JPH05193938A - Oxide superconductor and production thereof - Google Patents

Oxide superconductor and production thereof

Info

Publication number
JPH05193938A
JPH05193938A JP3162360A JP16236091A JPH05193938A JP H05193938 A JPH05193938 A JP H05193938A JP 3162360 A JP3162360 A JP 3162360A JP 16236091 A JP16236091 A JP 16236091A JP H05193938 A JPH05193938 A JP H05193938A
Authority
JP
Japan
Prior art keywords
phase
precursor
temperature
temperature range
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3162360A
Other languages
Japanese (ja)
Other versions
JP2556401B2 (en
Inventor
Mitsuru Morita
充 森田
Keiichi Kimura
圭一 木村
Katsuyoshi Miyamoto
勝良 宮本
Kiyoshi Sawano
清志 澤野
Kiyonori Takebayashi
聖記 竹林
Masamoto Tanaka
将元 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3162360A priority Critical patent/JP2556401B2/en
Priority claimed from JP4055203A external-priority patent/JP2550253B2/en
Priority claimed from JP4143670A external-priority patent/JPH07106906B2/en
Publication of JPH05193938A publication Critical patent/JPH05193938A/en
Application granted granted Critical
Publication of JP2556401B2 publication Critical patent/JP2556401B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain a large-sized single crystalline material by changing the kind or kind and compsn. of RE of the rare earth element RE-contg. oxide superconductor and controlling crystal growth by utilizing the difference between the crystal forming temps. intrinsic to the respective components of the RE. CONSTITUTION:This oxide superconductor is the multi compound oxide of >=2 kinds of rare earth elements among Y.Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb and Ln, Ba and Cu. This oxide consists of the structure finely dispersed with RE2BaCuO5 phase (211 phase) in single crystalline REBa2Cu3O7-x (123 phase). The 123 phase is formed by constituting the multiple layers in order of 123 phase forming temps. T by every RE compsn. The powder of the oxide, etc., is mixed with the compsn. within the ABC region of a triangle to form the layer. Further, the RE-contg. layer varying in the forming temp. from the above- mentioned RE is formed and these layers are stacked and press molded in such a manner that various kinds of the temps. T are continuous to a high or low side. The layer of the max. temp. T is formed as the uppermost layer. The layers are slowly cooled in a temp. T range after heating and half melting, by which the crystal of the 123 phase is grown at a rate of <=5mm/hour.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は酸化物超電導体およびそ
の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an oxide superconductor and a method for producing the same.

【0002】[0002]

【従来の技術】YBa2 Cu37-X 型(123相型)
超電導体は溶融法の一種であるQMG(Quench
and Melt Growth)法により、77K,
1Tの条件において104 A/平方センチメートル以上
の臨界電流密度(Jc)を有しており、実用に耐える特
性を有していることが明らかになっている(New S
uperconducting Materials
Forum NewsNO.10.(1988)P1
5)。また、これらのQMG材料の大型化やRE元素の
組合せに関する研究も行なわれている(Physica
C 162−164(1989)PP1217−12
18、又は第50回応用物理学会学術講演会講演予稿集
(1989秋季)39a−P−10)。これらはY元素
一種類あるいは、種々のRE元素を含んだ酸化物超電導
材を温度勾配中で一方向に成長させて結晶を大型化する
ものである。
2. Description of the Related Art YBa 2 Cu 3 O 7-X type (123 phase type)
Superconductor is a kind of melting method, QMG (Quench).
and Melt Growth) method, 77K,
It has a critical current density (Jc) of 10 4 A / cm 2 or more under the condition of 1T, and it has been clarified that it has characteristics for practical use (New S.
upperconducting Materials
Forum News NO. 10. (1988) P1
5). In addition, research into increasing the size of these QMG materials and combinations of RE elements is also being conducted (Physica
C 162-164 (1989) PP1217-12
18 or Proceedings of the 50th Academic Meeting of the Applied Physics Society of Japan (Autumn 1989) 39a-P-10). These are ones in which an oxide superconducting material containing one type of Y element or various RE elements is grown in one direction in a temperature gradient to enlarge the crystal.

【0003】このような結晶の大型化の研究は、多結晶
状組織では結晶粒界が弱結合として作用して超電導特性
を阻害するので、かかる問題を解決するためになされた
ものである。しかしながら前記先行技術ではせいぜい
0.3立方センチメートルの大きさの単結晶材しか得ら
れず123相の組織を一方向に成長させて大きな単結晶
状にすることは極めて困難であった。すなわち、先行技
術では結晶核生成手段、結晶成長の制御方法等が解決さ
れてなかったのである。
The study on the enlargement of such a crystal has been made to solve such a problem because the crystal grain boundary acts as a weak bond in the polycrystalline structure to inhibit the superconducting property. However, in the above-mentioned prior art, only a single crystal material having a size of 0.3 cubic centimeters was obtained at most, and it was extremely difficult to grow the structure of 123 phase in one direction to form a large single crystal. That is, the prior art has not solved the means for generating crystal nuclei, the method for controlling crystal growth, and the like.

【0004】[0004]

【発明が解決しようとする課題】本発明はRE(Yを含
む希土類元素の1種またはその組合せ)、BaおよびC
uの複合酸化物である酸化物超電導体において大型の単
結晶状のREBa2 Cu37-X 相(以下123相と称
す)から構成された材料を提供することを目的とする。
更に本発明は大型の123相の中に極めて微細な粒径を
もつRE2 BaCuO5 相(以下211相と称す)を分
散した組織の材料を提供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention provides RE (one or a combination of rare earth elements including Y), Ba and C.
It is an object of the present invention to provide a material composed of a large single crystal REBa 2 Cu 3 O 7-X phase (hereinafter referred to as 123 phase) in an oxide superconductor which is a composite oxide of u.
A further object of the present invention is to provide a material having a structure in which a RE 2 BaCuO 5 phase (hereinafter referred to as 211 phase) having an extremely fine grain size is dispersed in a large 123 phase.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明はRE元素の種類又は該種類とそれらの混合
比(以下REの組成という)を変化させることによりR
Eの各成分固有の結晶生成温度の違いを利用して、結晶
成長をコントロールする技術を提供するもので、更に種
結晶を接種して、大型の結晶体を製造する方法を提供す
るものである。
In order to achieve the above object, the present invention provides R by changing the kind of RE element or the kind and the mixing ratio thereof (hereinafter referred to as RE composition).
The present invention provides a technique for controlling crystal growth by utilizing the difference in crystal formation temperature peculiar to each component of E, and further provides a method for inoculating a seed crystal to produce a large crystal body. ..

【0006】すなわち、本発明は希土類元素の内Y,S
m,Eu,Gd,Dy,Ho,Br,Tm,Ybおよび
Luのグループから選ばれた2種以上からなる元素(以
下RE、と称す)、BaおよびCuの複合酸化物である
超電導体において、前記超電導体が、単結晶状の123
相中に211相が微細に分散した組織からなり、さらに
前記123相がREの組成毎に多層にかつ、各層の12
3相生成温度順に構成されている酸化物高温超電導体で
あり、また、本発明は該酸化物高温超電導体を製造する
方法であって、前記RE,BaおよびCuの酸化物(複
合酸化物)粉末をそれぞれの金属元素のmol%(R
E,Ba,Cu)が、(10,60,30)、(10,
20,70)、(50,20,30)の点で結ばれる領
域内の組成であるように混合し、次いで該混合粉末中の
RE組成の123相生成温度と異なる他のRE組成の混
合粉末を上記の領域内の組成になるように混合し、更に
かかる複数の混合粉末を多層にかつ、各層のRE組成の
123相生成温度順に積層したのち、加圧成形して前駆
体を形成し、次に該前駆体をRE組成によって定まる固
相(211相)とBa,Cuの酸化物で定まる液相とが
共存する温度領域(固液共存領域)に加熱して半溶融状
態にした後、RE組成によって定まる123相生成温度
領域を所定条件で徐冷又は段階保定冷却すること、又は
上記固液共存領域から種結晶の接種温度まで冷却し、該
温度で種結晶(前駆体のRE組成中の最高の123相生
成温度より高い123相生成温度を有するRE組成に係
る123相の単結晶)を接種したのち、該前駆体を前記
と同様な条件で徐冷又は段階保定冷却することを特徴と
する。かかる方法により123相の該生成を制御し、そ
の成長を大型化せしめることで前述の特徴を有する酸化
物超電導体を製造するものである。
That is, according to the present invention, among rare earth elements, Y and S
m, Eu, Gd, Dy, Ho, Br, Tm, Yb and an element consisting of two or more kinds selected from the group of Lu (hereinafter referred to as RE), a superconductor which is a composite oxide of Ba and Cu, The superconductor is a single crystal 123
The phase consists of a structure in which 211 phases are finely dispersed, and the 123 phases are multi-layered for each composition of RE and 12 of each layer.
An oxide high-temperature superconductor composed of three-phase generation temperatures in order, and the present invention is a method for producing the oxide high-temperature superconductor, comprising the oxide of RE, Ba and Cu (complex oxide). The powder is a mol% of each metal element (R
E, Ba, Cu) is (10, 60, 30), (10,
20, 70), and (50, 20, 30) are mixed in such a manner that the composition is in a region connected to each other, and then the mixed powder of another RE composition different from the 123 phase formation temperature of the RE composition in the mixed powder. Are mixed so as to have a composition within the above-mentioned region, and further, a plurality of such mixed powders are laminated in a multi-layer, and after laminating in order of the 123 phase generation temperature of the RE composition of each layer, pressure molding is performed to form a precursor, Next, the precursor is heated to a temperature region (solid-liquid coexistence region) in which a solid phase (211 phase) determined by the RE composition and a liquid phase determined by the oxides of Ba and Cu coexist, and is then in a semi-molten state, The 123 phase formation temperature region determined by the RE composition is gradually cooled or stepwise-cooled under predetermined conditions, or cooled from the solid-liquid coexistence region to the seed crystal inoculation temperature, and the seed crystal (at the RE composition of the precursor Higher than the highest 123-phase formation temperature of 1 After inoculation of a single crystal) of the 123 phase of the RE composition having a three-phase formation temperature, and wherein the gradual cooling or steps retention cooling the precursor at the same conditions. The oxide superconductor having the above-mentioned characteristics is manufactured by controlling the generation of the 123 phase and increasing the growth thereof by such a method.

