JPH04292452A - Production of oxide superconductor and wire - Google Patents

Production of oxide superconductor and wire

Info

Publication number
JPH04292452A
JPH04292452A JP3081716A JP8171691A JPH04292452A JP H04292452 A JPH04292452 A JP H04292452A JP 3081716 A JP3081716 A JP 3081716A JP 8171691 A JP8171691 A JP 8171691A JP H04292452 A JPH04292452 A JP H04292452A
Authority
JP
Japan
Prior art keywords
oxide superconductor
zone
wire
oxide
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3081716A
Other languages
Japanese (ja)
Inventor
Kazuhiko Sawada
和彦 澤田
Makoto Hiraoka
誠 平岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP3081716A priority Critical patent/JPH04292452A/en
Publication of JPH04292452A publication Critical patent/JPH04292452A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To improve a critical temperature phase of oxide superconductor grown by a zone melt method, to maintain orientation and to improve characteristics as a superconductor. CONSTITUTION:Small part of a raw material rod 2 connected to a seed bar 1 is melted by high frequency or laser to form a melt zone 3. The seed bar 1 and the raw material rod 2 are moved in an upward or a lower direction. A solidified zone 4 immediately after solidification of the melt zone 3 is continuously heat-treated under temperature gradient by a heater 5.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、優れた配向性を有し、
且つ高臨界温度相を有する酸化物超電導体及び線材の製
法に関する。
[Industrial Application Field] The present invention has excellent orientation,
The present invention also relates to a method for producing an oxide superconductor and wire having a high critical temperature phase.

【0002】0002

【従来の技術・発明が解決しようとする課題】現在、各
種の酸化物系超電導物質が知られており、その物質を超
電導体として線材やテープ等の長尺体に成形加工する実
用化研究が世界的に隆盛である。
[Prior Art/Problems to be Solved by the Invention] Currently, various oxide-based superconducting materials are known, and research into practical application of forming these materials into long objects such as wires and tapes as superconductors is underway. It is flourishing worldwide.

【0003】ところで、酸化物超電導体を育成する方法
としては、例えば図2に示すように、種棒11に接続し
た原料棒12の小部分を赤外線、高周波又はレーザ等の
加熱手段Aで溶解して溶融帯13を形成し、この溶融帯
13を上又は下方向(図2においては下方向)に数回移
動させて原料棒12全体を育成するいわゆる帯溶融法が
例示される。即ち、溶融帯13を冷却凝固させることに
より酸化物超電導帯14を育成する方法である。
By the way, as a method for growing an oxide superconductor, for example, as shown in FIG. 2, a small portion of a raw material rod 12 connected to a seed rod 11 is melted by heating means A such as infrared rays, high frequency, or laser. An example is a so-called zone melting method in which the entire raw material rod 12 is grown by forming a molten zone 13 and moving the molten zone 13 upward or downward (downward in FIG. 2) several times. That is, this is a method of growing the oxide superconducting zone 14 by cooling and solidifying the molten zone 13.

【0004】高臨界電流密度の酸化物超電導体を育成す
るには、超電導相の体積比が大きくかつ配向した超電導
相を得る必要がある。特にビスマス系では従来の帯溶融
法を用いると、配向した低臨界温度相(臨界温度90K
程度)が得られるだけである。このような酸化物超電導
体にポストアニールを行なえば、高臨界温度相は得られ
るが、配向性は失われることとなる。
In order to grow an oxide superconductor with a high critical current density, it is necessary to obtain an oriented superconducting phase with a large volume ratio of the superconducting phase. In particular, for bismuth systems, when conventional zone melting method is used, oriented low critical temperature phase (critical temperature 90K)
degree) is obtained. If such an oxide superconductor is subjected to post-annealing, a high critical temperature phase can be obtained, but the orientation will be lost.

