが、 以降は共にRE
211相と呼ぶ)を分散させることもできる。RE12
3結晶粒内に微細なRE211相が分散すると、これが
磁束ピン止め点として作用するので臨界電流密度(Jc)
が向上する。
[0005] The above-mentioned "melt solidification method" is a process utilizing solidification from a semi-molten state, and is generally a process for producing a bulk body in which the composition of an RE123-based oxide superconductor is obtained in the air or in a low oxygen partial pressure atmosphere. R to make the raw material
After elevating the temperature of the 123 phase of EBa 2 Cu 3 O x oxide (hereinafter referred to as RE123 phase) to the temperature at which it decomposes and melts (generally, the peritectic point) and melt it, it is subjected to a temperature gradient or isothermal field. In this method, bulk crystals are grown by slow cooling slowly or by maintaining the supercooled temperature range in which the RE123 phase can grow.
It is relatively easy to prepare a 123 crystal, and a fine RE-Ba-Cu-O oxide 211 phase (R
When E is La and Nd, the phase is 422.
211 phases) can also be dispersed. RE12
When the fine RE211 phase is dispersed in the three crystal grains, this acts as a magnetic flux pinning point, so that the critical current density (Jc)
Is improved.

【0006】なお、RE123結晶粒内に生成するRE
211相粒子を積極的にピン止め点として利用し高臨界
電流密度化を目指す場合には、RE211相粒子を微細
分散させる必要がある。このRE211相粒子の微細分
散に、Pt,RhあるいはCeといった元素の微量(0.1〜2重
量%程度)添加が有効であることも知られている。ま
た、酸化物超電導バルク体においてクラックの発生を防
止し、機械的強度を向上するのにAg元素の添加(10〜30
重量%程度)が有効であることが知られているが、Ag元
素の添加が臨界電流密度の向上にも効果的であるという
報告もある。
[0006] The RE formed in the RE123 crystal grains
In the case where the 211 phase particles are positively used as a pinning point to increase the critical current density, it is necessary to finely disperse the RE211 phase particles. It is also known that the addition of a small amount (approximately 0.1 to 2% by weight) of an element such as Pt, Rh or Ce to the fine dispersion of the RE211 phase particles is effective. Further, in order to prevent the occurrence of cracks in the bulk oxide superconductor and improve the mechanical strength, the addition of an Ag element (10 to 30
(About% by weight) is known to be effective, but there is a report that addition of an Ag element is also effective for improving the critical current density.

【0007】ところで、半溶融状態にある前駆体中には
液相中に第2相としてRE211相が多く存在するた
め、RE123相結晶を育成する際にその第2相上にR
E123相が複数核発生し、これが核となって結晶成長
が生じがちであり、配向した単一結晶粒を得ることは困
難であることから、溶融凝固法によりRE123系超電
導バルク体を作製する際には“種結晶”を用いて成長の
起点及び結晶配向性の制御を行うことが広く行われてい
る。なお、この種結晶には作製するRE123相結晶と
同じ結晶構造を持つRE123相を主相とする結晶が多
く用いられる。
In the precursor in a semi-molten state, since a large amount of the RE211 phase is present as a second phase in the liquid phase, when growing the RE123 phase crystal, R2 is added on the second phase.
Since a plurality of nuclei are generated in the E123 phase and these tend to be nuclei to cause crystal growth, it is difficult to obtain oriented single crystal grains. It is widely practiced to use a “seed crystal” to control the starting point of growth and the crystal orientation. Note that, as the seed crystal, a crystal mainly including the RE123 phase having the same crystal structure as the RE123 phase crystal to be manufactured is often used.

【0008】従来、この種結晶は、図1で示すように昇
温前にバルク体作製原料(バルク前駆体)の表面に載せ
られるか(手法1)あるいは昇温によってバルク体作製
原料(バルク前駆体)が最高温に達した時点でその表面
に載せられ(手法2)、その後の徐冷〔図1(a) 参照〕
又は過冷域保持〔図1(b) 参照〕の工程での配向した結
晶の成長起点として使用されていた。そのため、種結晶
としては、作製するRE123相結晶と同種の結晶構造
を持っていることは勿論のこと、工程途中で分解消滅し
ないよう、作製するRE123相結晶よりも分解温度の
高い“RE123相を主相とする結晶”が用いられてい
る。例えば、Y123相結晶(分解温度:約1010
℃)を作製する際には、それよりも分解温度の高いSm1
23相結晶(分解温度:約1060℃)やNd123相結
晶(分解温度:約1090℃)等が種結晶として用いら
れることが多い。
Conventionally, this seed crystal is placed on the surface of a bulk material (bulk precursor) before heating as shown in FIG. 1 (method 1) or the bulk material (bulk precursor) is heated by heating. When the body reaches its maximum temperature, it is placed on its surface (method 2) and then slowly cooled (see Fig. 1 (a)).
Alternatively, it has been used as a growth starting point of oriented crystals in the process of maintaining a supercooled region (see FIG. 1B). Therefore, the seed crystal has not only the same crystal structure as the RE123 phase crystal to be produced, but also the “RE123 phase” having a higher decomposition temperature than the RE123 phase crystal to be produced so as not to be eliminated during the process. A crystal as the main phase "is used. For example, a Y123 phase crystal (decomposition temperature: about 1010
° C), Sm1 with a higher decomposition temperature
23-phase crystals (decomposition temperature: about 1060 ° C.), Nd123 phase crystals (decomposition temperature: about 1090 ° C.), and the like are often used as seed crystals.