【0007】[0007]

【作用】酸化物超電導体における123相の生成温度T
gは含まれる希土類元素(Yを含む)の組成で決まる。
大気中においては、希土類元素の内、表1に示す元素
(RE)の123相の生成温度は、ほぼこの表に示す温
度でる。
[Function] The temperature T at which the 123 phase is generated in the oxide superconductor
g is determined by the composition of the contained rare earth element (including Y).
In the atmosphere, the production temperature of the 123 phase of the element (RE) shown in Table 1 among the rare earth elements is almost the temperature shown in this table.

【0008】[0008]

【表1】 [Table 1]

【0009】原子番号の小さい、すなわちイオン半径の
大きいRE元素ほど高い生成温度を有する。また複数の
RE元素を混合した場合、全RE元素に占めるRE1の
モル分率がml,RE2のモル分率がm2、…の組成を
有する結晶の生成温度Tg〔RE1(ml),RE2
(m2),…〕は、ほぼ次のような式で表わすことがで
きる。 Tg=(Tg(RE1)×ml+Tg(RE2)×m2+…)
The RE element having a smaller atomic number, that is, a larger ionic radius has a higher production temperature. When a plurality of RE elements are mixed, the formation temperature Tg [RE1 (ml), RE2 of a crystal having a composition in which the molar fraction of RE1 in all RE elements is ml, the molar fraction of RE2 is m2, ...
(M2), ...] can be expressed by the following equation. Tg = (Tg (RE1) × ml + Tg (RE2) × m2 + ...)

【0010】なお、希土類元素の内、Ce,Pr,Tb
の各元素は単体で123相構造を作らないので本発明の
希土類元素として用いない。また、Laに関して溶融状
態からの初晶は(La1-X BaX2 CuO4 になり、
Ndに関してNd1+Y Ba2- Y Cu37-X となるので
本発明が目的とする純正型123相を生成しない。従っ
て本発明では単独で使用しないが、La,Ndは他のR
E系に少量添加することにより123相の生成温度を高
めることがきるので、REを選択する際、その温度幅を
広くすることができ、また、種結晶の123相生成温度
を高くするときにも使用できる。
Among the rare earth elements, Ce, Pr, Tb
Since each element does not form a 123 phase structure by itself, it is not used as the rare earth element of the present invention. Regarding La, the primary crystal from the molten state becomes (La 1-X Ba X ) 2 CuO 4 ,
With respect to Nd, it becomes Nd 1 + Y Ba 2− Y Cu 3 O 7-X , so that the pure type 123 phase intended by the present invention is not generated. Therefore, in the present invention, although not used alone, La and Nd are other R
Since the production temperature of the 123 phase can be increased by adding a small amount to the E system, the temperature range can be widened when RE is selected, and when the 123 phase production temperature of the seed crystal is increased. Can also be used.

【0011】以下、これらの知見を基にした本発明の超
電導体の製造方法について説明する。RE,Ba及びC
uの酸化物および/もしくは複合酸化物の各々の金属元
素のモル比(RE,Ba,Cu)が、図1に示す三元平
衡状態図の点A:(10,60,30)、B:(10,
20,70)、C:(50,20,30)で結ばれる領
域内の組成であるように混合して層を形成する。この領
域外の組成は固液共存域への加熱時に後述する前駆体の
形状が保持されず、また、加熱後の冷却過程で123相
の生成が円滑に進行しないのである。なお、上記モル比
の好ましい範囲は同図に示すD:(30,33,3
7)、E:(15,38,47)、F(15,30,5
5)、G:(30,25,45)の点で結ばれた領域内
の組成である。
The method of manufacturing the superconductor of the present invention based on these findings will be described below. RE, Ba and C
The molar ratios (RE, Ba, Cu) of the respective metal elements of the oxide of u and / or the composite oxide are points A: (10, 60, 30) and B: in the ternary equilibrium diagram shown in FIG. (10,
20, 70) and C: (50, 20, 30) are mixed to form a layer having a composition in a region connected by (50, 20, 30). The composition outside this region does not retain the shape of the precursor described later during heating to the solid-liquid coexistence region, and the 123 phase does not smoothly proceed in the cooling process after heating. The preferable range of the above molar ratio is D: (30,33,3) shown in FIG.
7), E: (15, 38, 47), F (15, 30, 5)
5), G: (30, 25, 45) is the composition in the region connected by the points.

【0012】この場合、出発原料としてはRE23
BaCuO3 、BaO、CuO、CuO2 、BaCuO
2 、RE2 BaCuO5 、REBa2 Cu37-X 等が
考えられる。次に前記混合粉末中のRE元素とは123
相の生成温度が異なる他のRE元素、すなわち前記粉末
混合層の123相生成温度より低い温度または高い温度
を有するRE元素を上記の領域内の組成になるように混
合して、前記混合粉末層の上に層状に載置し複層を形成
する。
In this case, the starting material is RE 2 O 3 ,
BaCuO 3 , BaO, CuO, CuO 2 , BaCuO
2 , RE 2 BaCuO 5 , REBa 2 Cu 3 O 7-X, etc. are considered. Next, the RE element in the mixed powder is 123
Another RE element having a different phase generation temperature, that is, an RE element having a temperature lower or higher than the 123-phase generation temperature of the powder mixing layer is mixed so as to have a composition within the above range, and the mixed powder layer is mixed. A plurality of layers are formed by placing them in layers on top of each other.

【0013】この操作をくりかえして複数のRE組成よ
りなる混合粉末を多層に積上げるが、この際、各層のR
E組成の123相生成温度を高温側へ連続するようにし
て積層する。上記層の厚さは本発明の得られる効果と作
業能率などを考慮して約2cm以下が好ましい。このよ
うに各層を積層した後、加圧し成形して前駆体を形成す
る。
By repeating this operation, the mixed powders having a plurality of RE compositions are piled up in multiple layers.
Lamination is performed so that the 123-phase formation temperature of the E composition is continuous to the high temperature side. The thickness of the above layer is preferably about 2 cm or less in consideration of the effects obtained by the present invention and work efficiency. After laminating each layer in this manner, pressure is applied to form a precursor.

【0014】なお、かかる前駆体を重ねクエンチ法で製
作してもよい。すなわち、前記混合粉末層を1200℃
以上の温度に加熱して溶融体をつくり、該溶融体を冷却
体例えば冷えた熱伝導率の高い金属などでできた塊に押
付けて急冷すること(ハンマークエンチ法)によって成
形体を形成し、次に、前記成形体内の123相生成温度
を異にする他のRE元素を含む混合粉末層を上記と同様
の作業で成形体を形成し、これら複数の成形体を各成形
体の123相生成温度が高温側に連続するようにして積
重ねて前駆体を形成するのである。
The precursor may be manufactured by the stack quenching method. That is, the mixed powder layer is heated to 1200 ° C.
A molten body is formed by heating to the above temperature, and the molten body is pressed against a lump made of a cooled metal such as a metal having high thermal conductivity to be rapidly cooled (hammer quench method) to form a molded body, Next, a mixed powder layer containing another RE element having a different 123 phase formation temperature in the formed body is formed into a formed body by the same operation as above, and these plural formed bodies are formed into 123 phase of each formed body. The precursor is formed by stacking so that the temperature continues to the high temperature side.

【0015】粉末積層法または重ねクエンチ法でこのよ
うに製造された前駆体の組成はREの酸化物がBaおよ
びCuの酸化物中に微細に分散した組成を有している。
次に、前記前駆体を用いて超電導体を製造する方法につ
いて説明する。
The composition of the precursor thus produced by the powder lamination method or the overlap quench method has a composition in which the RE oxide is finely dispersed in the Ba and Cu oxides.
Next, a method for producing a superconductor using the precursor will be described.