【0005】また一般に、酸化物超電導体の線材の製造
プロセスとしては、次の■〜■の工程が採られる。■ 
 シース用の金属パイプ(主として銀パイプ)に、コア
用の酸化物超電導体の原料粉末を充填し、パイプの両端
部を溶接する等して金属パイプ内に原料粉末を封入する
。 ■  金属パイプを伸線及び圧延加工し、太径線を細径
線或いはテープにする。■  細径線或いはテープを焼
結及び酸素アニール(少なくとも800 ℃以上)し、
超電導線として製品化する。ところが、この製造プロセ
スにおいては、コアである酸化物超電導組成の粉末の充
填密度及び配向性は低く、従って超電導線としての特性
はあまり望ましいものではなかった。
[0005] In general, the following steps (1) to (4) are adopted as a manufacturing process for an oxide superconductor wire. ■
A metal pipe (mainly a silver pipe) for the sheath is filled with raw material powder of the oxide superconductor for the core, and both ends of the pipe are welded to enclose the raw material powder inside the metal pipe. ■ Wire-drawing and rolling metal pipes to turn thick-diameter wire into thin-diameter wire or tape. ■ Sintering and oxygen annealing (at least 800°C or higher) the thin wire or tape,
Commercialize it as a superconducting wire. However, in this manufacturing process, the packing density and orientation of the core powder of oxide superconducting composition were low, and therefore the properties as a superconducting wire were not very desirable.

【0006】本発明の一番目の目的は優れた配向性を有
し、且つ高臨界温度相を有する酸化物超電導体を提供す
ることである。本発明の二番目の目的は優れた配向性を
有し、且つコアにおける酸化物超電導体充填密度が高く
、ひいてはその特性の優れた、例えば高臨界温度相を有
する酸化物超電導体線材の製法を提供することである。
The first object of the present invention is to provide an oxide superconductor having excellent orientation and a high critical temperature phase. The second object of the present invention is to provide a method for producing an oxide superconductor wire having excellent orientation, high oxide superconductor packing density in the core, and excellent properties, such as a high critical temperature phase. It is to provide.

【0007】[0007]

【課題を解決するための手段】前記目的を達成するため
に、本発明者らは鋭意研究を重ねた結果、酸化物超電導
体(好ましくは帯溶融法により育成された酸化物超電導
体)よりなるロッドを、シースである金属パイプに充填
し線材化することにより、得られた酸化物超電導線材は
コアにおける酸化物超電導体充填密度が高く、ひいては
その特性の優れていること(たとえば、高臨界温度相を
有すること)を見出した。また、酸化物超電導体用組成
物よりなる溶融帯が凝固する前又は直後に、該溶融帯を
温度勾配下で連続して加熱処理することにより、製造さ
れた酸化物超電導体は優れた配向性を有し且つ高臨界温
度相を有することを見出した。
[Means for Solving the Problems] In order to achieve the above object, the present inventors have conducted extensive research and have found that the present inventors have developed an oxide superconductor (preferably an oxide superconductor grown by a zone melting method). By filling the rod into a metal pipe that is a sheath and turning it into a wire, the obtained oxide superconducting wire has a high packing density of oxide superconductor in the core and has excellent properties (for example, high critical temperature It was found that the In addition, by continuously heat-treating the melted zone made of the composition for oxide superconductor under a temperature gradient before or immediately after solidification, the produced oxide superconductor has excellent orientation properties. and a high critical temperature phase.

【0008】即ち、本発明の酸化物超電導体の製法は、
酸化物超電導体用組成物よりなる溶融帯が凝固する前又
は直後に、該溶融帯を温度勾配下で連続して加熱処理す
ることを特徴とするものである。また、本発明の酸化物
超電導線材の製法は、酸化物超電導体よりなるロッドを
、金属パイプ内に充填して線材化することを特徴とする
ものであり、特に、酸化物超電導体として、帯溶融法に
より育成された酸化物超電導体、又は本発明の酸化物超
電導体の製法により得られた酸化物超電導体を用いるこ
とを特徴とするものである。
That is, the method for producing the oxide superconductor of the present invention is as follows:
The method is characterized in that the molten zone made of the composition for oxide superconductor is continuously heat-treated under a temperature gradient before or immediately after the molten zone is solidified. Furthermore, the method for producing an oxide superconducting wire of the present invention is characterized by filling a metal pipe with a rod made of an oxide superconductor to form a wire. It is characterized by using an oxide superconductor grown by a melting method or an oxide superconductor obtained by the method for producing an oxide superconductor of the present invention.