【0009】[0009]

【解決しようとする課題】上述のように、種結晶を用い
る溶融凝固法によってRE123系超電導バルク体を作
製する場合には、作製しようとする結晶とは別の“分解
温度の高いRE123相組成を持つ配向した種結晶”
を、別途、作製しておく必要がある。従って、目的とす
る超電導バルク体を作製するための全体工程が多くな
り、時間的,コスト的な面で大きな不利を余儀なくされ
る。また、Nd123相結晶よりも分解温度の高いRE1
23相結晶が存在しないため、Nd123相結晶のバルク
体を溶融凝固法によって作製するためには、結晶構造の
異なる例えばMgO単結晶等といった他の種結晶となる材
料を用いざるを得なかった。しかし、MgO種結晶を用い
てのNd123相結晶バルク体の育成は確実性に欠けるも
のであり、大型バルク体の安定製造技術として十分に満
足できるものではなかった。
As described above, when a RE123-based superconducting bulk body is produced by a melt-solidification method using a seed crystal, a RE123 phase composition having a high decomposition temperature, which is different from that of the crystal to be produced, is required. Holding oriented seed crystals ”
Must be prepared separately. Therefore, the number of overall steps for fabricating the desired superconducting bulk body increases, and a great disadvantage is imposed in terms of time and cost. RE1 having a higher decomposition temperature than Nd123 phase crystals
Since there are no 23-phase crystals, in order to produce a bulk body of Nd123-phase crystals by the melt-solidification method, it is necessary to use another seed crystal material having a different crystal structure, such as a MgO single crystal. However, the growth of a bulk Nd123 phase crystal using a MgO seed crystal lacks certainty, and has not been sufficiently satisfactory as a stable production technique for a large bulk body.

【0010】このようなことから、本発明が目的とした
のは、溶融凝固法により“RE123相を主相とするR
E123系酸化物超電導バルク体”を作製するに当っ
て、種結晶として“作製するバルク体のRE123相結
晶と同種の結晶”あるいは“作製するバルク体のRE1
23相結晶と同程度の分解温度を有する同じ構造を持っ
た結晶”も用いることができて全製造工程を簡略化する
ことができ、かつ狙いとする配向性の良い大型バルク体
を安定して育成することが可能となる方法を確立するこ
とであった。
In view of the above, an object of the present invention is to provide an R-phase having a RE123 phase as a main phase by a melt-solidification method.
In producing the “E123-based oxide superconducting bulk material”, “a crystal of the same type as the RE123 phase crystal of the bulk material to be produced” or “RE1 of the bulk material to be produced” is used as a seed crystal.
A crystal having the same structure as the 23-phase crystal and having the same decomposition temperature "can be used, thereby simplifying the entire manufacturing process, and stably producing a large-sized bulk body having a desired orientation. The aim was to establish a method that would allow them to be raised.

【0011】[0011]

【課題を解決するための手段】本発明者は、上記目的を
達成すべく鋭意研究を行った結果、次に示すような知見
を得ることができた。 a) 溶融凝固法のプロセスに従ってRE123系酸化物
超電導バルク体作製原料(前駆体)を分解溶融させた
後、該分解溶融原料をRE123相結晶が晶出できる温
度(一般には包晶点)以下で保持しても、種結晶が無い
場合には直ぐに結晶成長が開始することはない, b) そこで、RE123相結晶の晶出温度以下に降温さ
れた半溶融状態の原料(前駆体)から結晶成長が開始さ
れるまでの間の猶予時間を利用し、この時点で初めて半
溶融状態の原料(前駆体)に種結晶を接触させ、続いて
従前から採用されている結晶成長温度に保持するか、あ
るいは温度勾配下あるいは等温場でゆっくりと徐冷して
やると、この場合でも、種結晶よりRE123相を主相
とする種結晶と同一の配向性の良い大型RE123系酸
化物超電導バルク体の安定した育成が可能である,
Means for Solving the Problems As a result of intensive studies to achieve the above object, the present inventor has obtained the following findings. a) After the raw material (precursor) for producing the RE123-based oxide superconducting bulk is decomposed and melted in accordance with the process of the melt-solidification method, the decomposed and molten raw material is heated to a temperature below the temperature at which RE123 phase crystals can be crystallized (generally, the peritectic point). Even if it is kept, the crystal growth does not start immediately if there is no seed crystal. B) Therefore, the crystal growth from the raw material (precursor) in the semi-molten state which has been cooled to the crystallization temperature of the RE123 phase crystal or less. Utilizing the grace period until the start of, the seed crystal is brought into contact with the raw material (precursor) in the semi-molten state for the first time at this time, and then the crystal growth temperature that has been conventionally employed is maintained, Alternatively, when slowly cooled under a temperature gradient or in an isothermal field, even in this case, a large RE123-based oxide superconducting bulk material having the same orientation as the seed crystal having the RE123 phase as the main phase and having the same orientation as that of the seed crystal is more stable. Can be bred,

【0012】c) 従って、この方法によれば、種結晶と
して必ずしも分解温度の高いものを用いる必要はなく、
作製する酸化物超電導バルク体のRE123相と同じ組
成を持つ配向結晶であっても種結晶として用いることが
できる, d) そのため、種結晶を準備するための“別組成の結晶
を育成する工程”を省略することが可能であり、また、
生成温度の高いRE123結晶(例えばNd123結晶
等)の育成においても、確実性に劣る結晶構造の異なっ
たMgO単結晶等を種結晶として用いる必要もなくなる。
C) Therefore, according to this method, it is not always necessary to use a seed crystal having a high decomposition temperature,
An oriented crystal having the same composition as the RE123 phase of the bulk oxide superconductor to be produced can be used as a seed crystal. D) Therefore, a “step of growing a crystal of another composition” for preparing the seed crystal Can be omitted, and
In growing a RE123 crystal (for example, Nd123 crystal or the like) having a high generation temperature, it is not necessary to use a MgO single crystal or the like having a different crystal structure, which is inferior in reliability, as a seed crystal.

