JPH0656426A - Thermal treatment of oxide superconductor wire - Google Patents

Thermal treatment of oxide superconductor wire

Info

Publication number
JPH0656426A
JPH0656426A JP4211035A JP21103592A JPH0656426A JP H0656426 A JPH0656426 A JP H0656426A JP 4211035 A JP4211035 A JP 4211035A JP 21103592 A JP21103592 A JP 21103592A JP H0656426 A JPH0656426 A JP H0656426A
Authority
JP
Japan
Prior art keywords
temperature
wire
heat treatment
cooling
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4211035A
Other languages
Japanese (ja)
Inventor
Akihiko Endo
昭彦 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP4211035A priority Critical patent/JPH0656426A/en
Publication of JPH0656426A publication Critical patent/JPH0656426A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To produce the silver sheath wire of Bi2Sr2Ca1Cu2Oy phase excellent in Jc characteristics. CONSTITUTION:This method for thermally treating the silver sheath wire of an oxide superconductor consisting mainly of a Bi2Sr2Ca1Cu2Oy phase is characterized by subjecting the wire to a partial melting treatment, quenching the melted wire in a temperature range just above its crystallization temperature, and subsequently gradually cooling the wire. The quenching-stopping temperature is preferably a temperature just above 845 deg.C when the thermal treatment is carried out in the atmosphere, or a temperature just above 850 deg.C when the thermal treatment is performed in oxygen. The gradual cooling is preferably performed at a rate of 10 deg.C/hr at least down to 800 deg.C. Thereby, the Bi (2212) silver sheath wire reduced in impurity phases and having high Jc characteristics can be produced by the simple method by which the combination of the quenching treatment with the gradual cooling treatment is performed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、優れた超伝導臨界電
流密度(Jc)特性を有するBi2Sr2Ca1Cu2y(この化合
物を、以下Bi(2212)と記す)を主体とするBi系酸化物超
伝導体の線材を製造するための熱処理方法に関する。
BACKGROUND OF THE INVENTION The present invention is mainly composed of Bi 2 Sr 2 Ca 1 Cu 2 O y (this compound is hereinafter referred to as Bi (2212)) having excellent superconducting critical current density (Jc) characteristics. The present invention relates to a heat treatment method for producing a Bi-based oxide superconductor wire rod.

【0002】[0002]

【従来の技術】近年発見された酸化物超伝導体の実用化
については、多方面から様々な研究が行われている。酸
化物超伝導体は、特に液体ヘリウム温度(4.2 K)での
Jcの磁場特性が従来から使われている金属系超伝導体よ
りも優れていることが確認され、30Tesla 級の高磁場発
生コイルへの応用が期待されている。
2. Description of the Related Art Various studies have been conducted in various fields on the practical use of oxide superconductors discovered in recent years. Oxide superconductors, especially at liquid helium temperature (4.2 K)
It has been confirmed that the magnetic field characteristics of Jc are superior to those of conventional metal-based superconductors, and it is expected to be applied to high-field generating coils of 30 Tesla class.

【0003】酸化物超伝導体の中で、Bi系超伝導体は銀
チューブの中に仮焼した原料粉末をつめてダイス伸線、
ロール圧延などにより線材にする、いわゆるパウダーイ
ンチューブ法により線材化が可能である。Bi系超伝導体
の中でもBi(2212)の線材は、890 ℃前後で部分溶融させ
た後に徐冷することによって、結晶方位のそろった高配
向組織が得られ、磁場によるJc特性の低下が小さい線材
が得られる。
Among oxide superconductors, the Bi-based superconductor is a die-drawing wire in which a calcined raw material powder is packed in a silver tube.
The wire can be made by a so-called powder-in-tube method, which is made into a wire by rolling or the like. Among the Bi-based superconductors, the Bi (2212) wire rod has a highly oriented structure with uniform crystallographic orientation, which is obtained by partially melting it at around 890 ° C and then slowly cooling it, and the decrease in Jc characteristics due to the magnetic field is small. A wire rod is obtained.

