JPH01176607A - Manufacture of oxide superconductive linear body - Google Patents

Manufacture of oxide superconductive linear body

Info

Publication number
JPH01176607A
JPH01176607A JP62335978A JP33597887A JPH01176607A JP H01176607 A JPH01176607 A JP H01176607A JP 62335978 A JP62335978 A JP 62335978A JP 33597887 A JP33597887 A JP 33597887A JP H01176607 A JPH01176607 A JP H01176607A
Authority
JP
Japan
Prior art keywords
oxide
superconductor
cooling
core material
linear body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62335978A
Other languages
Japanese (ja)
Inventor
Yasuzo Tanaka
田中 靖三
Hiroyuki Kikuchi
菊地 裕行
Chikushi Hara
原 築志
Hiroo Takahashi
高橋 宏郎
Kiyoshi Ogawa
潔 小川
Masashi Yasuda
正史 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electric Power Development Co Ltd
Furukawa Electric Co Ltd
Hokkaido Electric Power Co Inc
Tohoku Electric Power Co Inc
Tokyo Electric Power Co Holdings Inc
Original Assignee
Electric Power Development Co Ltd
Furukawa Electric Co Ltd
Hokkaido Electric Power Co Inc
Tohoku Electric Power Co Inc
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electric Power Development Co Ltd, Furukawa Electric Co Ltd, Hokkaido Electric Power Co Inc, Tohoku Electric Power Co Inc, Tokyo Electric Power Co Inc filed Critical Electric Power Development Co Ltd
Priority to JP62335978A priority Critical patent/JPH01176607A/en
Publication of JPH01176607A publication Critical patent/JPH01176607A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To make it possible to manufacture an oxide superconductive linear body with a high density, a high critical temperature, and a high critical current density easily, by penetrating a linear core material in an oxide solution substance to be a superconductor of a specific formation, and cooling it at the cooling speed in the scope of 10<3> to 10<6> deg.C/sec. CONSTITUTION:In an oxide solution substance 1 to be a superconductor within the composition shown in a ternary condition figure of YBa2Cu3O7-X-BaCuO2- CuO, a linear core material 2 is penetrated, and it is cooled at the cooling speed within 10<3> to 10<6> deg.C/sec to obtain an oxide superconductive linear body whose periphery is covered with an oxide 3 to be a superconductor. By applying a method to solve and to solidify an oxide instead of forming an oxide powder, the obtained sintered body has a high density and an improved critical current density compared to using the oxide as a powder. And, by cooling the oxide solution substance 1 suddenly, an abnormal phase deposited in the particle field of the oxide superconductor is little, and a highly dense linear body can be obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は芯材の外周が超電導体となる酸化物で被覆され
ている酸化物超電導線条体の製造方法に関するものであ
り、同酸化物を粉末として使用するのではなく溶融体と
して使用するようにしたものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method for manufacturing an oxide superconducting wire body in which the outer periphery of a core material is coated with an oxide that becomes a superconductor. Instead of using it as a powder, it is used as a melt.

(従来技術) 液体窒素温度以上で超電導状態を示す酸化物超電導体は
既に知られている。この酸化物Mi電導体の代表的なも
のとしてY−Ba−Cu−0系がある。この酸化物超電
導体を線材化する方法として従来は次のような方法があ
った。
(Prior Art) Oxide superconductors that exhibit a superconducting state at temperatures above liquid nitrogen temperature are already known. A typical example of this oxide Mi conductor is the Y-Ba-Cu-0 system. Conventionally, the following methods have been used to make wire rods from this oxide superconductor.

(1)原料の混合酸化物粉末をAg、Ag合金、Cu合
金等の金属パイプ内に充填した後、これを冷間加工(例
えば冷間伸線、スェージング、溝ロール、平ロール等で
線あるいは薄板に加工)して所望寸法の線状体とし、続
いて熱処理を施す方法(2)原料の混合酸化物粉末とバ
インダーとを混練した後、押出加工等により線材化する
方法。
(1) After filling the raw material mixed oxide powder into a metal pipe made of Ag, Ag alloy, Cu alloy, etc., it is processed into wire or (2) Method of kneading mixed oxide powder as a raw material and a binder and then forming it into a wire rod by extrusion processing or the like.