【0013】本発明は、上記知見事項等を基になされた
ものであって、次の1)乃至5)項に示す「RE123系酸
化物超電導バルク体の作製方法」を提供するものであ
る。 1) 化学組成が一般式REBa2Cu3x (REは希土類元
素であって、Y,La,Pr,Nd,Sm,Eu,Gd,Dy,Ho,E
r,Tm及びYbの1種又は2種以上を意味する:以降同
じ)で表され、かつ123相結晶構造を有して成るRE
123系酸化物超電導バルク体を溶融凝固法により作製
するに際して、まずバルク体作製原料を“作製するRE
Ba2Cu3x 酸化物の123相”が分解溶融する温度以上
の温度に保持して分解溶融させた後、これを降温しつ
つ、前記分解溶融温度よりも低い温度域にて123相結
晶構造を有した種結晶をその表面に接触させて種付け
し、続いて結晶成長温度で結晶成長させることを特徴と
する、RE123系酸化物超電導バルク体の作製方法。 2) 化学組成が一般式REBa2Cu3x で表されるものに
加えて更に特性改善元素であるPt,Rh,Ce及びAgの1種
又は2種以上をも含み、かつ123相結晶構造を有して
成るRE−Ba−Cu−O系酸化物超電導バルク体を溶融凝
固法により作製するに際して、まずバルク体作製原料を
“作製するREBa2Cu3x 酸化物の123相”が分解溶
融する温度以上の温度に保持して分解溶融させた後、こ
れを降温しつつ、前記分解溶融温度よりも低い温度域に
て123相結晶構造を有した種結晶をその表面に接触さ
せて種付けし、続いて結晶成長温度で結晶成長させるこ
とを特徴とする、RE123系酸化物超電導バルク体の
作製方法。 3) 種付けの際に種結晶を予熱して用いることを特徴と
する、前記1)項又は2)項に記載のRE123系酸化物超
電導バルク体の作製方法。 4) 種結晶として“作製するREBa2Cu3x 酸化物バル
ク体”と同じ化学組成の結晶体を用いることを特徴とす
る、前記1)乃至3)項の何れかに記載のRE123系酸化
物超電導バルク体の作製方法。 5) 種付けに当って、“種付け温度相当の融点を有した
純金属又は合金”の線材で支持した種結晶を種付け面に
近づけ、種付け面付近の温度による線材の溶融により種
結晶を種付け面へ落下させて種付けすることを特徴とす
る、前記1)乃至4)項の何れかに記載のRE123系酸化
物超電導バルク体の作製方法。
The present invention has been made on the basis of the above findings and the like, and provides a "method for producing a RE123-based oxide superconducting bulk material" described in the following items 1) to 5). 1) The chemical composition is represented by the general formula REBa 2 Cu 3 O x (RE is a rare earth element and Y, La, Pr, Nd, Sm, Eu, Gd, Dy, Ho, E
r, one or more of Tm and Yb: hereinafter the same) and having a 123-phase crystal structure.
In producing a 123-based oxide superconducting bulk body by a melt-solidification method, first, a bulk body producing raw material is “RE
After decomposing and melting at a temperature higher than the temperature at which the “123 phase of Ba 2 Cu 3 O x oxide decomposes and melts,” the 123 phase crystal is cooled in a temperature range lower than the decomposition melting temperature while the temperature is lowered. A method for producing a RE123-based oxide superconducting bulk material, comprising: bringing a seed crystal having a structure into contact with its surface for seeding, and subsequently growing the crystal at a crystal growth temperature. RE-Ba which further contains one or more of Pt, Rh, Ce and Ag which are characteristic improving elements in addition to the one represented by 2 Cu 3 O x , and has a 123-phase crystal structure. in the -cu-O-based oxide superconducting bulk body prepared by melting and solidification method, first holding a bulk body prepared raw material to a temperature above the temperature at which is incongruent melting "Preparation for REBa 2 Cu 3 O x 123 phase oxide" After decomposing and melting, while lowering the temperature, A RE123-based oxide superconducting bulk material characterized in that a seed crystal having a 123-phase crystal structure is brought into contact with its surface in a temperature range lower than the melting temperature to seed the crystal, and then the crystal is grown at a crystal growth temperature. 3) The method for producing a bulk RE123-based oxide superconductor according to the above item 1) or 2), wherein the seed crystal is preheated and used at the time of seeding. The RE123-based oxide superconducting bulk material according to any one of the above 1) to 3), wherein a crystal having the same chemical composition as that of the “REBa 2 Cu 3 O x oxide bulk material to be produced” is used. 5) In seeding, the seed crystal supported by the wire of “pure metal or alloy having a melting point equivalent to the seeding temperature” is brought close to the seeding surface, and the seed crystal is melted by the temperature near the seeding surface. Seeding by dropping on the seeding surface Characterized the door, said 1) to 4) The method for manufacturing a RE123-based oxide superconducting bulk body according to any one of items.

【0014】ここで、本発明法に適用する“RE123
系酸化物超電導バルク体を作製するための出発原料”と
しては、常法通りにRE,Ba及びCuの酸化物あるいは炭
酸化合物等を混合した混合粉を使用するのが良い。この
RE,Ba及びCuの比率が所定の割合となるように混合さ
れた原料粉は、800〜1000℃の温度で焼成され前
駆体とされる。また、前駆体粉としては、上記3種の元
素を同時に焼成したものではなく、例えばBa及びCuの酸
化物あるいは炭酸化合物等を混合・焼成したものにRE
の酸化物等を混合したもの等でも良い。得られた前駆体
粉は、更に、例えば一軸プレス等による成型が施されて
溶融凝固プロセスに供される。
Here, "RE123" applied to the method of the present invention.
As a starting material for producing a bulk oxide superconducting body, it is preferable to use a mixed powder obtained by mixing oxides of RE, Ba and Cu or a carbonate compound or the like in the usual manner. The raw material powder mixed so that the ratio of Cu becomes a predetermined ratio is fired at a temperature of 800 to 1000 ° C. to be a precursor, and the precursor powder is obtained by simultaneously firing the above three elements. For example, a mixture of Ba and Cu oxides or carbonate compounds, etc.
And the like obtained by mixing oxides of the above. The obtained precursor powder is further subjected to molding by, for example, a uniaxial press or the like, and is subjected to a melt-solidification process.