【0004】例えば、Japanese Journal of Applied Ph
ysics,Vol.29,No.7, L1066−L1068には、原料粉として
Bi2O3、 SrCO3、 CaCO3、CuO 、 Ag2O の各粉末をBi:S
r:Ca:Cu:Agの原子比で2:2:1:2:0.8 となる
ように混合し 880℃で仮焼を行って得た粉末を銀パイプ
に充填し、これを伸線、圧延してテープ状の線材に加工
してから、ArとO2の混合ガス中で 880℃で部分溶融させ
徐冷する熱処理を施して、最高 8.88 ×104A/cm2(温度
4.2K、磁場1Tesla 中) のJcを達成したとの報告があ
る。
For example, Japanese Journal of Applied Ph
As ysics, Vol.29, No.7, L1066-L1068,
Bi 2 O 3 , SrCO 3 , CaCO 3 , CuO, and Ag 2 O powders were added to Bi: S.
The mixture was mixed so that the atomic ratio of r: Ca: Cu: Ag was 2: 2: 1: 2: 0.8, and the mixture was calcined at 880 ° C and the obtained powder was filled into a silver pipe, which was drawn and rolled. Then, it is processed into a tape-shaped wire and then heat-treated by partially melting it in a mixed gas of Ar and O 2 at 880 ° C and gradually cooling it to a maximum temperature of 8.88 × 10 4 A / cm 2 (temperature
It is reported that the Jc of 4.2K and magnetic field of 1 Tesla was achieved.

【0005】Bi(2212)系線材の熱処理において共通なこ
とは、部分溶融を行うために 875℃以上に昇温し、更に
粒成長させるために徐冷を行うことである。なお、部分
溶融とは、Bi(2212)相は全部溶融するが、それ以外の C
aO、Sr−Ca−Cu−O相のような不純物相は溶融しない状
態をいう。
What is common to the heat treatment of Bi (2212) -based wire is that the temperature is raised to 875 ° C. or higher for partial melting, and then gradually cooled for further grain growth. Note that partial melting means that the Bi (2212) phase is wholly melted, but the other C
Impurity phases such as aO and Sr-Ca-Cu-O phases do not melt.

【0006】しかし、部分溶融温度が高すぎたり、その
時間が長すぎると、不純物相であるSr−Ca−Cu−O相の
粒成長が促進され、Jcが低下する。そこで、一般には 8
75℃から 895℃程度まで昇温して部分溶融させた後、Bi
(2212)相が結晶化し、更に粒成長が起きるように 800℃
前後の温度まで5〜20℃/hrのゆっくりした冷却速度で
下げる熱処理が行われている(例えば Japanese Journa
l of Applied Physics,Vol.30,No.12A,pp.3371−3376
参照) 。
However, if the partial melting temperature is too high or the time is too long, grain growth of the Sr-Ca-Cu-O phase, which is an impurity phase, is promoted and Jc is lowered. So generally 8
After partially heating by raising the temperature from 75 ℃ to 895 ℃, Bi
800 ° C so that the (2212) phase crystallizes and further grain growth occurs
Heat treatment is performed at a slow cooling rate of 5 to 20 ° C / hr to the surrounding temperature (eg Japanese Journal
l of Applied Physics, Vol.30, No.12A, pp.3371-3376
See).