【0009】本発明の酸化物超電導体の製法において、
「溶融帯が凝固する前又は直後」とは、後述の加熱処理
により配向性が失われない程度に溶融帯が凝固するまで
のことを意味し、この状態の溶融帯を特に「凝固帯」と
いう。また、本発明の酸化物超電導体の製法において、
帯溶融法とは、試料の一部を局部加熱して溶融帯を形成
し、この溶融帯を徐々に一方向に移動させることによっ
て酸化物超電導結晶を育成する製造法を意味する。
[0009] In the method for producing an oxide superconductor of the present invention,
"Before or immediately after the molten zone solidifies" means until the molten zone solidifies to the extent that orientation is not lost by the heat treatment described below, and the molten zone in this state is particularly referred to as a "solidified zone". . Furthermore, in the method for producing an oxide superconductor of the present invention,
The zone melting method refers to a manufacturing method in which a part of a sample is locally heated to form a molten zone, and this molten zone is gradually moved in one direction to grow an oxide superconducting crystal.

【0010】原料供給および種試料は得られる超電導性
によって適切に選択される。またその形状や作製法も限
定されるものではないが、一般的には棒状のものが固相
焼結法や溶融急冷法により作製される。これらの試料の
一部をなんらかの方法で加熱し、溶融帯を種試料に接続
する。溶融帯を徐々に一方向に移動することにより酸化
物超電導結晶が育成される。この場合、特にビスマス系
においては、高臨界温度相は育成されず、低臨界温度相
のみが育成される。
[0010] The raw material supply and the seed sample are selected appropriately depending on the superconductivity to be obtained. Although the shape and manufacturing method are not limited, rod-shaped ones are generally manufactured by solid-phase sintering or melt quenching. Some of these samples are heated in some way to connect the molten zone to the seed sample. An oxide superconducting crystal is grown by gradually moving the molten zone in one direction. In this case, especially in the bismuth system, the high critical temperature phase is not grown, but only the low critical temperature phase is grown.

【0011】そこで、溶融帯から酸化物超電導結晶が育
成される前に、すなわち溶融帯が凝固する前又は直後に
、該溶融帯(凝固帯)を温度勾配下で連続して加熱処理
に付すことによって、高臨界電流密度を有する酸化物超
電導結晶が育成される。このときの加熱条件は最高80
0 ℃〜900 ℃から最低500 ℃〜600 ℃ま
で数時間以上かけて加熱する。加熱手段は特に限定され
ないが、なめらかな温度勾配を有することが望ましく、
例えば抵抗加熱、赤外線、高周波、レーザ等でもよい。
[0011] Therefore, before oxide superconducting crystals are grown from the molten zone, that is, before or immediately after the molten zone solidifies, the molten zone (solidification zone) is continuously subjected to heat treatment under a temperature gradient. Accordingly, an oxide superconducting crystal having a high critical current density is grown. The heating conditions at this time are up to 80
Heat from 0°C to 900°C to a minimum of 500°C to 600°C over several hours or more. The heating means is not particularly limited, but preferably has a smooth temperature gradient.
For example, resistance heating, infrared rays, high frequency, laser, etc. may be used.

【0012】本発明の酸化物超電導線材の製法において
は、シースとなる金属パイプ内に酸化物超電導体のロッ
ドを充填して線材化する。金属パイプとしては、導電性
金属であれば特に制限されず、銀及び銀合金、銅及び銅
合金、鉄及び鉄合金、ニッケル及びニッケル合金等が例
示されるが、加工性、導電性等の点から銀、銅が好まし
い。このような金属パイプ自体の製造にも特別な限定は
なく、例えば押出し法等により作製することができる。
In the method for producing an oxide superconducting wire according to the present invention, a metal pipe serving as a sheath is filled with an oxide superconductor rod to form a wire. Metal pipes are not particularly limited as long as they are conductive metals, and examples include silver and silver alloys, copper and copper alloys, iron and iron alloys, nickel and nickel alloys, but there are certain considerations such as workability and conductivity. Silver and copper are preferred. There is no particular limitation on the manufacturing of such a metal pipe itself, and it can be manufactured by, for example, an extrusion method.