【0015】なお、前述したように、Pt,Rh,Ceといっ
た元素はRE123相結晶中に生成するRE211相粒
子を微細分散させて臨海電流密度を向上させる作用を有
しており、またAgは得られる酸化物超電導バルク体の機
械的強度の改善や臨海電流密度の向上に資するなど、何
れも有効な特性改善元素であるので、必要に応じてそれ
らの1種又は2種以上が前駆体粉に添加・混合される。
この場合に添加される元素の形態(添加剤形態)は、金
属微粒粉や酸化物粉等の何れであっても良い。また、添
加・混合は、前駆体粉の焼成前あるいは焼成後の何れで
あっても良い。
As described above, elements such as Pt, Rh, and Ce have the effect of finely dispersing the RE211 phase particles generated in the RE123 phase crystal to improve the critical current density. Both are effective property improving elements, such as contributing to the improvement of the mechanical strength and critical current density of the oxide superconducting bulk material to be obtained. Therefore, if necessary, one or more of them may be used as a precursor powder. It is added and mixed.
In this case, the form of the element to be added (additive form) may be any of metal fine powder, oxide powder and the like. The addition and mixing may be performed before or after firing the precursor powder.

【0016】以下、本発明法をその作用効果と共により
詳細に説明する。さて、溶融凝固プロセスでは、まず前
記成形体(前駆体)を“作製するRE123相”の分解
温度以上に昇温し、分解溶融させる。次に、図2に示す
ように、分解溶融した前駆体の温度を“作製するRE1
23相”の分解温度よりも低い温度にまで降温しつつ種
付けを行う。処理作業の容易性からすれば、種付けは予
め定めた種付け温度に保持してから行うのが良い。な
お、この種付け温度は結晶成長を行わせる温度との上下
は問わない。種付けに用いる“種結晶”は、RE123
相結晶構造を有したものであれば化学組成の異なるもの
であっても良いが、先に説明したように、全体工程の簡
略化が可能な“作製するREBa2Cu3x 酸化物バルク体
と同じ化学組成の結晶体”を使用することによって著し
い便益がもたらされる。
Hereinafter, the method of the present invention will be described in more detail together with its operation and effects. Now, in the melt-solidification process, first, the molded body (precursor) is heated to a temperature higher than the decomposition temperature of the “RE123 phase to be produced” and is decomposed and melted. Next, as shown in FIG.
The seeding is performed while the temperature is lowered to a temperature lower than the decomposition temperature of the "23 phase". In view of the easiness of the processing operation, the seeding is preferably performed after the seeding temperature is maintained at a predetermined seeding temperature. The “seed crystal” used for seeding may be RE123.
As long as it has a phase crystal structure may be different in chemical composition, but as described above, to produce "capable simplification of the whole process REBa 2 Cu 3 O x oxide bulk body The use of "crystals of the same chemical composition" offers significant benefits.

【0017】この種付け時に重要なのは、半溶融状態の
前駆体と接触させる種結晶の温度である。種結晶の温度
が低いと、種結晶との接触に伴う前駆体の温度低下によ
って半溶融状態の前駆体に複数の核生成が起きて所望す
る均一配向したRE123相結晶を成長させることがで
きない。そのため、種付け時に種結晶を種付け温度付近
に予熱しておくべきである。ただ、種結晶のサイズが小
さいと、その熱容量も小さいので抜熱の影響が少なく、
そのため、この場合には種結晶の予熱は必ずしも必要で
はない。
What is important during this seeding is the temperature of the seed crystal to be brought into contact with the precursor in the semi-molten state. When the temperature of the seed crystal is low, a plurality of nuclei are generated in the precursor in a semi-molten state due to a decrease in the temperature of the precursor due to contact with the seed crystal, and a desired uniformly oriented RE123 phase crystal cannot be grown. Therefore, the seed crystal should be preheated to the vicinity of the seeding temperature at the time of seeding. However, if the size of the seed crystal is small, its heat capacity is also small, so the influence of heat removal is small,
Therefore, in this case, preheating of the seed crystal is not necessarily required.

【0018】なお、半溶融状態の前駆体表面への種付け
には、図3に示すように例えばAg線あるいはAg−Pd合金
線,Ag−Pt合金線等のような種付け温度相当の融点を持
つ純金属又は合金の線材や帯材等で種結晶を吊り下げ、
線材の溶融により種結晶を前駆体の表面に落下させて図
4の如くに前駆体と接触させるという手法が好適であ
る。ここで、図3に示したアルミナ棒は線材の保持具で
あり、熱電対は線材部の温度を計測するためのものであ
る。この手法によれば、種付けタイミングの的確な制御
が可能となる。
In order to seed the precursor surface in a semi-molten state, as shown in FIG. 3, for example, an Ag wire or an Ag-Pd alloy wire, an Ag-Pt alloy wire, or the like has a melting point corresponding to the seeding temperature. Suspend the seed crystal with a wire or strip of pure metal or alloy,
It is preferable that the seed crystal is dropped on the surface of the precursor by melting the wire and brought into contact with the precursor as shown in FIG. Here, the alumina rod shown in FIG. 3 is a holder for the wire, and the thermocouple is for measuring the temperature of the wire portion. According to this method, accurate control of the seeding timing becomes possible.

【0019】種付け後は、半溶融状態の前駆体を過冷域
である所定の結晶成長温度に保持するか、あるいはこの
結晶成長温度域でゆっくりと徐冷し、種結晶を起点とし
種結晶と同一配向性を持ったRE123結晶を成長させ
る。
After the seeding, the precursor in the semi-molten state is maintained at a predetermined crystal growth temperature, which is a supercooled region, or is slowly cooled slowly in this crystal growth temperature region, and the seed crystal is started from the seed crystal. A RE123 crystal having the same orientation is grown.