【0007】[0007]

【発明が解決しようとする課題】これまでに知られてい
る前述の熱処理方法の問題点は以下の点にある。即ち、 前記のように、部分溶融温度ではBi(2212)相は溶融
するが、それ以外の CaO、Sr−Ca−Cu−O相のような不
純物相は固体粒状のまま線材中に存在する。従って、Bi
(2212) 相の結晶化温度以上では固液共存状態となり、
不純物相は粒成長を起こす。特にSr−Ca−Cu−O相の粒
成長速度が大きく、結晶化温度以下の低温でも成長した
Sr−Ca−Cu−O粒が残存する。
The problems of the above-mentioned heat treatment methods known so far are as follows. That is, as described above, the Bi (2212) phase is melted at the partial melting temperature, but the other impurity phases such as CaO and Sr-Ca-Cu-O phases are present in the wire as solid particles. Therefore Bi
Above the crystallization temperature of the (2212) phase, a solid-liquid coexisting state occurs,
The impurity phase causes grain growth. In particular, the grain growth rate of the Sr-Ca-Cu-O phase was high, and it grew even at low temperatures below the crystallization temperature.
Sr-Ca-Cu-O grains remain.

【0008】 その結果、線材中で所定の組成からの
ずれが生じ、Sr−Ca−Cu−O粒以外に常伝導相である B
i2Sr2Cu1y 即ち(2201)相が生成し、Jc特性を劣化させ
る。
As a result, a deviation from a predetermined composition occurs in the wire, and in addition to the Sr-Ca-Cu-O grains, the normal phase B
i 2 Sr 2 Cu 1 O y, that is, the (2201) phase is generated and deteriorates the Jc characteristics.

【0009】本発明の目的は、上記の問題点を解決し、
Jc特性に優れたBi2Sr2Ca1Cu2y を主体とする銀シース
線材を製造するための熱処理方法を提供することにあ
る。
The object of the present invention is to solve the above problems,
It is an object of the present invention to provide a heat treatment method for producing a silver sheath wire rod mainly composed of Bi 2 Sr 2 Ca 1 Cu 2 O y having excellent Jc characteristics.

【0010】[0010]

【課題を解決するための手段】本発明は『Bi2Sr2Ca1Cu2
y を主体とする酸化物超伝導体の銀シース線材の熱処
理において、部分溶融処理の後、結晶化温度の直上まで
の温度域を急冷し、その後徐冷することを特徴とする酸
化物超伝導線材の熱処理方法』を要旨とする。
The present invention provides "Bi 2 Sr 2 Ca 1 Cu 2
In the heat treatment of a silver sheath wire of an oxide superconductor mainly composed of O y , after the partial melting treatment, the temperature range up to just above the crystallization temperature is rapidly cooled and then gradually cooled. The heat treatment method for conductive wire ”is the main point.

【0011】熱処理に付す前の線材の製造方法は従来の
方法でよい。即ち、原料粉末を所定比率に配合して仮焼
して得た粉末を銀シースチューブに充填し、伸線、圧延
等の方法で線材とする。なお、原料粉末に銀の酸化物を
少量配合するのが望ましい。
A conventional method may be used as a method of manufacturing the wire before the heat treatment. That is, a raw material powder is mixed in a predetermined ratio and calcined to obtain a powder, which is filled in a silver sheath tube and drawn into a wire by a method such as wire drawing or rolling. It is desirable to add a small amount of silver oxide to the raw material powder.

【0012】図1に本発明の熱処理方法のヒートパター
ンを示す。
FIG. 1 shows a heat pattern of the heat treatment method of the present invention.

【0013】部分溶融温度(Tpm)まで昇温する速度(R
s) には特に制約はない。Tpm は、一般に採用されてい
る 875〜895 ℃の範囲でよい。保持時間は5〜30分程度
が望ましい。
The rate (R
There are no particular restrictions on s). The Tpm may be in the commonly employed range of 875-895 ° C. The holding time is preferably about 5 to 30 minutes.