【0016】先ず、前記前駆体を固液共存領域の温度範
囲、すなわち123相生成温度(Tg)超、211相溶
解温度(Td)未満の温度範囲(すなわち、下限はLu
系123相が十分分解する温度であり、上限はSm系2
11相が分解して形状を保持できない温度(約900〜
1300℃))に15〜45分間加熱して半溶融状態に
し、液相(Ba,Cu酸化物)中に211相(固相)を
生成させる。
First, the temperature range of the precursor in the solid-liquid coexistence region, that is, the temperature range above 123 phase formation temperature (Tg) and below 211 phase dissolution temperature (Td) (that is, the lower limit is Lu).
This is the temperature at which the system 123 phase is sufficiently decomposed, and the upper limit is Sm system 2
The temperature at which 11 phases decompose and cannot retain their shape (about 900 ~
(1300 ° C.)) for 15 to 45 minutes to bring it into a semi-molten state to form a 211 phase (solid phase) in the liquid phase (Ba, Cu oxide).

【0017】次に、上記温度範囲から任意の冷却速度で
(Tg(H)+10)℃の温度迄冷却し、(Tg(H)
+10)℃〜(Tg(L)−40)℃の温度範囲を徐冷
または、これと実質的に等価な段階保定冷却して123
相を5mm/hr以下の成長速度で成長させる。ここで
Tg(H)は前駆体の各RE組成の123相生成温度の
内最高の温度を表し、又、Tg(L)は該生成温度の内
最低の温度を表す。
Next, the temperature is cooled from the above temperature range to a temperature of (Tg (H) +10) ° C. at an arbitrary cooling rate, and (Tg (H))
The temperature range from +10) ° C to (Tg (L) -40) ° C is gradually cooled, or stepwise retained cooling substantially equivalent thereto is carried out to 123
The phase is grown at a growth rate of 5 mm / hr or less. Here, Tg (H) represents the highest temperature of the 123 phase production temperatures of each RE composition of the precursor, and Tg (L) represents the lowest temperature of the production temperatures.

【0018】123相の結晶はその構造が複雑であるた
め結晶化の際のエントロピーの変化が大きく、比較的大
きな過冷状態にあっても核生成しにくく、成長が充分終
了していないことがある。そのため、徐冷又は段階保定
冷却は、Sm系123相が生成過程に入る1070℃か
らLu系の123相が十分成長し終える温度840℃ま
で(表1参照)の範囲内では必須の作業である。
Since the 123-phase crystal has a complicated structure, the entropy changes greatly during crystallization, and it is difficult for nucleation to occur even in a relatively large supercooled state, and the growth is not completed sufficiently. is there. Therefore, the gradual cooling or the stepwise cooling is an essential work within a range from 1070 ° C. in which the Sm-based 123 phase enters the production process to 840 ° C. at which the Lu-based 123 phase finishes growing sufficiently (see Table 1). ..

【0019】なお、上記徐冷または段階保定冷却におけ
る実質的な平均冷却速度R(℃/hr)は次の式より求
める。 R≦k・ΔTg/D ここでk:目標粒成長速度(mm/hr) ΔTg:最大Tg偏差 但し、ΔTg=(Tg(H)+10)℃−(Tg(L)
−40)℃ D:全厚(mm)
The substantial average cooling rate R (° C./hr) in the slow cooling or the stepwise fixed cooling is calculated by the following equation. R ≦ k · ΔTg / D where k: target grain growth rate (mm / hr) ΔTg: maximum Tg deviation where ΔTg = (Tg (H) +10) ° C .− (Tg (L)
-40) ° C D: Total thickness (mm)

【0020】上記式の冷却速度で徐冷または段階保定冷
却することにより、各層の123相生成温度に応じて順
次冷却されていくので、特に後述する種結晶を接種する
技術に従うと、各層に確実に単結晶の123相を生ぜし
めることができる。なお、上記徐冷は2℃/cm以上の
温度勾配の雰囲気内で行ってもよく、又、この温度勾配
になるよう前駆体を移動してもよい。
By gradually cooling or stepwise holding cooling at the cooling rate of the above formula, the layers are sequentially cooled according to the 123-phase formation temperature of each layer. It is possible to produce a single crystal 123 phase. The gradual cooling may be performed in an atmosphere having a temperature gradient of 2 ° C./cm or more, or the precursor may be moved so as to obtain this temperature gradient.

【0021】前記の123相生成温度での処理は、前駆
体中の最高の123相生成温度Tg(H)を有する層か
ら核を発生させ、順次、より低い上記温度を有する層へ
結晶成長方位を受け継がせながら結晶を成長させる。こ
のように多層に構成することにより同一寸法の単一層の
ものに比較して他の結晶核の発生を極めて効果的に抑制
することができる。
The treatment at the 123-phase formation temperature described above causes nuclei to be generated from the layer having the highest 123-phase formation temperature Tg (H) in the precursor, and the crystal growth orientations are sequentially formed in the layer having the lower temperature. The crystal is grown while inheriting. With such a multilayer structure, it is possible to extremely effectively suppress the generation of other crystal nuclei as compared with a single layer having the same size.

【0022】次に、本発明の効果を一層発揮するため前
駆体中の最高123相生成温度Tg(H)よりも更に高
い123相生成温度を有する123相を含む単結晶状の
種結晶を前駆体に接種させる技術について説明する。先
ず、前記の前駆体を固液共存温度範囲に加熱して半溶融
状態にする。
Next, in order to further exert the effect of the present invention, a single crystal seed crystal containing a 123 phase having a 123 phase formation temperature higher than the maximum 123 phase formation temperature Tg (H) in the precursor is prepared as a precursor. The technique of inoculating the body will be explained. First, the precursor is heated to a solid-liquid coexistence temperature range to be in a semi-molten state.

【0023】次に、上記温度範囲から種結晶接種温度、
すなわち900〜1100℃の温度範囲まで冷却し、こ
の温度範囲で種結晶を接種する。上記温度範囲の下限は
Yb系123相を、上限はLa,Ndを添加したSm系
123相の結晶を、それぞれ種結晶として用いることが
可能なところから限定された。
Next, from the above temperature range, the seed crystal inoculation temperature,
That is, it is cooled to a temperature range of 900 to 1100 ° C., and seed crystals are inoculated in this temperature range. The lower limit of the temperature range is limited to the Yb-based 123 phase, and the upper limit is limited to the point that a crystal of the Sm-based 123 phase added with La and Nd can be used as a seed crystal.

【0024】種結晶は前駆体中のRE組成の123相の
生成温度より高い123相生成温度を有するRE組成か
らなり、少くとも前駆体に接触する面が単結晶状の構造
をもつ結晶体である。このように種結晶を接種したのち
に、該前駆体を(Tg(L)−40)℃〜(Tg(H)
+10)℃の温度領域で徐冷または段階保定冷却する。
The seed crystal is a crystal having a RE composition having a 123 phase formation temperature higher than the formation temperature of the 123 phase of the RE composition in the precursor, and has a single crystal structure at least on the surface in contact with the precursor. is there. After the seed crystal was inoculated in this manner, the precursor was heated to (Tg (L) -40) ° C. to (Tg (H)).
Slow cooling or stepwise cooling in the temperature range of +10) ° C.

【0025】上述のように、前記種結晶(単結晶又は接
触面が単結晶状態の多結晶)を123相が生成する温度
に近い半溶融状態の前駆体に接種すると、種結晶から1
23相の結晶核を確実に生成せしめると共に、種結晶と
同じ任意の方位に123相を成長せしめて該123相の
結晶方位を電流密度の高い方位に一層厳密に制御するこ
とができるので、123相の結晶の大型化と相まって極
めて高い臨界電流密度を得ることができる。
As described above, when the seed crystal (a single crystal or a polycrystal in which the contact surface is in a single crystal state) is inoculated into a precursor in a semi-molten state close to the temperature at which the 123 phase is produced, 1
Since it is possible to reliably generate the 23-phase crystal nuclei and grow the 123-phase in the same arbitrary direction as that of the seed crystal to more strictly control the crystal orientation of the 123-phase to the high current density direction, 123 An extremely high critical current density can be obtained in combination with an increase in the size of the phase crystals.

【0026】また、上記前駆体成分にPt又はRhの少
くとも1種を添加してもよい。これによって、123相
内の211相の粒径を微細にすることができる。添加量
は、Pt:0.2〜2.0wt%、Rh:0.005〜
1.0wt%の範囲であって、これにより本発明の効果
を十分に発揮することができる。
Further, at least one of Pt and Rh may be added to the precursor component. As a result, the grain size of the 211 phase in the 123 phase can be made fine. The addition amount is Pt: 0.2 to 2.0 wt%, Rh: 0.005
It is in the range of 1.0 wt%, whereby the effects of the present invention can be sufficiently exhibited.

【0027】なお、前駆体を熱処理する際、前駆体はな
んらかの物質で支持する必要がある。現在は支持材とし
て主に白金を使用しているが、半溶融状態の液相成分
(BaおよびCuの酸化物)は極めて反応性が高く、長
時間支持材と接触させると液相成分の片寄りや不純物元
素が入るため、結晶性や超電導特性が損なわれる。
When heat treating the precursor, it is necessary to support the precursor with some substance. Currently, platinum is mainly used as a support material, but the liquid phase components (oxides of Ba and Cu) in a semi-molten state have extremely high reactivity, and when contacted with the support material for a long period of time, the liquid phase components are separated The crystallinity and superconducting properties are impaired due to the inclusion of impurities and impurity elements.