(3)芯材の外周上に、原料の混合酸化物粉末とバイン
ダーとの混練物をコーティングし、次いで脱□バインダ
ーを含む熱処理を行なう方法。
(3) A method in which the outer periphery of the core material is coated with a kneaded mixture of raw mixed oxide powder and a binder, and then heat treatment including removal of the binder is performed.

(従来技術の問題点) しかし上記の従来方法では次のような問題があった。(Problems with conventional technology) However, the above conventional method has the following problems.

(1)焼成後の焼結体の密度が真密度に近い値にならな
いので臨界電波密度が小さくなる。
(1) Since the density of the sintered body after firing does not reach a value close to the true density, the critical radio wave density becomes small.

(2)製造方法が熱平衡過程によるため焼結や加熱過程
においてYB a2Cu3O7−X結晶粒の粒界に異相
であるY7 BaCuO3,BaCuOz、Y203 
、CuOなどが形成され、臨界電流密度を低下させると
いった特性劣化の原因になっている。
(2) Because the manufacturing method is based on a thermal equilibrium process, Y7 BaCuO3, BaCuOz, Y203, which has a different phase at the grain boundaries of YBa2Cu3O7-X crystal grains during sintering and heating processes.
, CuO, etc. are formed, which causes characteristic deterioration such as a decrease in critical current density.

(発明の目的) 本発明の目的は高緻密度で、臨界温度TCや臨界電流密
度J、の高い酸化物超電導線条体を容易に製造できる方
法を実現することにある。
(Objective of the Invention) An object of the present invention is to realize a method for easily manufacturing an oxide superconducting wire having high density, critical temperature TC, and critical current density J.

(問題点を解決するための手段) 本発明の酸化物超電導線条体の製造方法は第1図のよう
に、組成がYBa2Cu3O?−X −BaCuO2−
CuO三元状態図で示される範囲にある超電導体となる
酸化物溶融体l中に、線状の芯材2を通し、これを10
3〜106℃/secの範囲内の冷却速度で冷却して外
周が超電導体となる酸化物3で被覆された酸化物超電導
線条体を製造するようにしたことを特徴とするものであ
る。
(Means for Solving the Problems) The method for manufacturing the oxide superconducting wire of the present invention is as shown in FIG. 1, in which the composition is YBa2Cu3O? -X -BaCuO2-
A linear core material 2 is passed through the molten oxide l that becomes a superconductor within the range shown in the CuO ternary phase diagram, and is
The present invention is characterized in that an oxide superconducting wire body whose outer periphery is coated with an oxide 3 that becomes a superconductor is produced by cooling at a cooling rate within the range of 3 to 106° C./sec.

t51図は本発明の1実施例である。同図において1は
超電導体となる酸化物溶融体であり、これは溶解炉5内
において予め溶融されて800℃から1200℃の温度
範囲に保持されている0本発明では繰出しリール6から
緑り出される線状の芯材2を酸化物溶融体1中に通し、
それを冷却装置7で冷却して外周が超電導体3で被覆さ
れた酸化物超電導線条体4とした後、巻取リリール8で
巻き取るようにしたものである。
The t51 diagram is one embodiment of the present invention. In the figure, 1 is an oxide melt that becomes a superconductor, and this is melted in advance in a melting furnace 5 and maintained at a temperature range of 800°C to 1200°C. The linear core material 2 taken out is passed through the oxide melt 1,
This is cooled by a cooling device 7 to form an oxide superconducting wire body 4 whose outer periphery is coated with a superconductor 3, and then wound up by a take-up reel 8.