【0014】部分溶融処理の後の冷却速度 (図1のRc)
は大きい程望ましい。急冷停止温度(図1のTr) 、即
ち、徐冷開始温度は、後述するように熱処理を行う雰囲
気によって変えるのが望ましい。徐冷の冷却速度 (図1
のRj) は、10℃/hr以下とすべきである。徐冷の停止温
度(Ts)は 800℃以下の温度とする。なお、600 〜750 ℃
の温度域ではBi(2212)相がBi(2201)の非超伝導相に変化
し、Jcが低下するおそれがあるので冷却速度を大きくす
る方が望ましい。
Cooling rate after partial melting treatment (Rc in FIG. 1)
Is larger the better. The quenching stop temperature (Tr in FIG. 1), that is, the slow cooling start temperature is preferably changed depending on the atmosphere in which the heat treatment is performed, as described later. Slow cooling rate (Fig. 1
Rj) should be 10 ° C / hr or less. The gradual cooling stop temperature (Ts) shall be 800 ℃ or less. 600 to 750 ℃
In the temperature range of 1, the Bi (2212) phase changes to the Bi (2201) non-superconducting phase and Jc may decrease, so it is preferable to increase the cooling rate.

【0015】[0015]

【作用】表1はDTA (示差熱分析) によって測定した
大気中および酸素中でのBi(2212) の銀シース線材の部
分溶融温度とBi(2212)の結晶化温度である。
Table 1 shows the partial melting temperature of the silver sheath wire of Bi (2212) and the crystallization temperature of Bi (2212) measured in air and oxygen by DTA (differential thermal analysis).

【0016】[0016]

【表1】 [Table 1]

【0017】表1に示すようにBi(2212)の溶融温度と結
晶化温度の間に20〜30℃の差があるのは、過冷現象によ
るものと考えられる。従って、部分溶融温度から連続的
に徐冷を行えば、Bi(2212)の結晶化が始まる前に、固体
のままの不純物相、特にSr−Ca−Cu−O相の粒成長が盛
んに起きることになる。これが前述の従来の方法の問題
点の主要因である。
The difference of 20 to 30 ° C. between the melting temperature and the crystallization temperature of Bi (2212) as shown in Table 1 is considered to be due to the supercooling phenomenon. Therefore, if continuous slow cooling is performed from the partial melting temperature, grain growth of the impurity phase in the solid state, particularly the Sr-Ca-Cu-O phase, actively occurs before the crystallization of Bi (2212) begins. It will be. This is the main cause of the problems of the above-mentioned conventional method.

【0018】本発明方法の特徴は、Bi(2212)の溶融温度
から結晶化温度までの冷却過程で不純物相の粒成長を起
こさせないように、この間、即ち、部分溶融温度から結
晶化温度直上までを急冷し、その後は徐冷することにあ
る。急冷速度は、原理的にできるだけ大きい方が好まし
い。後に説明する表3に示すように、冷却速度を大きく
することによってJcの値が顕著に上昇する。
The method of the present invention is characterized in that during the cooling process from the melting temperature of Bi (2212) to the crystallization temperature, grain growth of the impurity phase does not occur, that is, from the partial melting temperature to immediately above the crystallization temperature. Is to cool rapidly and then slowly. In principle, the quenching rate is preferably as high as possible. As shown in Table 3 described later, the value of Jc is remarkably increased by increasing the cooling rate.

【0019】急冷する温度領域は、部分溶融温度からBi
(2212)の結晶化温度直上までである。表1に示したよう
に、熱処理雰囲気によって結晶化温度は変化する。大気
中では結晶化温度が 845℃であるから、その温度の直
上、望ましくはこれよりも10℃程度高い 855℃までの範
囲を急冷する。結晶化温度(845℃) よりも低温域まで急
冷するとBi(2212)相の粒成長が十分に行われず、結晶の
配向性も悪化しJcが劣化する。
The temperature range for rapid cooling is from the partial melting temperature to Bi
Up to just above the crystallization temperature of (2212). As shown in Table 1, the crystallization temperature changes depending on the heat treatment atmosphere. Since the crystallization temperature is 845 ° C in the atmosphere, it is cooled immediately above that temperature, preferably to 855 ° C which is about 10 ° C higher than this temperature. If it is rapidly cooled to a temperature lower than the crystallization temperature (845 ° C), grain growth of the Bi (2212) phase is not sufficiently performed, the crystal orientation is deteriorated, and Jc is deteriorated.