【0028】本発明者らは、安定な支持材は123相自
身を用いるのがよいことを見いだした。即ち、前記前駆
体(以下前駆体Mと称す)と該前駆体Mを支持する支持
材との間に、前記前駆体M中の123相のRE組成より
結晶生成温度が高いRE組成を有する別の前駆体Hと前
記前駆体M中の123相のRE組成より結晶生成温度が
低いRE組成を有する別の前駆体Lとを前駆体M−前駆
体L−前駆体H−支持材の順番で配置し、かかる前駆体
を支持材とのバリアーに利用するのである。前駆体Hは
前駆体Mの液相部分が支持材へ流れ出すのを防ぐバリア
ーとして、また前駆体Lは前駆体Hでできた123相の
結晶が成長して前駆体Mの結晶成長を妨げることを防ぐ
バリアーとして用いられる。なお、前記前駆体Mの最下
層の123相が、前駆体Lと同様な作用をなすものであ
れば、前駆体Lを省略しても差支えない。かかるバリア
ーを配置することにより、より効率よく結晶を成長させ
ることができるのである。
The inventors have found that a stable support material should use the 123 phase itself. That is, between the precursor (hereinafter referred to as “precursor M”) and the support material that supports the precursor M, another RE composition having a higher crystal formation temperature than the RE composition of the 123 phase in the precursor M is used. Precursor H and another precursor L having a RE composition having a lower crystal formation temperature than the RE composition of the 123 phase in the precursor M in the order of precursor M-precursor L-precursor H-support material. It is arranged and such a precursor is used as a barrier to the support material. The precursor H serves as a barrier for preventing the liquid phase portion of the precursor M from flowing out to the support material, and the precursor L prevents the 123-phase crystal made of the precursor H from growing and hindering the crystal growth of the precursor M. It is used as a barrier to prevent It should be noted that the precursor L may be omitted as long as the lowermost 123 phase of the precursor M has the same function as the precursor L. By disposing such a barrier, crystals can be grown more efficiently.

【0029】本発明者らは本発明の前駆体に種結晶を接
種した実験を次のように行った。YとYbの割合を表2
に示すように10%ずつ変化させたY(Yb)Ba2
37-X 粉末及びY(Yb)2 BaCuO5 粉末を作
製し、RE:Ba:Cuが(6:9:13)になるよう
にY(Yb)Ba2 Cu57-X 粉末にY(Yb)2
aCuO5 粉末を20モル%ずつ加えた後、1400℃
に加熱溶融し、Yの成分が順にYbに置き変わるように
9回の重ねハンマークエンチにより急冷し前駆体を作製
した。この前駆体のRE成分の違いによる123相生成
温度は次の表2のようになる。
The present inventors conducted an experiment in which the precursor of the present invention was inoculated with a seed crystal as follows. Table 2 shows the ratio of Y and Yb
, Y (Yb) Ba 2 C changed by 10% as shown in FIG.
u 3 O 7-X powder and Y (Yb) 2 BaCuO 5 powder were prepared, and Y (Yb) Ba 2 Cu 5 O 7-X powder was prepared so that RE: Ba: Cu became (6: 9: 13). To Y (Yb) 2 B
After adding 20 mol% of aCuO 5 powder, 1400 ° C.
Was melted by heating, and was rapidly cooled by lap hammer quenching 9 times so that the Y component was sequentially replaced by Yb to prepare a precursor. The 123-phase formation temperature due to the difference in RE component of this precursor is shown in Table 2 below.

【0030】[0030]

【表2】 [Table 2]

【0031】かかる前駆体を1100℃に加熱した後、
前駆体の一端を1020℃まで冷却して、予め作製して
おいたSm系の単結晶を種結晶として半溶融状態の前駆
体の一端の上に乗せた。次にその一端が910℃になる
まで3℃/hrで徐冷した。図2は種結晶と得られた結
晶との接合部分の結晶の構造を示す。種結晶の結晶方位
が受け継がれているようすがわかる。
After heating such a precursor to 1100 ° C.,
One end of the precursor was cooled to 1020 ° C., and an Sm-based single crystal prepared in advance was placed as a seed crystal on one end of the semi-molten precursor. Next, it was gradually cooled at 3 ° C./hr until one end thereof reached 910 ° C. FIG. 2 shows the crystal structure of the junction between the seed crystal and the obtained crystal. It can be seen that the crystal orientation of the seed crystal is inherited.

【0032】次に、上記前駆体を用いて以下の実験を行
った。前記前駆体をY側が上になるようにして、REが
Smであるクエンチ材の上に乗せ、これを1100℃に
加熱した後、5℃/cmの温度勾配を炉内につくり前駆
体のY側を1020℃まで冷却した後、予め作製してお
いたSm系の単結晶を種結晶として半溶融状態の前駆体
のY側に乗せた。次にその一端が910℃になるまで5
℃/cmの温度勾配を保ちながら3℃/hrで徐冷し
た。
Next, the following experiment was conducted using the above precursor. The precursor was placed on a quench material having RE of Sm with the Y side facing upward, heated to 1100 ° C., and then a temperature gradient of 5 ° C./cm was formed in the furnace to make the precursor Y After cooling the side to 1020 ° C., a previously prepared Sm-based single crystal was placed as a seed crystal on the Y side of the semi-molten precursor. Next, 5 until one end reaches 910 ° C
The mixture was gradually cooled at 3 ° C / hr while maintaining the temperature gradient of ° C / cm.

【0033】図3は、得られた超電導体の表面付近の結
晶の構造を示す。表面でも核生成が抑えられているよう
すがわかる。また図4は前駆体と支持台との間に挿入し
たSmのバリアー、即ち前駆体接触部の結晶の構造を示
す。Sm系の超電導体が多結晶状態になっているのに対
しY−Yb系は単結晶の超電導体が得られていることが
わかる。
FIG. 3 shows a crystal structure near the surface of the obtained superconductor. It can be seen that nucleation is suppressed even on the surface. Further, FIG. 4 shows the structure of the Sm barrier inserted between the precursor and the support, that is, the crystal of the precursor contact portion. It can be seen that the Sm-based superconductor is in a polycrystalline state, whereas the Y-Yb system is a single-crystal superconductor.

【0034】上述のように種金属接種法で製造された超
電導体は単結晶状の123相の中に211相が微細に分
散した組織からなり、しかも、前記123相が複数のR
E組成の123相毎に多層にかつ、各層の123相生成
温度が高温側に連続するように積重ねられた構成になっ
ている。
The superconductor manufactured by the seed metal inoculation method as described above has a structure in which 211 phases are finely dispersed in 123 phases of a single crystal, and the 123 phases have a plurality of R phases.
Each of the 123 phases of the E composition has a multilayer structure and is stacked such that the 123 phase generation temperature of each layer is continuous on the high temperature side.

【0035】そして、得られた単結晶状超電導体は平均
直径50mm高さ30mm程度の大きさの円柱形状の材
料であり、前述のPhysica Cで発表された従来
技術による材料に比し、30〜50倍も大きいものであ
る。
The obtained single crystal superconductor is a columnar material having an average diameter of 50 mm and a height of about 30 mm, which is 30 to 30% larger than the conventional material announced in Physica C. It is 50 times larger.

【0036】なお、超電導体における211相は123
相中に体積率で5〜50%の範囲、好ましくは10〜3
0%の範囲で分散しており、その粒径は20μm以下で
微細であり、特にPtまたはRhが添加された場合には
平均粒径で2μm以下(最大5μm程度)の粒径とな
る。
Note that the 211 phase in the superconductor is 123
Volume ratio in the phase is in the range of 5 to 50%, preferably 10 to 3
The particles are dispersed in the range of 0%, and the particle size is fine at 20 μm or less, and particularly when Pt or Rh is added, the average particle size becomes 2 μm or less (about 5 μm at maximum).

【0037】以上の構成になる超電導体はRE組成毎の
異なった123相の積重ねの状態にあるものの各層間に
粒界が存在しないので超電導的に切断された状態になら
ず、極めて多量の電流を流すことができる。
The superconductor having the above-mentioned structure is in the state of stacking 123 phases different for each RE composition, but since there is no grain boundary between the layers, the superconductor is not cut into a superconducting state and an extremely large amount of current flows. Can be drained.

【0038】また、211相は123相に靭性を与える
と共に、超電導体内に通る磁力線を保持する作用(ピン
止め作用)を有するが、本発明では該211相が極めて
微細に組織全般に亘って分散しているので磁力線を確実
に保持することができ、従って、該超電導体を磁場中に
置いても磁力線がピン止めされ、大きな電流密度を得る
ことができる。かかる効果によって、本発明の材料は優
れた超電導特性を示すことができる。
Further, the 211 phase has a function of imparting toughness to the 123 phase and a function of retaining magnetic force lines passing through the superconductor (pinning function), but in the present invention, the 211 phase is extremely finely dispersed throughout the entire structure. Since the magnetic lines of force can be reliably retained, the lines of magnetic force are pinned even when the superconductor is placed in a magnetic field, and a large current density can be obtained. Due to such effects, the material of the present invention can exhibit excellent superconducting properties.