【0013】本発明において、金属パイプに充填する酸
化物超電導体はロッドの態様であればよく、焼結後の酸
化物超電導材料、前述の帯溶融法により育成された酸化
物超電導体、さらには本発明の酸化物超電導体の製法に
より育成された酸化物超電導体よりなるものが使用され
る。
In the present invention, the oxide superconductor filled in the metal pipe may be in the form of a rod, and may be an oxide superconductor material after sintering, an oxide superconductor grown by the above-mentioned zone melting method, or An oxide superconductor grown by the method for producing an oxide superconductor of the present invention is used.

【0014】即ち、本発明の線材の製造法においては、
従来のように酸化物超電導原料の仮焼体粉末を充填して
焼結する方法とは異なり、充填密度が高く且つ高臨界温
度相を有する酸化物超電導体ロッドを金属パイプに充填
して線材化しているので、酸化物超電導線材としての特
性を向上させることができる。特に、帯溶融法により育
成された酸化物超電導体、又は本発明の酸化物超電導体
の製法により育成された酸化物超電導体を用いた場合、
配向性が保持されるので、特性の点でより好ましい。
That is, in the method of manufacturing the wire of the present invention,
Unlike the conventional method of filling and sintering calcined powder of oxide superconducting raw material, this method fills metal pipes with oxide superconductor rods, which have a high packing density and a high critical temperature phase, and turns them into wire rods. Therefore, the properties as an oxide superconducting wire can be improved. In particular, when using an oxide superconductor grown by a zone melting method or an oxide superconductor grown by the method for producing an oxide superconductor of the present invention,
Since the orientation is maintained, it is more preferable in terms of properties.

【0015】酸化物超電導体用組成物としては、例えば
YBa2 Cu3 Oy 、Bi0.6−0.9 Pb
0.1−0.4 SrCaCu1.5−2 Ox 、E
rBa2 Cu3 Oy 、HoBa2 Cu3 Oy
 、Tl2 Ba2 Ca2 Cu3 Ox (但し、
xは9〜10、yは6.5 〜7を表す)等が例示され
るが、特にビスマス系のものが望ましい。
[0015] Examples of compositions for oxide superconductors include YBa2 Cu3 Oy, Bi0.6-0.9 Pb
0.1-0.4 SrCaCu1.5-2 Ox,E
rBa2 Cu3 Oy, HoBa2 Cu3 Oy
, Tl2 Ba2 Ca2 Cu3 Ox (however,
(x represents 9 to 10, y represents 6.5 to 7), and bismuth-based materials are particularly preferred.

【0016】金属パイプに充填する酸化物超電導体とし
て、焼結された酸化物超電導材料を用いる場合は、常套
手段により酸化物超電導材料を調製すればよく、以下に
その製造方法の一例を述べる。
When a sintered oxide superconductor material is used as the oxide superconductor to be filled in a metal pipe, the oxide superconductor material may be prepared by a conventional method, and an example of the manufacturing method will be described below.

【0017】固相法、共沈法等の周知の方法により、所
望の組成の原料粉末を得る。尚、原料粉末としては、個
々の材料を必要に応じて適当な手段にてミクロオーダ乃
至サブミクロオーダに粉砕し所定の比率で混合使用して
もよいが、周知の共沈法にて製造した合成粉末、特に平
均粒子径0.05〜1.0 μm程度の微粉末を用いる
のが好ましい。
A raw material powder having a desired composition is obtained by a well-known method such as a solid phase method or a coprecipitation method. In addition, as the raw material powder, individual materials may be ground into micro-order or sub-micro-order by appropriate means as necessary and mixed in a predetermined ratio. It is preferable to use a synthetic powder, especially a fine powder with an average particle size of about 0.05 to 1.0 μm.