【0020】酸素雰囲気中では、そのときの結晶化温度
850℃の直上、望ましくはこれより10℃高い 860℃程度
の温度域まで急冷する。この場合も 850℃よりも低温域
まで急冷するのは、前記の理由で好ましくない。いずれ
の場合も、急冷温度域が高すぎると不純物相、特にSr−
Ca−Cu−O相の粒成長を抑制する効果が小さくなる。
In an oxygen atmosphere, the crystallization temperature at that time
Immediately above 850 ° C, preferably 10 ° C higher than this, and rapidly cooled to a temperature range of about 860 ° C. Also in this case, rapid cooling to a temperature range lower than 850 ° C. is not preferable for the above reason. In any case, if the quenching temperature range is too high, the impurity phase, especially Sr-
The effect of suppressing the grain growth of the Ca-Cu-O phase becomes small.

【0021】通常、このような熱処理には、プログラム
温度調節計で温度調整を行う電気炉が使用されるが、炉
自体の熱容量が大きいため、冷却速度を大きくすること
は困難である。本発明の熱処理方法では、或る所定の温
度までは急冷し、その後は徐冷するという二段冷却を行
うのであるが、この急冷工程で大きな冷却速度を得るた
めには、特別の装置を用いるのが望ましい。
Usually, an electric furnace for adjusting the temperature with a program temperature controller is used for such heat treatment, but it is difficult to increase the cooling rate because the heat capacity of the furnace itself is large. In the heat treatment method of the present invention, two-stage cooling is performed in which the material is rapidly cooled to a predetermined temperature and then gradually cooled. A special device is used to obtain a high cooling rate in this rapid cooling step. Is desirable.

【0022】図2は、本発明の熱処理方法を実施するの
に好適な装置の概略を示したものである。加熱装置1は
部分溶融を行う第1ゾーンを前記図1の温度Tpm に加熱
するものである。加熱装置2は、はじめは前記図1の急
冷停止温度Trに設定してあり、その後、徐冷速度Rjで徐
冷停止温度Tsまで温度を下げながら試料を徐冷するもの
である。試料 (熱処理すべき線材)3を石英管4内で第
1ゾーンにおいて所定時間保持して部分溶融状態とし、
次いでこれを移動ゾーン中を移動させながら急冷し、そ
の後、第2ゾーンで徐冷する。急冷処理の冷却速度は移
動ゾーンでの試料の移動速度を調整することにより自在
に調整できる。なお、移動ゾーンの石英管4の外側に、
水冷管等による強制冷却手段を設けると更に冷却速度の
調整が容易である。
FIG. 2 shows an outline of an apparatus suitable for carrying out the heat treatment method of the present invention. The heating device 1 is for heating the first zone for partial melting to the temperature Tpm shown in FIG. The heating device 2 is initially set to the rapid cooling stop temperature Tr shown in FIG. 1 and then gradually cools the sample while lowering the temperature to the slow cooling stop temperature Ts at the slow cooling rate Rj. The sample (wire to be heat treated) 3 is held in the quartz tube 4 in the first zone for a predetermined time to be in a partially molten state,
Then, it is rapidly cooled while moving in the moving zone, and then gradually cooled in the second zone. The cooling rate of the quenching process can be freely adjusted by adjusting the moving speed of the sample in the moving zone. In addition, on the outside of the quartz tube 4 in the movement zone,
If a forced cooling means such as a water cooling pipe is provided, the cooling rate can be adjusted more easily.