【0039】[0039]

【実施例】【Example】

実施例1 Dy:Erの比を20%ずつ変化させ(100:0),
(80:20),(60:40),(40:60),
(20:80),(0:100)の6種類のRE組成を
Dy23 とEr23 とを混練することで作製し、R
E:Ba:Cuが(25:35:40)になるようにB
aCuO2 とCuOを混合して6種類混合粉末を得た。
直径30mmの金型を用いDy層から順にEr層へと積
層し一層の厚さを約6mmにし、高さ約35mmの円柱
状の前駆体を作製した。これを図5に示す。
Example 1 The ratio of Dy: Er was changed by 20% (100: 0),
(80:20), (60:40), (40:60),
Six types of RE compositions (20:80) and (0: 100) were prepared by kneading Dy 2 O 3 and Er 2 O 3, and R
B so that E: Ba: Cu becomes (25:35:40)
Six kinds of mixed powders were obtained by mixing aCuO 2 and CuO.
Using a die having a diameter of 30 mm, the Dy layer was sequentially laminated to the Er layer to have a thickness of about 6 mm to prepare a columnar precursor having a height of about 35 mm. This is shown in FIG.

【0040】この前駆体はEr側を下にしてPtの板に
よって支持し、大気中において室温から1180℃まで
2時間で昇温した後、30分間保定し1020℃まで1
00℃/hrで冷却しさらに940℃まで0.5℃/h
rで冷却した。その後室温まで炉内で冷却し、酸素気流
中で800℃に再加熱し200℃まで8℃/hrの冷却
速度で徐冷した。
This precursor was supported by a Pt plate with the Er side facing down, heated from room temperature to 1180 ° C. in the atmosphere for 2 hours, and then held for 30 minutes and kept at 1020 ° C. for 1 hour.
Cooling at 00 ℃ / hr and 0.5 ℃ / h up to 940 ℃
Cooled at r. Then, it was cooled to room temperature in the furnace, reheated to 800 ° C. in an oxygen stream, and gradually cooled to 200 ° C. at a cooling rate of 8 ° C./hr.

【0041】得られた試料は3つの大きな結晶粒からな
っており、最も大きいものは15立方センチメートル程
度の容積を有しており、極めて大きな超電導材料を得る
ことができた。
The obtained sample was composed of three large crystal grains, and the largest one had a volume of about 15 cubic centimeters, and an extremely large superconducting material could be obtained.

【0042】実施例2 Dy:Ho:Erの比を(100:0:0),(50:
50:0),(0:100:0),(0:50:5
0),(0:0:100)、5種類のRE組成をDy2
3 ,Ho23 ,Er23 らを混練することで作製
し、さらにRE:Ba:Cuが(25:28:47)に
なるようにBaCuO2 とBaCu23 を混合して5
種類混合粉末を得た。直径50mmの金型を用いDy層
からEr層へ上記の順に積層し一層の厚さを約6mmに
し、高さ30mmの円柱状の前駆体を作製した。
Example 2 The ratio of Dy: Ho: Er was (100: 0: 0), (50:
5: 0), (0: 100: 0), (0: 50: 5)
0), (0: 0: 100), and 5 types of RE compositions with Dy 2
It was prepared by kneading O 3 , Ho 2 O 3 , Er 2 O 3 and the like. Further, BaCuO 2 and BaCu 2 O 3 were mixed so that RE: Ba: Cu became (25:28:47). 5
A mixed powder was obtained. Using a die having a diameter of 50 mm, the Dy layer and the Er layer were laminated in the above order to have a thickness of about 6 mm, and a columnar precursor having a height of 30 mm was produced.

【0043】この前駆体はEr側を下にしてPtの板に
よって支持し、大気中において室温から1180℃まで
2時間で昇温した後、30分間保定し1040℃まで1
00℃/hrで冷却し、1040℃においてSm:Nd
が7:3のRE組成を有する種結晶を用い。劈開面を半
溶融状態の前駆体の上に乗せ種付けを行った。さらに1
020から940℃まで0.5℃/hrで冷却した。そ
の後室温まで炉内で冷却し、酸素気流中で800℃に再
加熱し200℃まで8℃/hrの冷却速度で徐冷した。
This precursor was supported by a Pt plate with the Er side facing down, heated from room temperature to 1180 ° C. in the atmosphere for 2 hours, and then held for 30 minutes and kept at 1040 ° C. for 1 hour.
Cooled at 00 ° C / hr and at 1040 ° C Sm: Nd
Using a seed crystal having a RE composition of 7: 3. The cleaved surface was placed on the semi-molten precursor and seeding was performed. 1 more
Cooled from 020 to 940 ° C at 0.5 ° C / hr. Then, it was cooled to room temperature in the furnace, reheated to 800 ° C. in an oxygen stream, and gradually cooled to 200 ° C. at a cooling rate of 8 ° C./hr.

【0044】得られた試料は図6に示すように直径約4
3mm、高さ約27mmの円柱体に支持材の白金の近傍
で種結晶と異なる方位の小さな結晶が2つできていた
が、大部分は種結晶と同じ方位の単一の結晶粒からなっ
ており、約35立方センチメートルの大きさの超電導材
料を得ることができた。
The obtained sample has a diameter of about 4 as shown in FIG.
Two small crystals with a different orientation from the seed crystal were formed in the vicinity of platinum of the support material on a cylindrical body of 3 mm and a height of about 27 mm, but most of them consisted of a single crystal grain with the same orientation as the seed crystal. And a superconducting material having a size of about 35 cubic centimeters could be obtained.

【0045】実施例3 Y:Erの比を20%ずつ変化させ(100:0),
(80:20),(60:40),(40:60),
(20:80),(0:100)の6種類のRE組成を
有するRE2 BaCuO5 を作製した後、RE:Ba:
Cuが(18:35:47)になるようにBaCuO2
とBaCu22 を混合し、さらに0.5wt%のPt
粉末を添加して6種類混合粉末を得た。直径50mmの
金型を用いY層からEr層へ上記の順に積層し一層の厚
さを約5mmにし、高さ約30mmの円柱状の前駆体を
作製した。
Example 3 The ratio of Y: Er was changed by 20% (100: 0),
(80:20), (60:40), (40:60),
After preparing RE 2 BaCuO 5 having 6 kinds of RE compositions of (20:80) and (0: 100), RE: Ba:
BaCuO 2 so that Cu becomes (18:35:47)
And BaCu 2 O 2 are mixed, and 0.5 wt% Pt is further added.
The powder was added to obtain 6 kinds of mixed powder. Using a die having a diameter of 50 mm, the Y layer to the Er layer were laminated in the above order to make the thickness of one layer about 5 mm and to prepare a columnar precursor having a height of about 30 mm.

【0046】この前駆体はEr側を下にしてPtの板に
よって支持し、大気中において室温から1150℃まで
2時間で昇温した後、30分間保定し1030℃まで1
00℃/hrで冷却し、1030℃においてSm:Nd
が7:3のRE組成を有する種結晶を用い、劈開面を半
溶融状態の前駆体の上に乗せ種付けを行った。さらに1
010から940℃まで0.5℃/hrで冷却した。そ
の後室温まで炉内で冷却し、酸素気流中で700℃に再
加熱し、250℃まで5℃/hrの冷却速度で徐冷し
た。
This precursor was supported by a Pt plate with the Er side facing down, heated from room temperature to 1150 ° C. in 2 hours in the atmosphere, then held for 30 minutes and kept at 1030 ° C. for 1 hour.
Cooled at 00 ° C./hr and at 1030 ° C. Sm: Nd
Using a seed crystal having a RE composition of 7: 3, the cleavage plane was placed on the semi-molten precursor to perform seeding. 1 more
Cooled from 010 to 940 ° C at 0.5 ° C / hr. Then, it was cooled to room temperature in the furnace, reheated to 700 ° C. in an oxygen stream, and gradually cooled to 250 ° C. at a cooling rate of 5 ° C./hr.

【0047】得られた試料は図7に示すように、直径約
46mm、高さ約28mmの円柱体で支持材の白金の近
傍で種結晶と異なる方位の小さな結晶が2つできていた
が、大部分は種結晶と同じ方位の単一の結晶粒からなっ
ており、約40立方センチメートルの大きさの超電導材
料を得ることができた。また、試料振動型磁力計による
磁化率の測定から、本試料は77K,1Tの条件で1.
2×104 A/cm2 のJcが得られた。
As shown in FIG. 7, the obtained sample was a cylindrical body having a diameter of about 46 mm and a height of about 28 mm, and two small crystals having different orientations from the seed crystal were formed in the vicinity of platinum of the supporting material. Most of them consisted of a single crystal grain having the same orientation as the seed crystal, and a superconducting material having a size of about 40 cubic centimeters could be obtained. Further, from the measurement of the magnetic susceptibility by the sample vibration type magnetometer, this sample was 1.
A Jc of 2 × 10 4 A / cm 2 was obtained.