上記の芯材2には銀や白金またはその合金(Ag、 A
g−Cu、 Ag−Li、 A’g−Mn、 Pt、P
t−Rh、Pt−Re)などで作られ′たi材が用いら
れる。芯材2は全体がそれらで作られた□ものではなく
、表層だけが銀、白金又はその合金で作られた線材であ
ってもよい。
The core material 2 is made of silver, platinum, or an alloy thereof (Ag, A
g-Cu, Ag-Li, A'g-Mn, Pt, P
A material made of materials such as t-Rh, Pt-Re) is used. The core material 2 is not entirely made of these materials, and only the surface layer may be a wire material made of silver, platinum, or an alloy thereof.

上記の酸化物溶融体1の組成はYBa2Cu3O7−X
 −BaCuO4−CuO三元状態図で示される範囲に
あることが望ましい、また酸化物溶融体1の温度は12
00℃以下であることが望ましい、また冷却速度は10
3〜b が望しい。
The composition of the above oxide melt 1 is YBa2Cu3O7-X
-BaCuO4-CuO It is desirable that the temperature is within the range shown in the ternary phase diagram, and the temperature of the oxide melt 1 is 12
It is desirable that the temperature is below 00°C, and the cooling rate is 10°C.
3-b is desirable.

(作用) 本発明の製造方法は酸化物粉末の成形加工ではなく、酸
化物の溶融−凝固という方法であるため、酸化物を粉末
として使用する場合に比して得られる焼結体は高密度と
なり、臨界電流密度が向上する。
(Function) Since the manufacturing method of the present invention involves melting and solidifying the oxide rather than molding the oxide powder, the sintered body obtained has a higher density than when using the oxide as a powder. Therefore, the critical current density improves.

また酸化物溶融融体lを急冷することで酸化物超電導動
体の粒界に析出する異相が少なく、高緻密な線条体が得
られる。
Moreover, by rapidly cooling the oxide melt l, there are fewer foreign phases precipitated at the grain boundaries of the oxide superconductor, and a highly dense filament can be obtained.

(実施例) 本発明の実施例では酸化物溶融体1の組成を下記の6!
lj類とした。
(Example) In the example of the present invention, the composition of the oxide melt 1 is as follows: 6!
It was classified as class lj.

Y:Ba:Cu ■   l :   1:1 ■   l:1.8:3 ■   1:2.2:3 ■   1:   2:3 1 00.11:2:3 ■ 0.8  :  1.9: 3 各々の酸化物溶融体1を1400℃、1150℃および
950℃に保持し、その中を直径ll1mφのAg−5
0wt%Pd合金線2を20 m /’ seaで通過
させた。しかる後、900℃の酸素流気中で6時間加熱
し、2℃/winで3O0℃まで冷却してから大気中に
取出して臨界温度(Tc)と、77に、ITにおける臨
界電流密度C1c)の測定を行なった。その結果は次の
通りであった。
Y:Ba:Cu ■ l: 1:1 ■ l:1.8:3 ■ 1:2.2:3 ■ 1: 2:3 1 00.11:2:3 ■ 0.8: 1.9: 3 Each oxide melt 1 was maintained at 1400°C, 1150°C and 950°C, and a Ag-5 with a diameter of 11 mφ was placed inside.
A 0 wt% Pd alloy wire 2 was passed through at 20 m/' sea. Thereafter, it was heated in an oxygen stream at 900°C for 6 hours, cooled at 2°C/win to 300°C, and then taken out into the atmosphere to reach the critical temperature (Tc) and 77, the critical current density at IT (C1c). Measurements were made. The results were as follows.

(以下余白) 第1表 上表より明らかなように酸化物溶融体温度を1400℃
、1150℃、950℃としたときの得られる線材の臨
界温度(↑C)は、酸化物溶融体の組成間で差が少ない
が、臨界電流密度(S、)は組成000群と000群と
でかなりの差がある。その理由は!1成■(す■のもの
では粒界に第2相が多く観察されたことと対応しており
、粒界に高抵抗物質が介在することによると思われる。
(Left below) As is clear from the table above in Table 1, the temperature of the oxide melt was set at 1400°C.
, 1150℃ and 950℃, there is little difference in the critical temperature (↑C) of the resulting wire between the compositions of the oxide melt, but the critical current density (S, ) differs between the compositions 000 group and 000 group. There is a considerable difference. The reason is! This corresponds to the fact that a large number of second phases were observed at grain boundaries in the case of 1-formation (2), which is thought to be due to the presence of a high-resistance substance at the grain boundaries.