【0023】[0023]

【実施例】原料粉末として Bi2O3、 SrCO3、CaCO3 、Cu
O 、Ag2Oの各粉末を用い、これらをBi:Sr:Ca:Cu:Ag
の原子化で2:2:1:2:0.8 になる様に秤量し、乳
鉢で混合した。Ag2Oを添加したのは、Bi(2212)の配向性
を向上させ、Jc特性を改善するためである。
Example: Bi 2 O 3 , SrCO 3 , CaCO 3 , Cu as raw material powder
Powders of O 2 and Ag 2 O were used, and these were Bi: Sr: Ca: Cu: Ag.
Were weighed so that the atomization ratio was 2: 2: 1: 2: 0.8, and mixed in a mortar. The reason for adding Ag 2 O is to improve the orientation of Bi (2212) and the Jc characteristics.

【0024】上記の混合粉末を、大気中 800℃で12時間
仮焼したのち粉砕混合し、更に同じく大気中で 800℃×
12時間の仮焼を行い、線材用原料粉とした。この原料粉
を長さが10cm、外径12mm、内径6mmの銀パイプに充填
し、ダイス伸線とロール圧延により幅3mm、厚さ 0.1mm
のテープ状線材に加工した。
The above-mentioned mixed powder is calcined in the air at 800 ° C. for 12 hours and then pulverized and mixed.
It was calcined for 12 hours to obtain a raw material powder for wire rod. This raw material powder is filled into a silver pipe with a length of 10 cm, an outer diameter of 12 mm and an inner diameter of 6 mm, and the wire is 3 mm wide and 0.1 mm thick by die drawing and roll rolling.
Processed into a tape-shaped wire.

【0025】上記のテープ状線材を、大気中および酸素
中で図1のヒートパターンで熱処理した。条件は次のと
おりである。
The above tape-shaped wire was heat-treated in the atmosphere and oxygen in the heat pattern shown in FIG. The conditions are as follows.

【0026】部分溶融温度(Tpm) : 885 ℃ (10分保
持) 急冷速度(Rc) : 240 ℃/hr 急冷停止温度(Tr) :表2に示すとおり 徐冷速度(Rj) : 5℃/hr 徐冷停止温度(Ts) : 800 ℃ 徐冷停止後は室温まで炉冷した。
Partial melting temperature (Tpm): 885 ° C (holding for 10 minutes) Rapid cooling rate (Rc): 240 ° C / hr Rapid cooling stop temperature (Tr): As shown in Table 2, Slow cooling rate (Rj): 5 ° C / hr Slow cooling stop temperature (Ts): 800 ℃ After slow cooling was stopped, the furnace was cooled to room temperature.

【0027】表2は、大気中および酸素雰囲気中におけ
る急冷停止温度(Tr)と、得られた線材のJc(4.2K、1Te
sla 中) およびSr−Ca−Cu−Oの面積比 (%) を示す。
面積比は線材の全断面積に占めるSr−Ca−Cu−O粒全体
の面積比である。
Table 2 shows the quenching stop temperature (Tr) in air and oxygen atmosphere, and Jc (4.2K, 1Te) of the obtained wire.
(in sla) and the area ratio (%) of Sr-Ca-Cu-O are shown.
The area ratio is the area ratio of the entire Sr-Ca-Cu-O grains in the total cross-sectional area of the wire.

【0028】表2の No.A1とS1は急冷を行わず、885 ℃
の部分溶融温度から 800℃まで徐冷する従来の熱処理法
によったものである。
No. A1 and S1 in Table 2 are 885 ° C without quenching.
This is based on the conventional heat treatment method of gradually cooling from the partial melting temperature to 800 ° C.

【0029】大気中でも酸素中でも 875℃から855 ℃の
範囲の温度まで急冷した試料(No.A2〜A4、S2〜S4) にお
いて、Sr−Ca−Cu−O面積比が減少し、Jcが向上してい
る。
In the samples (No. A2 to A4, S2 to S4) rapidly cooled to a temperature in the range of 875 ° C. to 855 ° C. in air and oxygen, the Sr-Ca-Cu-O area ratio was decreased and Jc was improved. ing.