【0048】実施例4 Y:Erの比を20%ずつ変化させ(100:0),
(80:20),(60:40),(40:60),
(20:80),(0:100)の6種類のRE組成を
有するRE2 BaCuO5 を作製した後、RE:Ba:
Cuが(18:30:52)になるようにBaCuO2
とBaCu22 を混合し、さらに0.02wt%のR
h粉末を添加して6種類混合粉末を得た。直径50mm
の金型を用いY層からEr層へ上記の順に積層し一層の
厚さを約5mmにし、高さ約30mmの円柱状の前駆体
を作製した。
Example 4 The Y: Er ratio was changed by 20% (100: 0),
(80:20), (60:40), (40:60),
After preparing RE 2 BaCuO 5 having 6 kinds of RE compositions of (20:80) and (0: 100), RE: Ba:
BaCuO 2 so that Cu becomes (18:30:52)
And BaCu 2 O 2 are mixed, and R of 0.02 wt% is further added.
h powder was added to obtain 6 kinds of mixed powder. 50 mm diameter
Using the mold of (1), the Y layer to the Er layer were laminated in the above order to make the thickness of one layer about 5 mm and to prepare a columnar precursor having a height of about 30 mm.

【0049】この前駆体はEr側を下にし、ハンマーク
エンチ法によって作製された厚さ1.5mmのSmおよ
びYbのRE組成の前駆体を用いて、Y−Er組成の前
駆体−Yb組成の前駆体−Sm組成の前駆体−Ptの
板、の順に重ね支持し、大気中において室温から115
0℃まで2時間で昇温した後、30分間保定し1030
℃まで100℃/hrで冷却し、1030℃においてS
m:Ndが7:3のRE組成を有する種結晶を用い、劈
開面を半溶融状態の前駆体の上に乗せ種付けを行った。
さらに1010から940℃まで0.5℃/hrで冷却
した。その後室温まで炉内で冷却し、酸素気流中で70
0℃に再加熱し250℃まで5℃/hrの冷却速度で徐
冷した。
This precursor is Er-side down, and using a RE composition precursor of Sm and Yb having a thickness of 1.5 mm prepared by a hammer quench method, a precursor of Y-Er composition-Yb composition is prepared. Precursor-precursor of Sm composition-Pt plate, stacked and supported in this order, from room temperature to 115
After heating to 0 ° C for 2 hours, hold for 30 minutes and then
Cooled to 100 ℃ / hr at 100 ℃ / S at 1030 ℃
Using a seed crystal having a RE composition of m: Nd of 7: 3, the cleavage plane was placed on the precursor in a semi-molten state for seeding.
Further, it was cooled from 1010 to 940 ° C at 0.5 ° C / hr. After that, cool to room temperature in the furnace, and in an oxygen stream 70
It was reheated to 0 ° C and gradually cooled to 250 ° C at a cooling rate of 5 ° C / hr.

【0050】得られた試料は図8に示すような直径約4
6mm、高さ約28mmの円柱体が種結晶と同じ方位の
単一の結晶粒で形成されており、約45立方センチメー
トルの極めて大きな超電導材料を得ることができた。ま
た、本試料は実施例3と同一条件において1.5×10
4 A/立方センチメートルのJcが得られた。
The obtained sample has a diameter of about 4 as shown in FIG.
A cylindrical body of 6 mm and a height of about 28 mm was formed by a single crystal grain having the same orientation as the seed crystal, and an extremely large superconducting material of about 45 cubic centimeters could be obtained. Further, this sample was 1.5 × 10 5 under the same conditions as in Example 3.
A Jc of 4 A / cubic centimeter was obtained.

【0051】実施例5 YとYbの割合を表2に示すように10%ずつ変化させ
たY(Yb)Ba2 Cu37-X 粉末およびY(Yb)
2 BaCuO5 粉末を作製し、RE,Ba,Cuが
(6:9:13)となるようにY(Yb)Ba2 Cu3
7-X にY(Yb)2 BaCuO5 を20mol%ずつ
加えた後、それぞれ1400℃に加熱し、Y組成が順に
Yb組成に変わるように、9回重ねクエンチを行い、一
層の厚さが約2mm、全体の厚さが約20mmの成形体
が得られ、これから20mm角の大きさに切り出し前駆
体を作製した。この前駆体のRE組成のちがいによる大
気中の123相生成温度は表2のようになった。
Example 5 Y (Yb) Ba 2 Cu 3 O 7-X powder and Y (Yb) in which the ratio of Y and Yb was changed by 10% as shown in Table 2.
2 BaCuO 5 powder was prepared, and Y (Yb) Ba 2 Cu 3 was prepared so that RE, Ba, and Cu were (6: 9: 13).
Y (Yb) 2 BaCuO 5 was added to O 7-X in an amount of 20 mol%, each was heated to 1400 ° C., and repeated quenching was performed 9 times so that the Y composition was changed to the Yb composition in sequence, and a further layer thickness was obtained. A molded product having a thickness of about 2 mm and a total thickness of about 20 mm was obtained, and a precursor was cut out from this to a size of 20 mm square. Table 2 shows the 123 phase formation temperature in the atmosphere due to the difference in RE composition of this precursor.

【0052】この前駆体を一旦1100℃で20分間加
熱し部分溶融させた後、30℃/cmの温度勾配中でY
組成側を高温側にして、Y側を1010℃から850℃
まで6℃/hrで炉全体の温度を冷却し、一方向成長さ
せ超電導体を得た。この時平均の結晶成長速度は約0.
8mm/hrであった。酸素アニールは酸素気流中にお
いて、700℃から300℃まで10℃/hrで徐冷す
ることによって行なった。その結果、図9に示すように
三つの結晶粒からなる試料が得られ、大きいものは約4
立方センチメートルだった。
This precursor was once heated at 1100 ° C. for 20 minutes to be partially melted, and then Y in a temperature gradient of 30 ° C./cm.
Composition side is high temperature side, Y side is 1010 ℃ to 850 ℃
The entire temperature of the furnace was cooled to 6 ° C./hr and unidirectionally grown to obtain a superconductor. At this time, the average crystal growth rate is about 0.
It was 8 mm / hr. Oxygen annealing was performed by gradually cooling from 700 ° C. to 300 ° C. at 10 ° C./hr in an oxygen stream. As a result, a sample consisting of three crystal grains was obtained, as shown in FIG.
It was a cubic centimeter.

【0053】実施例6 RE組成をSm,Eu,Gd,Dy,Ho,Er,T
m,Ybの順に変化させたREBa2 Cu37-X 粉末
およびRE2 BaCuO5 粉末を作製し、RE,Ba,
Cu(6:9:13)となるようにREBa2 Cu3
7-X にRE2 BaCuO5 を20mol%ずつ加えた
後、それぞれ1450℃に加熱し、Sm組成から順にY
b組成に変わるように、8回重ねクエンチを行い、一層
の厚さが約2mm,全体の厚さが約17mmの成形体が
得られ、これから20mm角の大きさに切り出し前駆体
を作製した。次にこの前駆体1150℃まで加熱した
後、1060℃まで50℃/hrで冷却し、さらに91
0℃まで2℃/hrで冷却し一方向成長させた。この時
の平均成長速度は0.2mm/hrであった。
Example 6 The RE composition was changed to Sm, Eu, Gd, Dy, Ho, Er, T.
The REBa 2 Cu 3 O 7-X powder and the RE 2 BaCuO 5 powder which were changed in the order of m and Yb were prepared, and RE, Ba,
REBa 2 Cu 3 O to be Cu (6: 9: 13)
After adding RE 2 BaCuO 5 in an amount of 20 mol% to 7-X , each was heated to 1450 ° C., and Y was added in order from the Sm composition.
Repeated quenching was repeated 8 times so as to change the composition b, and a molded body having a thickness of one layer of about 2 mm and a total thickness of about 17 mm was obtained. From this, a precursor was cut into a size of 20 mm square. Next, this precursor is heated to 1150 ° C., then cooled to 1060 ° C. at 50 ° C./hr, and further 91
It was cooled to 0 ° C. at 2 ° C./hr and unidirectionally grown. The average growth rate at this time was 0.2 mm / hr.

【0054】図10はDy,Ho,Er元素の分布を示
すEPMA像のスケッチである。層状に分布しているこ
とが分かる。また、試料全体に方位の揃った材料が得ら
れた。
FIG. 10 is a sketch of an EPMA image showing the distribution of Dy, Ho and Er elements. It can be seen that they are distributed in layers. In addition, a material with uniform orientation was obtained over the entire sample.

【0055】[0055]

【発明の効果】以上詳述したごとく本発明は高臨界電流
密度のバルク材の大型化を容易に可能にするもので、各
分野での応用が可能であり極めて工業的効果が大きい。
具体例としては、超電導コイル、超電導磁気シールド
材、超電導デバイスの基板等が挙げられる。
INDUSTRIAL APPLICABILITY As described above in detail, the present invention can easily increase the size of a bulk material having a high critical current density, can be applied in various fields, and has a great industrial effect.
Specific examples include a superconducting coil, a superconducting magnetic shield material, and a substrate of a superconducting device.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明におけるRE,Ba,Cuの成分範囲を
示す図である。
FIG. 1 is a diagram showing a range of components of RE, Ba, and Cu in the present invention.

【図2】Sm系の種結晶を用いて作製したY系超電導体
の種結晶との界面付近の結晶の構造を示す写真である。
FIG. 2 is a photograph showing a structure of a crystal in the vicinity of an interface with a seed crystal of a Y-based superconductor produced by using an Sm-based seed crystal.