【0018】次いで、上記原料粉末をそのままか、或い
は加圧下でペレット状等に仮成形し、仮焼する。この仮
焼は、高圧下での反応拡散により各成分を分子レベルで
均一に混合する目的で行われ、使用する原料粉末の種類
並びに配合割合に応じて適宜に温度が決定され、通常7
50 ℃以上、好ましくは750 〜850 ℃、特に
800 ℃前後が好ましい。仮焼の時間は温度にもよる
が通常2〜40時間、好ましくは6〜15時間程度であ
る。仮焼体は再度粉砕される。この粉砕により、平均粒
子径0.1 〜2μm程度の仮焼体微粉末を得る。かく
して得た仮焼体微粉末を線状に成形し、場合によっては
最後に成形品を焼結する。焼結条件は温度800 ℃以
上、好ましくは820 ℃〜890 ℃、さらに好まし
くは860 ℃〜880 ℃、その他は前述の仮焼の条
件とほぼ同じでよい。
[0018] Next, the above-mentioned raw material powder is either as it is or is pre-formed into a pellet form under pressure and calcined. This calcination is carried out for the purpose of uniformly mixing each component at the molecular level by reaction diffusion under high pressure.
The temperature is preferably 50°C or higher, preferably 750 to 850°C, particularly around 800°C. The calcining time depends on the temperature, but is usually about 2 to 40 hours, preferably about 6 to 15 hours. The calcined body is crushed again. By this pulverization, a fine calcined powder having an average particle diameter of about 0.1 to 2 μm is obtained. The calcined fine powder thus obtained is shaped into a linear shape, and depending on the case, the shaped product is finally sintered. The sintering conditions may be a temperature of 800° C. or higher, preferably 820° C. to 890° C., more preferably 860° C. to 880° C., and other conditions may be substantially the same as the above-mentioned calcination conditions.

【0019】本発明において、金属パイプに充填した酸
化物超電導体を線材化する方法は、既知の方法で行えば
十分であるが、通常は、充填した金属パイプを伸線及び
圧延加工し、太径線を細径線の線材とすることにより、
酸化物超電導線材を得る。
In the present invention, the oxide superconductor filled in the metal pipe can be made into a wire by any known method, but usually the filled metal pipe is wire-drawn and rolled to form a wire. By using a thin diameter wire as the diameter wire,
Obtain an oxide superconducting wire.

【0020】[0020]

【発明の効果】本発明の酸化物超電導体の製法によれば
、配向性を保持しつつ、且つ高臨界温度相(たとえば、
臨界温度100 K以上)を有する酸化物超電導体を得
ることができる。また、本発明の酸化物超電導線材の製
法は、育成された酸化物超電導体ロッドを、金属パイプ
内に充填して線材化することを特徴とするから、従来の
ように酸化物超電導原料の仮焼体粉末を充填して焼結す
る方法とは異なり、充填密度は高い。従って、酸化物超
電導線材としての特性を向上させることができる。特に
、帯溶融法により育成された酸化物超電導体、又は本発
明の酸化物超電導体の製法により育成された酸化物超電
導体を用いた場合、ロッド中の酸化物超電導体結晶は長
手方向に配向しており、これを線引きすることによりさ
らに配向性が向上するので、本発明の線材は配向性が保
持され、特性の点で特に好ましいものである。
[Effects of the Invention] According to the method for producing an oxide superconductor of the present invention, the orientation is maintained and the high critical temperature phase (for example,
It is possible to obtain an oxide superconductor having a critical temperature of 100 K or higher). In addition, since the method for producing an oxide superconducting wire of the present invention is characterized in that the grown oxide superconductor rod is filled into a metal pipe and made into a wire, it is not necessary to use the temporary oxide superconducting raw material as in the conventional method. Unlike the method of filling and sintering sintered body powder, the packing density is high. Therefore, the properties as an oxide superconducting wire can be improved. In particular, when using an oxide superconductor grown by the zone melting method or an oxide superconductor grown by the method for producing an oxide superconductor of the present invention, the oxide superconductor crystals in the rod are oriented in the longitudinal direction. By drawing this, the orientation is further improved, so the wire rod of the present invention maintains the orientation and is particularly preferable in terms of characteristics.