【0030】ところが、大気中、酸素中ともBi(2212)の
結晶化温度以下まで急冷した試料(No.A5〜A7、S5〜S7)
は、配向性が悪くなってJcが急激に低下している。
However, the samples (No. A5 to A7, S5 to S7) rapidly cooled to below the crystallization temperature of Bi (2212) both in air and in oxygen.
Shows that the orientation is poor and Jc is drastically reduced.

【0031】Sr−Ca−Cu−Oは、結晶化および 800℃ま
での徐冷中に固相拡散反応によりBi(2212)相に変化する
ものであるが、比較例の No.A5〜A7およびS5〜S7ではこ
の反応が困難となり、逆にSr−Ca−Cu−Oの面積率が増
加している。
Sr-Ca-Cu-O changes into a Bi (2212) phase by a solid phase diffusion reaction during crystallization and gradual cooling to 800 ° C., but Comparative Examples Nos. A5 to A7 and S5 to In S7, this reaction becomes difficult, and conversely, the area ratio of Sr-Ca-Cu-O is increasing.

【0032】表3に、急冷停止温度 (Tr) を 865℃と一
定にし、酸素中で熱処理したときの急冷速度(Rc)と、Jc
およびSr−Ca−Cu−O面積比を示す。Rcが大きくなると
ともにSr−Ca−Cu−Oが減少、Jcも向上している。試料
No.C7からC9までは、図2に示した装置を使用し急冷の
速度を大きくしたものである。これらの例では、一層大
きなJcが得られている。
In Table 3, the quenching stop temperature (Tr) is kept constant at 865 ° C. and the quenching rate (Rc) when heat-treated in oxygen and Jc
And the Sr-Ca-Cu-O area ratio are shown. As Rc increases, Sr-Ca-Cu-O decreases and Jc also improves. sample
From No. C7 to C9, the equipment shown in Fig. 2 was used to increase the quenching rate. Larger Jc is obtained in these examples.

【0033】[0033]

【表2】 [Table 2]

【0034】[0034]

【表3】 [Table 3]

【0035】[0035]

【発明の効果】本発明の熱処理方法によれば、部分溶融
状態からの冷却を急冷と徐冷の組合わせによって行うと
いう簡単な方法で、不純物相が少なく、高いJc特性をも
つBi(2212)の銀シース線材を製造することができる。
EFFECTS OF THE INVENTION According to the heat treatment method of the present invention, Bi (2212), which has a small amount of impurity phases and high Jc characteristics, is a simple method of cooling from a partially molten state by a combination of rapid cooling and slow cooling. It is possible to manufacture a silver sheath wire rod.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の熱処理方法のヒートパターンを示す図
である。
FIG. 1 is a diagram showing a heat pattern of a heat treatment method of the present invention.

【図2】本発明の熱処理方法を実施するのに好適な装置
の概要を示す図である。
FIG. 2 is a diagram showing an outline of an apparatus suitable for carrying out the heat treatment method of the present invention.

【符号の説明】[Explanation of symbols]

1: 部分溶融ゾーン用加熱装置、2: 徐冷ゾーン用加熱
装置、3:試料 4: 石英管
1: Heating device for partial melting zone, 2: Heating device for slow cooling zone, 3: Sample 4: Quartz tube

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】Bi2Sr2Ca1Cu2y を主体とする酸化物超伝
導体の銀シース線材の熱処理において、部分溶融処理の
後、結晶化温度の直上までの温度域を急冷し、その後徐
冷することを特徴とする酸化物超伝導線材の熱処理方
法。
1. In the heat treatment of a silver sheath wire of an oxide superconductor mainly composed of Bi 2 Sr 2 Ca 1 Cu 2 O y , the temperature range up to just above the crystallization temperature is rapidly cooled after the partial melting treatment. A method for heat treating an oxide superconducting wire, characterized by gradually cooling thereafter.
【請求項2】急冷停止温度を、熱処理を大気中で行う場
合は 845℃直上、酸素中で行う場合は850 ℃直上とし、
徐冷を少なくとも 800℃まで10℃/hr以下の冷却速度で
行う請求項1の熱処理方法。
2. The quenching stop temperature is directly above 845 ° C. when the heat treatment is performed in the atmosphere, and immediately above 850 ° C. when the heat treatment is performed in oxygen,
The heat treatment method according to claim 1, wherein the gradual cooling is performed to at least 800 ° C at a cooling rate of 10 ° C / hr or less.
JP4211035A 1992-08-07 1992-08-07 Thermal treatment of oxide superconductor wire Pending JPH0656426A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4211035A JPH0656426A (en) 1992-08-07 1992-08-07 Thermal treatment of oxide superconductor wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4211035A JPH0656426A (en) 1992-08-07 1992-08-07 Thermal treatment of oxide superconductor wire