【0020】このように、RE123系酸化物超電導バ
ルク体の前駆体を分解溶融させた後にこれを降温し、R
E123相の分解溶融温度よりも低い温度域で種付けす
るようにすれば、種結晶として分解温度の高いものを用
いる必要がなくなり、作製する酸化物超電導バルク体の
RE123相と同じ組成の配向結晶を種結晶として用い
ることができるので、酸化物超電導バルク体の製造工程
を著しく簡略化することができる。また、RE123相
のうちで分解温度が最も高いNd123相を主相とするR
E−Ba−Cu−O系酸化物超電導バルク体の製造に際して
も、Nd123相結晶をそのまま種結晶として用いること
ができるので、超電導バルク体製造の安定性が格段に向
上する。
As described above, after the precursor of the RE123-based oxide superconducting bulk material is decomposed and melted, the temperature is lowered, and R
If seeding is performed in a temperature range lower than the decomposition melting temperature of the E123 phase, it is not necessary to use a seed crystal having a high decomposition temperature as a seed crystal. Since it can be used as a seed crystal, the manufacturing process of the bulk oxide superconducting body can be significantly simplified. In addition, among the RE123 phases, the Nd123 phase having the highest decomposition temperature has a main phase of Rd123.
In producing an E-Ba-Cu-O-based oxide superconducting bulk, the Nd123 phase crystal can be used as a seed crystal as it is, so that the production stability of the superconducting bulk is greatly improved.

【0021】更に、本発明法において種結晶として例え
“作製する酸化物超電導バルク体のRE123相と異な
る組成の結晶体”を用いるような場合であっても、本発
明法では種付けが十分に低い温度で行われるので、種結
晶が前駆体の液相に溶け込んで狙いとする均一配向した
結晶が生成されなかったり、結晶中に種結晶起因の不純
物元素が混入して特性劣化を招くといったような、従来
法において避けきれなかった不都合を回避することもで
きる。
Furthermore, even in the case where a "crystal having a composition different from the RE123 phase of the bulk oxide superconductor to be produced" is used as the seed crystal in the method of the present invention, the seeding is sufficiently low in the method of the present invention. Since it is performed at a temperature, the seed crystal dissolves in the liquid phase of the precursor, and the desired uniformly oriented crystal is not generated, or the impurity element due to the seed crystal is mixed into the crystal, and the characteristics are deteriorated. In addition, it is possible to avoid disadvantages that cannot be avoided in the conventional method.

【0022】続いて、本発明を実施例によって更に具体
的に説明する。
Next, the present invention will be described more specifically with reference to examples.

【実施例】〔実施例1〕まず、酸化イットリウム,炭酸
バリウム及び酸化第二銅の粉末をY:Ba:Cu=1.8 : 2.
4 : 3.4 の比率となるように混合し、これを900℃で
仮焼してから更に粉砕・混合することによってYBa2Cu3
x 酸化物超電導材の前駆体粉を作製した。次いで、こ
の前駆体粉を一軸プレスにより成形し、直径が40mmで
厚さが10mm程度の成形前駆体を得た。
[Example 1] First, powders of yttrium oxide, barium carbonate and cupric oxide were prepared by mixing Y: Ba: Cu = 1.8: 2.
The mixture was mixed at a ratio of 4: 3.4, calcined at 900 ° C., and further pulverized and mixed to obtain YBa 2 Cu 3
The O x oxide superconductor material of the precursor powder was produced. Next, this precursor powder was molded by a uniaxial press to obtain a molded precursor having a diameter of 40 mm and a thickness of about 10 mm.

【0023】次に、その成形前駆体を電気炉にて115
0℃で約1時間加熱して分解溶融した後、Y123相の
分解温度(約1010℃)よりも低い温度である100
5℃に降温した。炉内の温度が1005℃に下がった時
点で、作製しようとするYBa2Cu3x 酸化物超電導材と
同じ組成の配向したY123相種結晶(1.5mm角で厚さが
1mmの結晶)を、Pt線材を使って予熱することなくその
まま電気炉の上部より半溶融の前駆体中央部表面に載置
した。
Next, the molding precursor is subjected to 115 in an electric furnace.
After heating at 0 ° C. for about 1 hour to decompose and melt, the temperature is lower than the decomposition temperature of the Y123 phase (about 1010 ° C.).
The temperature was lowered to 5 ° C. When the temperature in the furnace is lowered to 1005 ° C., an oriented Y123 phase seed crystal (a 1.5 mm square, 1 mm thick crystal) having the same composition as the YBa 2 Cu 3 O x oxide superconducting material to be prepared is formed. Using a Pt wire, the precursor was directly placed on the surface of the semi-molten precursor from the upper part of the electric furnace without preheating.

【0024】その後、炉内温度を1000℃に固定して
300時間保持後、更に1℃/hの冷却速度で970℃ま
で徐冷したが、この処理によって直径が約45mmで厚さ
が約12mmの配向したY123結晶から成るYBa2Cu3
x 酸化物超電導バルク体を成長させることができた。
Thereafter, the temperature in the furnace was fixed at 1000 ° C. and maintained for 300 hours, and then gradually cooled to 970 ° C. at a cooling rate of 1 ° C./h. YBa 2 Cu 3 O composed of oriented Y123 crystals
x oxide superconducting bulk material could be grown.