【図3】一方向成長させたY超電導体の表面付近の結晶
の構造を示す写真である。
FIG. 3 is a photograph showing a crystal structure in the vicinity of the surface of a unidirectionally grown Y superconductor.

【図4】Sm系超電導体を支持台とのバリアーとして使
用したときのSmバリアー相の結晶の構造を示す写真で
ある。
FIG. 4 is a photograph showing a crystal structure of an Sm barrier phase when an Sm superconductor is used as a barrier with a support.

【図5】実施例1における、前駆体の斜視図である。5 is a perspective view of a precursor in Example 1. FIG.

【図6】実施例2における、本発明の方法を施したあと
の試料の一部切断斜視図である。
FIG. 6 is a partially cut perspective view of a sample in Example 2 after being subjected to the method of the present invention.

【図7】実施例3における、本発明の方法を施したあと
の試料の一部切断斜視図である。
FIG. 7 is a partially cutaway perspective view of a sample in Example 3 after being subjected to the method of the present invention.

【図8】実施例4における、本発明の方法を施したあと
の試料の一部切断斜視図である。
FIG. 8 is a partially cut perspective view of a sample in Example 4 after being subjected to the method of the present invention.

【図9】実施例5における、本発明の方法を施したあと
の試料の斜視図である。
FIG. 9 is a perspective view of a sample in Example 5 after being subjected to the method of the present invention.

【図10】実施例6における、本発明の方法を施したあ
との試料中のHo,Dy,Er各元素の分布を示すEP
MA像のスケッチ図である。
10 is an EP showing the distribution of Ho, Dy, and Er elements in a sample after the method of the present invention was applied in Example 6. FIG.
It is a sketch figure of MA image.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01L 39/24 ZAA Z 8728−4M (31)優先権主張番号 特願平3−38911 (32)優先日 平3(1991)2月12日 (33)優先権主張国 日本(JP) (72)発明者 澤野 清志 神奈川県川崎市中原区井田1618番地 新日 本製鐵株式会社第一技術研究所内 (72)発明者 竹林 聖記 神奈川県川崎市中原区井田1618番地 新日 本製鐵株式会社第一技術研究所内 (72)発明者 田中 将元 神奈川県川崎市中原区井田1618番地 新日 本製鐵株式会社第一技術研究所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Reference number within the agency FI technical display location H01L 39/24 ZAA Z 8728-4M (31) Priority claim number Japanese Patent Application No. 3-38911 (32) Priority Hihei 3 (1991) February 12 (33) Priority claiming country Japan (JP) (72) Inventor Kiyoshi Sawano 1618 Ida, Nakahara-ku, Kawasaki-shi, Kanagawa Shin-Nihon Steel Co., Ltd. (72) Inventor Takebayashi Shoji, 1618 Ida, Nakahara-ku, Kawasaki-shi, Kanagawa, Nippon Steel Research Laboratories Ltd. (72) Masamoto Tanaka 1618, Ida, Nakahara-ku, Kawasaki, Kanagawa Steel Technology Co., Ltd.

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】 Y,Sm,Eu,Gd,Dy,Ho,E
r,Tm,YbおよびLuのグループから選ばれた2種
以上からなる元素(以下REと称す)、BaおよびCu
の複合酸化物である超電導体において、前記超電導体が
単結晶状のREBa2 Cu37-X 相(以下123相と
称す)中に、RE2 BaCuO5 相(以下211相と称
す)が微細に分散した組織からなり、さらに前記123
相がREの組成毎に多層にかつ、各層の123相生成温
度順に構成されていることを特徴とする酸化物超電導
体。
1. Y, Sm, Eu, Gd, Dy, Ho, E
An element composed of two or more kinds selected from the group of r, Tm, Yb and Lu (hereinafter referred to as RE), Ba and Cu.
In a composite oxide superconductor, the superconductor (hereinafter referred to as the 123 phase) single crystalline REBa 2 Cu 3 O 7-X phase, RE 2 BaCuO 5 phase (hereinafter referred to as 211-phase) is It consists of a finely dispersed structure, and
An oxide superconductor characterized in that the phases are formed in multiple layers for each composition of RE and in the order of the 123 phase formation temperature of each layer.
【請求項2】 前記211相が123相中に、体積率で
5〜50%の範囲において微細に分散している請求項1
に記載の超電導体。
2. The 211 phase is finely dispersed in 123 phase in a volume ratio of 5 to 50%.
The superconductor according to.
【請求項3】 前記211相の粒径が20μm以下であ
る請求項4に記載の超電導体。
3. The superconductor according to claim 4, wherein the grain size of the 211 phase is 20 μm or less.
【請求項4】 前記超電導体にPt又はRhの1種又は
2種が添加されている請求項1に記載の超電導体。
4. The superconductor according to claim 1, wherein one or two kinds of Pt or Rh is added to the superconductor.
【請求項5】 RE,BaおよびCuの酸化物または複
合酸化物の少くとも一方の粉末をそれぞれの金属元素の
mol%(RE,Ba,Cu)が、(10,60,3
0)、(10,20,70)、(50,20,30)の
点で結ばれる領域内の組成になるように混合して層を形
成し、かつ前記REとは123相生成温度が異なる他の
RE元素を含む層を形成し、これら複数の層を各層の1
23相生成温度が高温側又は低温側に連続するように積
重ねた後加圧成形して前駆体を形成し、次に該前駆体中
の最高123相生成温度をもつ層を最上位にして支持材
上に設置したのち該前駆体を固液共存領域の温度範囲に
加熱して半溶融状態にし、しかる後該前駆体を123相
生成温度範囲において徐冷することにより123相の結
晶を5mm/hr以下の成長速度で成長させることを特
徴とする酸化物高温超電導体の製造方法。
5. A powder of at least one of oxides of RE, Ba and Cu or a complex oxide having mol% (RE, Ba, Cu) of each metal element of (10, 60, 3).
0), (10, 20, 70), and (50, 20, 30) to form a layer by mixing so as to have a composition in a region connected to each other, and a 123-phase generation temperature different from that of RE. A layer containing other RE elements is formed, and these plural layers are formed in each layer.
Twenty-three phase stacking temperature is continuously stacked on the high temperature side or the low temperature side and then pressure-molded to form a precursor, and then the layer having the highest 123 phase formation temperature in the precursor is supported as the uppermost layer. After being placed on a material, the precursor is heated in the temperature range of the solid-liquid coexistence region to be in a semi-molten state, and then the precursor is gradually cooled in the 123 phase generation temperature range to give crystals of 123 phase at 5 mm / A method for producing an oxide high-temperature superconductor characterized by growing at a growth rate of hr or less.
【請求項6】 前記前駆体を固液共存領域の温度範囲に
加熱して半溶融状態にした後、上記温度範囲から種結晶
の接種温度範囲まで冷却し、次いで該温度範囲において
前記前駆体中の最高の123相生成温度より高い生成温
度を有するRE組成からなる種結晶を前記前駆体に接種
し、しかる後、該前駆体を123相生成温度範囲におい
て徐冷することにより123相を連続的に成長させる請
求項5に記載の製造方法。
6. The precursor is heated to a temperature range of a solid-liquid coexistence region to be in a semi-molten state, then cooled from the temperature range to a seed crystal inoculation temperature range, and then in the precursor range in the temperature range. Of the maximum 123 phase formation temperature, the precursor is inoculated with a seed crystal having an RE composition, and then the precursor is gradually cooled in the 123 phase formation temperature range to continuously form the 123 phase. The manufacturing method according to claim 5, wherein the growth is carried out.
【請求項7】 固液共存領域の温度が900〜1350
℃である請求項5又は6に記載の製造方法。
7. The temperature of the solid-liquid coexisting region is 900 to 1350.
The production method according to claim 5, wherein the production temperature is ° C.
【請求項8】 123相生成温度範囲が1070〜84
0℃の温度範囲内であって、かつ(Tg(H)+10)
℃〜(Tg(L)−40)℃の温度範囲にある請求項5
又は6に記載の製造方法。 但し、Tg(H)…最高123相生成温度 Tg(L)…最低123相生成温度
8. The 123-phase formation temperature range is from 1070 to 84.
Within the temperature range of 0 ° C., and (Tg (H) +10)
6. The temperature range is from ℃ to (Tg (L) -40) ℃.
Or the manufacturing method according to 6. However, Tg (H) ... maximum 123-phase generation temperature Tg (L) ... minimum 123-phase generation temperature
【請求項9】 種結晶接種温度範囲が900〜1100
℃である請求項6記載の製造方法。
9. The seed crystal inoculation temperature range is 900 to 1100.
The method according to claim 6, wherein the temperature is ° C.
【請求項10】 123相生成温度範囲における徐冷の
冷却速度Rを下記式により行う請求項5又は6に記載の
製造方法。 R≦K・ΔTg/D(℃/hr) ここで、k:目標粒成長速度(mm/hr) ΔTg:最大Tg偏差 但し、ΔTg=(Tg(H)+10)℃−(Tg(L)
−40)℃ D:全厚(mm)
10. The production method according to claim 5, wherein the cooling rate R of the slow cooling in the 123-phase production temperature range is performed by the following formula. R ≦ K · ΔTg / D (° C./hr) where k: target grain growth rate (mm / hr) ΔTg: maximum Tg deviation where ΔTg = (Tg (H) +10) ° C .− (Tg (L)
-40) ° C D: Total thickness (mm)
【請求項11】 123相生成温度範囲を段階保定冷却
で行う請求項5又は6に記載の製造方法。
11. The manufacturing method according to claim 5, wherein the 123-phase production temperature range is controlled by stepwise cooling.
【請求項12】 段階保定冷却速度を前記冷却速度R
(℃/hr)で行う請求項10に記載の製造方法。
12. A stepwise holding cooling rate is set to the cooling rate R.
The production method according to claim 10, wherein the production is performed at (° C / hr).
【請求項13】 前記混合粉末層を1200℃以上の温
度に加熱して溶融体に形成し、該溶融体を急冷して成形
体に形成し、次に該成形体内の123相生成温度を異に
する他のRE元素を含む混合粉末層を上記と同じ工程に
よって成形体に形成し、これら複数の成形体を各成形体
の123相生成温度が高温側に連続するように積重ねて
前駆体に形成する請求項5または6に記載の製造方法。
13. The mixed powder layer is heated to a temperature of 1200 ° C. or higher to form a melt, the melt is rapidly cooled to form a molded body, and then the 123 phase formation temperature in the molded body is changed. A mixed powder layer containing other RE element is formed into a molded body by the same process as above, and a plurality of these molded bodies are stacked so that the 123-phase formation temperature of each molded body is continuous on the high temperature side to form a precursor. The manufacturing method according to claim 5 or 6, which is formed.
【請求項14】 前記前駆体(以下前駆体Mと称す)と
該前駆体Mを支持する支持材との間に、前記前駆体M中
の123相のRE組成より結晶生成温度が高いRE組成
を有する別の前駆体Hと前記前駆体M中の123相のR
E組成より結晶生成温度が低いRE組成を有する別の前
駆体Lとを前駆体M−前駆体L−前駆体H−支持材の順
番で配置し、しかる後に950〜1350℃の温度領域
に加熱する請求項5又は13に記載の製造方法。
14. A RE composition having a higher crystal formation temperature than the RE composition of the 123 phase in the precursor M between the precursor (hereinafter referred to as the precursor M) and a support material that supports the precursor M. With another precursor H and R of 123 phase in said precursor M
Another precursor L having a RE composition having a lower crystal formation temperature than the E composition is arranged in the order of precursor M-precursor L-precursor H-support material, and then heated to a temperature range of 950 to 1350 ° C. The manufacturing method according to claim 5 or 13.
【請求項15】 前記前駆体中にPt:0.2〜2.0
wt%および/もしくはRh:0.005〜1.0wt
%を添加する請求項5に記載の製造方法。
15. Pt: 0.2 to 2.0 in the precursor.
wt% and / or Rh: 0.005-1.0 wt
%. The manufacturing method according to claim 5, wherein% is added.
JP3162360A 1990-06-07 1991-06-07 Oxide superconductor and method for manufacturing the same Expired - Lifetime JP2556401B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3162360A JP2556401B2 (en) 1990-06-07 1991-06-07 Oxide superconductor and method for manufacturing the same