また上記の第1表より組成■■■のものは、製法上の条
件が良くても特性の良好なai電導線条体は得にくい。
Furthermore, as shown in Table 1 above, it is difficult to obtain an ai conductive wire body with good characteristics even if the manufacturing process conditions are good for those having compositions ■■■.

一方■〜■の組成のものは950〜1150℃程度の融
液温度で加工することにより高い工、値の線材が得られ
ることが判る。
On the other hand, it can be seen that wire rods with compositions (1) to (2) having high workability and value can be obtained by processing at a melt temperature of about 950 to 1150°C.

(実施例2) 実施例1における■■(6)の組成の酸化物溶融体1を
用い、融液温度を1100℃とし、その溶融体l中を0
.5mmφの白金−1370ジウム線を200m/se
c、20m/see、 2m/see、 0.2m/s
p+:、 0.02m/seeの速度で通過させて酸化
物溶融体lを被覆し、た後、得られた各々の線材を実施
例Iと同様に900℃で6時間加熱したのち、第2表に
示した冷却条件にて冷却してから、77K、ITにおけ
る臨界1!流密度(1c)の測定を行なった。得られた
結果は次の通りであった。
(Example 2) Using the oxide melt 1 having the composition of
.. 5mmφ platinum-1370dium wire at 200m/se
c, 20m/see, 2m/see, 0.2m/s
p+: After coating the oxide melt l by passing at a speed of 0.02 m/see, each of the obtained wires was heated at 900°C for 6 hours in the same manner as in Example I, and then the second After cooling under the cooling conditions shown in the table, the temperature reached 77K, criticality 1 in IT! The flow density (1c) was measured. The results obtained were as follows.

第2表 上表から明らかな如く■■■の組成であっても線速度及
び冷却速度が早過ぎても遅すぎてもむ値の高い線材が得
られないことがわかる。
As is clear from the upper table of Table 2, it can be seen that even with the composition of ■■■, a wire with a high tensile strength cannot be obtained if the linear velocity and cooling rate are too fast or too slow.

(発明の効果) 本発明の製造方法は次のような効果がある。(Effect of the invention) The manufacturing method of the present invention has the following effects.

(1)異相析出が少ないので高臨界電流密度の酸化物超
電導線条体が得られる。
(1) An oxide superconducting wire with a high critical current density can be obtained because there is little foreign phase precipitation.

(2) 、tfl電導体となる酸化物を粉末として使用
するのではなく溶融体として使用するたちのであるため
高密度の酸化物超電導線条体が得られる。
(2) Since the oxide that becomes the TFL conductor is used as a melt rather than as a powder, a high-density oxide superconducting wire can be obtained.

(3)長尺な酸化物超電導線条体を容易に得ることがで
きる。
(3) Elongated oxide superconducting wires can be easily obtained.

(4)線材の形状にft1J約されないので、丸線、テ
ープ、編細線といった各種線材の製造に広く適用できる
(4) Since ft1J is not limited to the shape of the wire, it can be widely applied to the production of various wires such as round wires, tapes, and knitted wires.