【0025】〔実施例2〕酸化イットリウム,炭酸バリ
ウム及び酸化第二銅の粉末をY:Ba:Cu= 1.2:2.1 :
3.1 の比率となるように混合し、これを900℃で仮焼
し粉砕・混合してから、更にこの仮焼粉に15重量%の酸
化銀粉末及び 0.5重量%のPt粉を添加して混合すること
によってYBa2Cu3x 酸化物超電導材の前駆体粉を作製
した。次いで、この前駆体粉を一軸プレスにより成形
し、直径が40mmで厚さが15mm程度の成形前駆体を得
た。
Example 2 Y: Ba: Cu = 1.2: 2.1: powder of yttrium oxide, barium carbonate and cupric oxide
The mixture was mixed at the ratio of 3.1, calcined at 900 ° C, pulverized and mixed. Then, 15% by weight of silver oxide powder and 0.5% by weight of Pt powder were added to the calcined powder and mixed. Thus, a precursor powder of the YBa 2 Cu 3 O x oxide superconducting material was produced. Next, this precursor powder was formed by a uniaxial press to obtain a formed precursor having a diameter of 40 mm and a thickness of about 15 mm.

【0026】次に、その成形前駆体を電気炉にて115
0℃で約1時間加熱して分解溶融した後、Agを添加した
ときのY123相の分解温度(約970℃)よりも低い
温度である965℃に降温した。この際に、炉内の温度
が970℃以下に下がった時点で、作製しようとするY
Ba2Cu3x 酸化物超電導材と同じ組成の配向したY12
3相種結晶(8mm角で厚さが3mmの結晶)を、図3に示
した如くアルミナ棒の先端に取付けたAg線(融点:960.5
℃)に吊り下げ、電気炉の上部より挿入した。そして、
挿入した種結晶を半溶融状態の前駆体中央部表面直上で
保持し、これを予熱した。続いて、種結晶の至近に取付
けた熱電対(図3を参照)の指示温度がAgの融点である
960.5℃以上となったことを確認してから、アルミナ棒
を炉から引き出した。このように、上記熱電対の指示温
度がAgの融点以上になったということは、つまりはAg線
の溶解によって種結晶が前駆体表面に落下し種付けがな
されたことを意味するものである。
Next, the molding precursor is subjected to 115 in an electric furnace.
After heating at 0 ° C. for about 1 hour to decompose and melt, the temperature was lowered to 965 ° C., which is lower than the decomposition temperature of the Y123 phase when Ag was added (about 970 ° C.). At this time, when the temperature in the furnace falls to 970 ° C. or less, the Y
Oriented Y12 with the same composition as Ba 2 Cu 3 O x oxide superconductor
A three-phase seed crystal (crystal having a size of 8 mm square and a thickness of 3 mm) was coated on an Ag wire (melting point: 960.5) attached to the tip of an alumina rod as shown in FIG.
° C) and inserted from the upper part of the electric furnace. And
The inserted seed crystal was held just above the surface of the central part of the precursor in a semi-molten state, and was preheated. Subsequently, the indicated temperature of the thermocouple attached to the seed crystal (see FIG. 3) is the melting point of Ag.
After confirming that the temperature reached 960.5 ° C. or higher, the alumina rod was pulled out of the furnace. As described above, the fact that the indicated temperature of the thermocouple becomes equal to or higher than the melting point of Ag means that the seed crystal is dropped on the surface of the precursor by the dissolution of the Ag wire and seeding is performed.

【0027】そして、種付けを終えた前駆体を炉内温度
962℃で200時間保持した後、1℃/hの冷却速度で
15時間徐冷したが、この処理によって直径が約35mm
で厚さが約12mmの配向したY123結晶から成るAg含
有のYBa2Cu3x 酸化物超電導バルク体を成長させるこ
とができた。
After keeping the seeded seed at a furnace temperature of 962 ° C. for 200 hours, the precursor was gradually cooled at a cooling rate of 1 ° C./h for 15 hours.
Thus, it was possible to grow an Ag-containing YBa 2 Cu 3 O x oxide superconducting bulk composed of oriented Y123 crystals having a thickness of about 12 mm.

【0028】〔実施例3〕酸化ネオジム,炭酸バリウム
及び酸化第二銅の粉末をNd:Ba:Cu= 1.6: 2.8:3.3
の比率となるように混合し、これを900℃で仮焼して
から更に粉砕・混合することによってNdBa2Cu3x 酸化
物超電導材の前駆体粉を作製した。次いで、この前駆体
粉を一軸プレスにより成形し、直径が30mmで厚さが1
0mm程度の成形前駆体を得た。
Embodiment 3 Nd: Ba: Cu = 1.6: 2.8: 3.3 was prepared by mixing powders of neodymium oxide, barium carbonate and cupric oxide.
, And calcined at 900 ° C., and further pulverized and mixed to prepare a precursor powder of an NdBa 2 Cu 3 O x oxide superconducting material. Next, this precursor powder was formed by a uniaxial press, and the diameter was 30 mm and the thickness was 1 mm.
A molding precursor of about 0 mm was obtained.

【0029】次に、その成形前駆体を電気炉にて115
0℃で約2時間加熱して分解溶融した後、Nd123相の
分解温度(約1090℃)よりも低い温度である105
0℃に降温した。この際、炉内の温度が1060℃に下
がった時点を検知し、作製しようとするNdBa2Cu3x
化物超電導材と同じ組成の配向したNd123相種結晶
(4mm角で厚さが2mmの結晶)を、アルミナ棒の先端に
取付けたAg−10重量%Pd合金線(融点:1050℃)に吊り
下げ、電気炉の上部より挿入した。そして、挿入した種
結晶を半溶融状態の前駆体中央部表面直上で保持し、こ
れを予熱した。続いて、種結晶の至近に取付けた熱電対
の指示温度がAg−Pd合金の融点である1050℃以上を
示したことを確認した後、アルミナ棒を炉から引き出し
て種付けを終えた。
Next, the molding precursor is subjected to 115 in an electric furnace.
After decomposing and melting by heating at 0 ° C. for about 2 hours, the temperature is lower than the decomposition temperature of the Nd123 phase (about 1090 ° C.).
The temperature was lowered to 0 ° C. At this time, detects the time when the temperature in the furnace was dropped to 1060 ℃, NdBa 2 Cu 3 O x oxide oriented Nd123 phase seed crystal of the same composition as the superconductor material (thickness in 4mm angle to be produced is 2mm Was suspended on an Ag-10% by weight Pd alloy wire (melting point: 1050 ° C.) attached to the tip of an alumina rod, and inserted from the upper part of the electric furnace. Then, the inserted seed crystal was held immediately above the surface of the central part of the precursor in a semi-molten state, and this was preheated. Subsequently, after confirming that the indicated temperature of the thermocouple attached to the vicinity of the seed crystal was equal to or higher than 1050 ° C., which is the melting point of the Ag—Pd alloy, the alumina rod was pulled out of the furnace to complete the seeding.