Applications Claiming Priority (11)

Application Number Priority Date Filing Date Title
JP14740690 1990-06-07
JP2-147406 1990-06-07
JP29902590 1990-11-06
JP2-299025 1990-11-06
JP02402204 1990-12-14
JP2-402204 1990-12-14
JP03038911 1991-02-12
JP3-38911 1991-02-12
JP3162360A JP2556401B2 (en) 1990-06-07 1991-06-07 Oxide superconductor and method for manufacturing the same
JP4055203A JP2550253B2 (en) 1990-12-14 1992-03-13 Method for producing oxide high temperature superconductor
JP4143670A JPH07106906B2 (en) 1990-04-13 1992-05-11 Oxide superconducting material containing rare earth element and method for producing the same

Publications (2)

Publication Number Publication Date
JPH05193938A true JPH05193938A (en) 1993-08-03
JP2556401B2 JP2556401B2 (en) 1996-11-20

Family

ID=27564480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3162360A Expired - Lifetime JP2556401B2 (en) 1990-06-07 1991-06-07 Oxide superconductor and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2556401B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05301797A (en) * 1990-12-14 1993-11-16 Nippon Steel Corp Production of oxide high-temperature superconductor
US5849668A (en) * 1996-06-21 1998-12-15 Dowa Mining Co., Ltd. Oxide superconductor and method for manufacturing the same
US5958840A (en) * 1996-08-02 1999-09-28 Dowa Mining Co., Ltd. Oxide superconductor containing Ag and having substantially same crystal orientation, and method for manufacturing the same
US6172007B1 (en) 1996-06-21 2001-01-09 Dowa Mining Co., Ltd. Oxide superconductor
JP2006062897A (en) * 2004-08-25 2006-03-09 Nippon Steel Corp Superconducting oxide material and its manufacturing method
JP2006062896A (en) * 2004-08-25 2006-03-09 Nippon Steel Corp Superconducting oxide material and its manufacturing method
JP2006306692A (en) * 2005-03-28 2006-11-09 Railway Technical Res Inst Method for producing oxide superconductive bulk material
JP2007093059A (en) * 2005-09-27 2007-04-12 Nippon Steel Corp Cooling method using nitrogen-oxygen mixed refrigerant
US10468580B2 (en) 2014-03-24 2019-11-05 Nippon Steel Corporation Bulk oxide superconductor and method of production of bulk oxide superconductor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05301797A (en) * 1990-12-14 1993-11-16 Nippon Steel Corp Production of oxide high-temperature superconductor
US5849668A (en) * 1996-06-21 1998-12-15 Dowa Mining Co., Ltd. Oxide superconductor and method for manufacturing the same
US6172007B1 (en) 1996-06-21 2001-01-09 Dowa Mining Co., Ltd. Oxide superconductor
US5958840A (en) * 1996-08-02 1999-09-28 Dowa Mining Co., Ltd. Oxide superconductor containing Ag and having substantially same crystal orientation, and method for manufacturing the same
US6103670A (en) * 1996-08-02 2000-08-15 Dowa Mining Co., Ltd. Method of manufacturing oxide superconductor containing Ag and having substantially same crystal orientation
JP2006062897A (en) * 2004-08-25 2006-03-09 Nippon Steel Corp Superconducting oxide material and its manufacturing method
JP2006062896A (en) * 2004-08-25 2006-03-09 Nippon Steel Corp Superconducting oxide material and its manufacturing method
JP4628041B2 (en) * 2004-08-25 2011-02-09 新日本製鐵株式会社 Oxide superconducting material and manufacturing method thereof
JP2006306692A (en) * 2005-03-28 2006-11-09 Railway Technical Res Inst Method for producing oxide superconductive bulk material
JP2007093059A (en) * 2005-09-27 2007-04-12 Nippon Steel Corp Cooling method using nitrogen-oxygen mixed refrigerant
US10468580B2 (en) 2014-03-24 2019-11-05 Nippon Steel Corporation Bulk oxide superconductor and method of production of bulk oxide superconductor

Also Published As

Publication number Publication date
JP2556401B2 (en) 1996-11-20

Similar Documents

Publication Publication Date Title
US5308799A (en) Oxide superconductor and process for preparation thereof
US4956336A (en) Oriented grained Y-Ba-Cu-O superconductors having high critical currents and method for producing same
US6569811B1 (en) Enhancement of JC in oxide superconductors
EP0423375B1 (en) Oxide superconductor and method of producing the same
JP2556401B2 (en) Oxide superconductor and method for manufacturing the same
JP3089294B2 (en) Manufacturing method of superconducting tape material
JP4113113B2 (en) Oxide superconductor joining method and oxide superconductor joined body
US5571776A (en) Single crystalline bulk oxide superconductor and process for producing same
JP2550253B2 (en) Method for producing oxide high temperature superconductor
JP2007131510A (en) Method for manufacture oxide superconductive bulky body and oxide superconductive bulky body
JP3621750B2 (en) Manufacturing method of oxide superconducting material
JP3174847B2 (en) Superconducting whisker and manufacturing method thereof
JP3195041B2 (en) Oxide superconductor and manufacturing method thereof
Babu et al. Large single grain (RE)-Ba-Cu-O superconductors with nano-phase inclusions
JP3854364B2 (en) Method for producing REBa2Cu3Ox-based superconductor
JP4690774B2 (en) Manufacturing method of oxide superconducting bulk material
JP4481701B2 (en) Manufacturing method of oxide superconducting bulk material
JP3471443B2 (en) Manufacturing method of oxide superconductor material
JPH1112094A (en) Production of rare earth-barium-cuprate-based superconductor
JP3115695B2 (en) Manufacturing method of oxide superconductor having large magnetic levitation force
JP2003277188A (en) Intermediate of large size superconductor, large size superconductor, and method for producing them
Narayanan et al. Growth of BiCaSrCu-oxide superconducting film on NdGaO3 substrates
JP2000247795A (en) Production of re123 oxide superconductive bulk body
JP3159764B2 (en) Manufacturing method of rare earth superconductor
JPH02204322A (en) Oxide superconductor having novel structure

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960604

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070905

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090905

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100905

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100905

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 15