【0021】[0021]

【実施例】以下に実施例を用いて本発明の酸化物超電導
体及び線材の製法を詳細に説明するが、本発明は以下の
実施例のみに限定されるものではない。図1は、本発明
の酸化物超電導体の製法の一実施例を示す。図1におい
ては、種棒1に接続した原料棒2の小部分を、赤外線、
高周波又はレーザ等の加熱手段Aで溶解して溶融帯3を
形成する。種棒1および原料棒2を同速度あるいは異な
る速度で下方向に移動させることにより、原料棒2′の
下部を新たに溶融帯3′とするとともに、先の溶融帯3
を凝固帯4とする。この時、凝固帯4は種棒1および原
料棒2の移動に伴って育成され、ヒータ5により温度勾
配下で連続的に熱処理される。
EXAMPLES The method for manufacturing the oxide superconductor and wire of the present invention will be explained in detail below using examples, but the present invention is not limited to the following examples. FIG. 1 shows an embodiment of the method for producing an oxide superconductor of the present invention. In FIG. 1, a small part of the raw material rod 2 connected to the seed rod 1 is exposed to infrared rays.
A molten zone 3 is formed by melting with heating means A such as high frequency or laser. By moving the seed rod 1 and the raw material rod 2 downward at the same speed or different speeds, the lower part of the raw material rod 2' becomes a new molten zone 3', and the previous molten zone 3
is defined as coagulation zone 4. At this time, the coagulation zone 4 is grown as the seed rod 1 and the raw material rod 2 move, and is continuously heat-treated by the heater 5 under a temperature gradient.

【0022】実施例1 固相法により得た組成Bi:Pb:Sr:Ca:Cu=
8:2:10:10:15の原料粉末を800℃10時
間空気中で仮焼する。得られた仮焼物を粉砕して平均粒
子径焼く1.0 μmの微粉末を得た。次にこの微粉末
を白金るつぼに入れ、1250℃に加熱溶融した後、石
英ガラス管(内径4.5cm 、長さ1,000mm 
)中に吸引、室温にて冷却固化させた。石英ガラス管を
とり除いた後、得られた棒状試料を種棒および原料棒と
して赤外線加熱による帯溶融を1mm/hr の成長速
度で行って、溶融帯を形成した。この際、溶融帯が部分
的に凝固した凝固帯を、白金抵抗加熱により凝固直後か
ら連続に温度勾配下で加熱処理を行った。加熱条件は凝
固直後の部分を850 ℃とし、溶融帯から種棒にかけ
て(図1においては下方向に)−5℃/mmの温度勾配
として行なった。得られた酸化物超電導体は超電導転移
温度(ゼロ抵抗温度,Tc )が108 K、臨界電流
密度〔Jc (77K, 0T)〕が3.8 ×104
 A/cm2 であった。
Example 1 Composition Bi:Pb:Sr:Ca:Cu= obtained by solid phase method
The raw material powder of 8:2:10:10:15 is calcined in air at 800°C for 10 hours. The obtained calcined product was pulverized to obtain a fine powder with an average particle size of 1.0 μm. Next, this fine powder was placed in a platinum crucible, heated to 1250°C, and melted.
), and cooled and solidified at room temperature. After removing the quartz glass tube, the obtained rod-shaped sample was used as a seed rod and a raw material rod, and zone melting was performed by infrared heating at a growth rate of 1 mm/hr to form a molten zone. At this time, the solidified zone in which the molten zone was partially solidified was continuously heat-treated under a temperature gradient immediately after solidification by platinum resistance heating. The heating conditions were 850 DEG C. immediately after solidification, and a temperature gradient of -5 DEG C./mm from the melting zone to the seed rod (downward in FIG. 1). The obtained oxide superconductor has a superconducting transition temperature (zero resistance temperature, Tc) of 108 K and a critical current density [Jc (77K, 0T)] of 3.8 × 104
It was A/cm2.