【0030】そして、この種付けを終えた前駆体を1℃
/hの冷却速度で900℃まで徐冷したが、この処理によ
って約20mm角で厚さが約9mmの配向したNd123結晶
から成るNdBa2Cu3x 酸化物超電導バルク体を成長させ
ることができた。
After completion of the seeding, the precursor is placed at 1 ° C.
The cooling was performed slowly at a cooling rate of 900 ° C. to 900 ° C., but this process allowed the growth of an NdBa 2 Cu 3 O x oxide superconducting bulk composed of oriented Nd123 crystals of about 20 mm square and about 9 mm thick. Was.

【0031】[0031]

【効果の総括】以上に説明した如く、この発明によれ
ば、種結晶として必ずしも分解温度の高いものを用いる
必要がなく、作製する酸化物超電導バルク体のRE12
3相と同じ組成の配向結晶を種結晶として用いることも
できるので酸化物超電導バルク体の製造工程を簡略化す
ることができだけでなく、不純物が少ない高性能RE1
23系酸化物超電導バルク体の製造安定性をも著しく向
上させることが可能となるなど、産業上極めて有用な効
果がもたらされる。
As described above, according to the present invention, it is not necessary to use a seed crystal having a high decomposition temperature as a seed crystal.
Since the oriented crystal having the same composition as the three phases can be used as the seed crystal, not only can the manufacturing process of the bulk oxide superconductor be simplified, but also the high-performance RE1 with few impurities can be used.
Industrially extremely useful effects are obtained, for example, the production stability of the 23 type oxide superconducting bulk body can be significantly improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】溶融凝固法によりRE123系酸化物超電導バ
ルク体を作製する際における、従来の種付け時期を説明
したバルク体作製原料の加熱冷却曲線図であり、 (a)と
(b) はそれぞれ冷却手法の異なる例を示している。
FIG. 1 is a heating / cooling curve diagram of a bulk material producing raw material illustrating a conventional seeding time when producing a RE123-based oxide superconducting bulk material by a melt-solidification method.
(b) shows different examples of the cooling method.

【図2】溶融凝固法によりRE123系酸化物超電導バ
ルク体を作製する際における、本発明法での種付け時期
を説明したバルク体作製原料の加熱冷却曲線図である。
FIG. 2 is a heating / cooling curve diagram of a raw material for producing a bulk body, illustrating a seeding time in the method of the present invention when producing a RE123-based oxide superconducting bulk body by a melt solidification method.

【図3】本発明法に係る種付け手法の一例を説明した模
式図である。
FIG. 3 is a schematic diagram illustrating an example of a seeding method according to the method of the present invention.