Publications (1)

Publication Number Publication Date
JPH0656426A true JPH0656426A (en) 1994-03-01

Family

ID=16599292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4211035A Pending JPH0656426A (en) 1992-08-07 1992-08-07 Thermal treatment of oxide superconductor wire

Country Status (1)

Country Link
JP (1) JPH0656426A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996019417A1 (en) * 1994-12-20 1996-06-27 Siemens Aktiengesellschaft Process for producing an elongate superconductor with a bismuth phase having a high transition temperature and superconductor produced according to this process
JP2003100162A (en) * 2001-09-21 2003-04-04 Sukegawa Electric Co Ltd Heat treatment method of oxide superconductive wire

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996019417A1 (en) * 1994-12-20 1996-06-27 Siemens Aktiengesellschaft Process for producing an elongate superconductor with a bismuth phase having a high transition temperature and superconductor produced according to this process
US6074991A (en) * 1994-12-20 2000-06-13 Siemens Aktiengesellschaft Process for producing an elongated superconductor with a bismuth phase having a high transition temperature and a superconductor produced according to this process
JP2003100162A (en) * 2001-09-21 2003-04-04 Sukegawa Electric Co Ltd Heat treatment method of oxide superconductive wire
JP4741762B2 (en) * 2001-09-21 2011-08-10 助川電気工業株式会社 Heat treatment method for oxide superconducting wire

Similar Documents

Publication Publication Date Title
JPH0656426A (en) Thermal treatment of oxide superconductor wire
JPH03153558A (en) Production of oxide superconductor
JP3218947B2 (en) Manufacturing method of oxide superconducting wire
JP2000247795A (en) Production of re123 oxide superconductive bulk body
JPH06187848A (en) Oxide superconducting wire and manufacture thereof
JP2914799B2 (en) Manufacturing method of oxide superconducting bulk material
JPH0717714A (en) Production of superconducting oxide
JPH05258625A (en) Manufacture for superconductive wire
JPH02192401A (en) Production of oxide superconductor and oxide superconducting wire
JPH04296408A (en) Oxide superconducting wire rod and manufacture thereof
JP4153651B2 (en) Seed crystal of oxide superconducting material and manufacturing method of oxide superconducting material using the same
JPH061616A (en) Production of bi based oxide superconductor
JPH0672712A (en) Oxide superconducting material containing rare-earth element and its production
JPH05101719A (en) Oxide superconductive wire rod and manufacture thereof
JP4019132B2 (en) RE-Ba-Cu-O-based oxide superconductor and method for producing the same
KR970005161B1 (en) Method of fabricating a superconductive body and apparatus and systems comprising the body
JPH04292452A (en) Production of oxide superconductor and wire
JP3524530B2 (en) Method and apparatus for manufacturing oxide superconductor structure
JPH0753218A (en) Production of bi-base superconducting material
JPH06211519A (en) Superconductor and its production
JPH087680A (en) Manufacture of oxide superconductive wire rod
JPH08133727A (en) Oxide superconducting wire and its production
JPH05298946A (en) Manufacture of oxide superconductive wire rod
JPH05234438A (en) Manufacture of oxide superconductive wire
JPH06234527A (en) Oxide superconducting substance