【0023】実施例2 シュウ酸塩共沈法により合成して得た組成Bi:Pb:
Sr:Ca:Cu=8:2:10:10:15の原料粉
末を圧力200 kg/cm2 でハンドプレスを用い
て20φ×1.0 mm程度のペレットに成形し、次い
で 800℃で6時間酸素気流中で仮焼し、炉冷し、得
られた仮焼物を粉砕して平均粒子径約1.0 μmの微
粉末を得た。次にこの微粉末をロッド状に成形し、最後
に成形品を876 ℃で24時間酸素気流中で焼結し、
酸化物超電導体(直径5.9mm 、長さ200mm 
)ロッドを製造した。この超電導体のTc は108K
であった。
Example 2 Composition Bi:Pb synthesized by oxalate coprecipitation method:
Raw material powder with Sr:Ca:Cu=8:2:10:10:15 was formed into pellets of approximately 20φ x 1.0 mm using a hand press at a pressure of 200 kg/cm2, and then heated in oxygen at 800°C for 6 hours. It was calcined in an air stream, cooled in a furnace, and the resulting calcined product was pulverized to obtain a fine powder with an average particle size of about 1.0 μm. Next, this fine powder was molded into a rod shape, and finally the molded product was sintered at 876 °C for 24 hours in an oxygen stream.
Oxide superconductor (diameter 5.9mm, length 200mm
) produced rods. The Tc of this superconductor is 108K
Met.

【0024】外径が10mm、内径が6mm、長さが5
00mm の銀パイプに上記超電導体を充填し、まずパ
イプの外径が1mmになるまで伸線し、さらに冷間圧延
にて厚さが200 μmになるまで圧延して、酸化物超
電導線材を作製した。この超電導線材より長さ10cm
の線材をサンプリングし、超電導特性を調べた。その結
果、Tc は103 K、Jc (77K, 0T)は
2.5 ×104 A/cm2 であった。
[0024] The outer diameter is 10 mm, the inner diameter is 6 mm, and the length is 5 mm.
A 00 mm silver pipe was filled with the above superconductor, first drawn until the outer diameter of the pipe became 1 mm, and then cold rolled to a thickness of 200 μm to produce an oxide superconducting wire. did. 10cm longer than this superconducting wire
We sampled the wires and investigated their superconducting properties. As a result, Tc was 103 K and Jc (77K, 0T) was 2.5 x 104 A/cm2.

【0025】実施例3 帯溶融法により作製した酸化物超電導体(組成Bi0.
8 Pb0.2SrCaCu1.5 O y 又はBi
:Pb:Sr:Ca:Cu=8:2:10:10:15
)を用いて、実施例2と同様に酸化物超電導線材を作製
した。得られた線材の物性は、Tc が105K、Jc
 (77K, 0T)は5.5 ×104 A/cm2
 であった。
Example 3 Oxide superconductor (composition Bi0.
8 Pb0.2SrCaCu1.5 O y or Bi
:Pb:Sr:Ca:Cu=8:2:10:10:15
), an oxide superconducting wire was produced in the same manner as in Example 2. The physical properties of the obtained wire are as follows: Tc is 105K, Jc
(77K, 0T) is 5.5 × 104 A/cm2
Met.

【0026】実施例4 実施例1により作製した酸化物超電導体を用いて、実施
例2と同様に酸化物超電導線材を作製した。得られた線
材の物性は、Tc が108 K、Jc (77K, 
0T)は1.4 ×105 A/cm2 であった。
Example 4 Using the oxide superconductor produced in Example 1, an oxide superconducting wire was produced in the same manner as in Example 2. The physical properties of the obtained wire are as follows: Tc is 108 K, Jc (77K,
0T) was 1.4 x 105 A/cm2.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の酸化物超電導体の製法の一実施例を示
した説明図である。
FIG. 1 is an explanatory diagram showing an example of the method for producing an oxide superconductor of the present invention.