【図4】バルク体作製原料(前駆体)への種結晶の接触
状況に関する説明図である。
FIG. 4 is an explanatory diagram relating to a contact state of a seed crystal with a raw material (precursor) for producing a bulk body.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 化学組成が一般式REBa2Cu3x (RE
は希土類元素の1種又は2種以上)で表され、かつ12
3相結晶構造を有して成るRE123系酸化物超電導バ
ルク体を溶融凝固法により作製するに際して、まずバル
ク体作製原料を“作製するREBa2Cu3x 酸化物の12
3相”が分解溶融する温度以上の温度に保持して分解溶
融させた後、これを降温しつつ、前記分解溶融温度より
も低い温度域にて123相結晶構造を有した種結晶をそ
の表面に接触させて種付けし、続いて結晶成長温度で結
晶成長させることを特徴とする、RE123系酸化物超
電導バルク体の作製方法。
The chemical composition is represented by the general formula REBa 2 Cu 3 O x (RE
Is one or more rare earth elements) and 12
In a 3-phase crystal structure RE123-based oxide superconducting bulk body made produced by melt solidification method, 12 of REBa 2 Cu 3 O x oxide first bulk body preparing raw material "to produce
After decomposing and melting at a temperature higher than the temperature at which the “three phases” decompose and melt, the seed crystal having a 123-phase crystal structure in the temperature range lower than the decomposing and melting temperature is cooled while the temperature is lowered. A method for producing an RE123-based oxide superconducting bulk material, comprising:
【請求項2】 化学組成が一般式REBa2Cu3x (RE
は希土類元素の1種又は2種以上)で表されるものに加
えて更に特性改善元素であるPt,Rh,Ce及びAgの1種又
は2種以上をも含み、かつ123相結晶構造を有して成
るRE−Ba−Cu−O系酸化物超電導バルク体を溶融凝固
法により作製するに際して、まずバルク体作製原料を
“作製するREBa2Cu3x 酸化物の123相”が分解溶
融する温度以上の温度に保持して分解溶融させた後、こ
れを降温しつつ、前記分解溶融温度よりも低い温度域に
て123相結晶構造を有した種結晶をその表面に接触さ
せて種付けし、続いて結晶成長温度で結晶成長させるこ
とを特徴とする、RE123系酸化物超電導バルク体の
作製方法。
2. The chemical composition has a general formula of REBa 2 Cu 3 O x (RE
Contains one or more rare earth elements), and further contains one or more of Pt, Rh, Ce and Ag, which are characteristic improving elements, and has a 123 phase crystal structure. When producing a RE-Ba-Cu-O-based oxide superconducting bulk body by melt-solidification method, first, "123 phase of REBa 2 Cu 3 O x oxide to be produced" is decomposed and melted as a bulk body production raw material. After decomposing and melting at a temperature equal to or higher than the temperature, while lowering the temperature, a seed crystal having a 123 phase crystal structure is brought into contact with its surface in a temperature range lower than the decomposition melting temperature to seed the seed crystal, Subsequently, a crystal is grown at a crystal growth temperature, and a method for producing an RE123-based oxide superconducting bulk material.
【請求項3】 種付けの際に種結晶を予熱して用いるこ
とを特徴とする、請求項1又は2に記載のRE123系
酸化物超電導バルク体の作製方法。
3. The method for producing an RE123-based oxide superconducting bulk material according to claim 1, wherein a seed crystal is preheated and used at the time of seeding.
【請求項4】 種結晶として“作製するREBa2Cu3x
酸化物バルク体”と同じ化学組成の結晶体を用いること
を特徴とする、請求項1乃至3の何れかに記載のRE1
23系酸化物超電導バルク体の作製方法。
4. REBA 2 Cu 3 O x to be prepared as a seed crystal
The RE1 according to any one of claims 1 to 3, wherein a crystal having the same chemical composition as that of the "oxide bulk body" is used.
Manufacturing method of 23 type oxide superconducting bulk body.
【請求項5】 種付けに当って、“種付け温度相当の融
点を有した純金属又は合金”の線材で支持した種結晶を
種付け面に近づけ、種付け面付近の温度による線材の溶
融により種結晶を種付け面へ落下させて種付けすること
を特徴とする、請求項1乃至4の何れかに記載のRE1
23系酸化物超電導バルク体の作製方法。
5. In seeding, a seed crystal supported by a wire of “pure metal or alloy having a melting point corresponding to the seeding temperature” is brought close to the seeding surface, and the seed crystal is melted by the temperature near the seeding surface. The RE1 according to any one of claims 1 to 4, wherein the RE1 is dropped on a seeding surface and seeded.
Manufacturing method of 23 type oxide superconducting bulk body.
JP11047338A 1999-02-25 1999-02-25 Production of re123 oxide superconductive bulk body Pending JP2000247795A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11047338A JP2000247795A (en) 1999-02-25 1999-02-25 Production of re123 oxide superconductive bulk body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11047338A JP2000247795A (en) 1999-02-25 1999-02-25 Production of re123 oxide superconductive bulk body

Publications (1)

Publication Number Publication Date
JP2000247795A true JP2000247795A (en) 2000-09-12

Family

ID=12772418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11047338A Pending JP2000247795A (en) 1999-02-25 1999-02-25 Production of re123 oxide superconductive bulk body

Country Status (1)

Country Link
JP (1) JP2000247795A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104790038A (en) * 2015-05-14 2015-07-22 上海交通大学 Method for controlling fluid loss in REBCO pseudo-single crystal growth process
CN109943890A (en) * 2019-03-21 2019-06-28 上海交通大学 A method of REBCO high-temperature superconductive crystal is grown using novel precursor component
CN113443907A (en) * 2021-04-26 2021-09-28 傲普(上海)新能源有限公司 Material performance improvement method for high-temperature superconducting flywheel energy storage

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104790038A (en) * 2015-05-14 2015-07-22 上海交通大学 Method for controlling fluid loss in REBCO pseudo-single crystal growth process
CN109943890A (en) * 2019-03-21 2019-06-28 上海交通大学 A method of REBCO high-temperature superconductive crystal is grown using novel precursor component
CN109943890B (en) * 2019-03-21 2021-02-12 上海交通大学 Method for growing REBCO high-temperature superconducting crystal by using precursor component
CN113443907A (en) * 2021-04-26 2021-09-28 傲普(上海)新能源有限公司 Material performance improvement method for high-temperature superconducting flywheel energy storage

Similar Documents

Publication Publication Date Title
US5084436A (en) Oriented superconductor containing a dispersed non-superconducting phase
US5474976A (en) Production of oxide superconductors having large magnetic levitation force
US8193122B2 (en) Superconductor fabrication
JPH06122588A (en) Preparation of oxide crystal
JP2000247795A (en) Production of re123 oxide superconductive bulk body
JPH05193938A (en) Oxide superconductor and production thereof
JP4628041B2 (en) Oxide superconducting material and manufacturing method thereof
JP3330962B2 (en) Manufacturing method of oxide superconductor
JP3159764B2 (en) Manufacturing method of rare earth superconductor
JP3854364B2 (en) Method for producing REBa2Cu3Ox-based superconductor
US20070099800A1 (en) Enhanced melt-textured growth
JP3242350B2 (en) Oxide superconductor and manufacturing method thereof
JPH10265221A (en) Production of oxide superconductor
JPH05279034A (en) Production of oxide superconductor having large magnetic floating power
JP4628042B2 (en) Oxide superconducting material and manufacturing method thereof
JP4951790B2 (en) Manufacturing method of oxide superconductivity
JP3471443B2 (en) Manufacturing method of oxide superconductor material
JP4153651B2 (en) Seed crystal of oxide superconducting material and manufacturing method of oxide superconducting material using the same
JP2010100496A (en) Method of manufacturing oxide superconductive bulk body and the oxide superconductive bulk body
JPH0585723A (en) Production of rare earth element-containing oxide superconductor
JPH0524825A (en) Production of rare earth-based oxide us superconductor and raw material powder therefor
JP2004269309A (en) Oxide superconductor and its manufacturing method
JP2009114006A (en) Method for producing oxide superconductive bulky body and oxide superconductive bulky body
JPH0656426A (en) Thermal treatment of oxide superconductor wire
JPH04182394A (en) Production of single crystal superconductor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080729

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080924

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081104