【図2】従来の帯溶融法による酸化物超電導体の製法を
示した説明図である。
FIG. 2 is an explanatory diagram showing a method for manufacturing an oxide superconductor using a conventional band melting method.

【符号の説明】[Explanation of symbols]

1      :種棒 2,2′:原料棒 3,3′:溶融帯 4      :凝固帯 5      :ヒータ A      :加熱手段 1: Seed stick 2, 2': Raw material rod 3,3': Melting zone 4: Coagulation zone 5: Heater A: Heating means

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】  酸化物超電導体用組成物よりなる溶融
帯が凝固する前又は直後に、該溶融帯を温度勾配下で連
続して加熱処理することを特徴とする酸化物超電導体の
製法。
1. A method for producing an oxide superconductor, which comprises continuously heating the molten zone under a temperature gradient before or immediately after the molten zone is solidified.
【請求項2】  酸化物超電導体よりなるロッドを、金
属パイプ内に充填して線材化することを特徴とする酸化
物超電導線材の製法。
2. A method for producing an oxide superconducting wire, which comprises filling a metal pipe with a rod made of the oxide superconductor and forming the rod into a wire.
【請求項3】  酸化物超電導体が、帯溶融法により育
成された酸化物超電導体であること特徴とする請求項2
記載の製法。
[Claim 3] Claim 2, wherein the oxide superconductor is an oxide superconductor grown by a zone melting method.
Manufacturing method described.
【請求項4】  酸化物超電導体が、請求項1記載の製
法により得られた酸化物超電導体であること特徴とする
請求項2記載の製法。
4. The method according to claim 2, wherein the oxide superconductor is an oxide superconductor obtained by the method according to claim 1.
JP3081716A 1991-03-20 1991-03-20 Production of oxide superconductor and wire Pending JPH04292452A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3081716A JPH04292452A (en) 1991-03-20 1991-03-20 Production of oxide superconductor and wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3081716A JPH04292452A (en) 1991-03-20 1991-03-20 Production of oxide superconductor and wire

Publications (1)

Publication Number Publication Date
JPH04292452A true JPH04292452A (en) 1992-10-16

Family

ID=13754131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3081716A Pending JPH04292452A (en) 1991-03-20 1991-03-20 Production of oxide superconductor and wire

Country Status (1)

Country Link
JP (1) JPH04292452A (en)

Similar Documents

Publication Publication Date Title
JP2672334B2 (en) Superconductor manufacturing method
US5011823A (en) Fabrication of oxide superconductors by melt growth method
JP2821794B2 (en) Oxide superconductor and manufacturing method thereof
JPH04292452A (en) Production of oxide superconductor and wire
JPH01305823A (en) Each production of superconductor and superconducting wire rod
JPH04253115A (en) Manufacture of oxide superconductive wire rod
JPH0350118A (en) Superconducting wire and its production
JPH02192401A (en) Production of oxide superconductor and oxide superconducting wire
JPH061616A (en) Production of bi based oxide superconductor
JPH0656426A (en) Thermal treatment of oxide superconductor wire
JP3050572B2 (en) Manufacturing method of oxide superconducting conductor
JPH02158012A (en) Manufacture of oxide superconductive liner body
JPH03122918A (en) Manufacture of ceramics superconductive conductor
JPH05234437A (en) Manufacture of oxide superconductive wire
JPH0717714A (en) Production of superconducting oxide
JPH0462726A (en) Manufacture of oxide superconductive wire material
JPH01176607A (en) Manufacture of oxide superconductive linear body
JPH02278616A (en) Manufacture of multicore-type oxide superconductor
JPH03216919A (en) Manufacture of oxide superconductor wire
JPH0471114A (en) Manufacture of oxide superconducting wire material
JPH04124057A (en) Production of ceramic superconductor
JPH05101719A (en) Oxide superconductive wire rod and manufacture thereof
JPH01239713A (en) Manufacture of oxide superconductive wire
JPH06131923A (en) Inclined different phase concentration oxide superconductor and its manufacture
JPH03275600A (en) Oxide superconductor material and production thereof