(5)臨界温度〒Cや臨界電流密度J0が高い高性脂の
酸化物超電導線条体が得られる。
(5) A high-fat oxide superconducting wire body having a high critical temperature 〒C and a high critical current density J0 can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の製造方法の一例を示す説#i図である
。 1は酸化物溶融体 2は芯材 3はm電導体となる酸化物
FIG. 1 is a diagram #i showing an example of the manufacturing method of the present invention. 1 is an oxide melt 2 is a core material 3 is an oxide that becomes an m conductor

Claims (3)

【特許請求の範囲】[Claims] (1)組成がYBa_2Cu_3O_7_−_x−Ba
CuO_2−CuO三元状態図で示される範囲にある超
電導体となる酸化物溶融体1中に、線状の芯材2を通し
、これを10^3〜10^6℃/secの範囲内の冷却
速度で冷却して外周が超電導体となる酸化物3で被覆さ
れた酸化物超電導線条体を製造するようにしたことを特
徴とする酸化物超電導線条体の製造方法。
(1) Composition is YBa_2Cu_3O_7_-_x-Ba
A linear core material 2 is passed through the oxide melt 1, which becomes a superconductor within the range shown in the CuO_2-CuO ternary phase diagram, and heated at a temperature of 10^3 to 10^6°C/sec. 1. A method for manufacturing an oxide superconducting wire, which comprises manufacturing an oxide superconducting wire whose outer periphery is coated with an oxide 3 that becomes a superconductor by cooling at a cooling rate.
(2)芯材2が全体又はその表層だけが銀、白金又はそ
の合金であるものを用いることを特徴とする特許請求の
範囲第1項記載の酸化物超電導線条体の製造方法。
(2) The method for producing an oxide superconducting wire according to claim 1, characterized in that the entire core material 2 or only its surface layer is made of silver, platinum, or an alloy thereof.
(3)酸化物溶融体1の温度が1200℃以下であるこ
とを特徴とする特許請求の範囲第1項記載の酸化物超電
導線条体の製造方法。
(3) The method for producing an oxide superconducting wire body according to claim 1, wherein the temperature of the oxide melt 1 is 1200° C. or less.
JP62335978A 1987-12-29 1987-12-29 Manufacture of oxide superconductive linear body Pending JPH01176607A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62335978A JPH01176607A (en) 1987-12-29 1987-12-29 Manufacture of oxide superconductive linear body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62335978A JPH01176607A (en) 1987-12-29 1987-12-29 Manufacture of oxide superconductive linear body

Publications (1)

Publication Number Publication Date
JPH01176607A true JPH01176607A (en) 1989-07-13

Family

ID=18294431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62335978A Pending JPH01176607A (en) 1987-12-29 1987-12-29 Manufacture of oxide superconductive linear body

Country Status (1)

Country Link
JP (1) JPH01176607A (en)

Similar Documents

Publication Publication Date Title
JP2672334B2 (en) Superconductor manufacturing method
US5011823A (en) Fabrication of oxide superconductors by melt growth method
JP2821794B2 (en) Oxide superconductor and manufacturing method thereof
JP2601876B2 (en) Each manufacturing method of superconductor and superconducting wire
JPH01176607A (en) Manufacture of oxide superconductive linear body
JPH10511926A (en) Low temperature preparation of melt textured YBCO superconductors (T below 950 ° C)
KR910009198B1 (en) Method of manufacturing superconductive products
US4937228A (en) Method of producing composite oxide superconducting wires using a powder bath
JP2610033B2 (en) Method for producing oxide-based superconducting molded body
JPH01176608A (en) Manufacture of oxide superconductive linear body
JPH0346710A (en) Manufacture of superconductive wire
JP3179084B2 (en) Manufacturing method of oxide superconducting wire
JPH02192401A (en) Production of oxide superconductor and oxide superconducting wire
JPH02158012A (en) Manufacture of oxide superconductive liner body
JPH04292452A (en) Production of oxide superconductor and wire
JPH02250219A (en) Multi-conductor oxide superconducting wire and manufacture thereof
JPH03112810A (en) Production of oxide superconducting film
JPH01286210A (en) Manufacture of oxide superconducting filament body
JPH02153821A (en) Production of thallium-based superconductor
JPH03290307A (en) Production of thick superconductive oxide film
JPH0640721A (en) Preparation of superconductive body with high critical electric current density
JPH04296408A (en) Oxide superconducting wire rod and manufacture thereof
JPH02152115A (en) Manufacture of oxide superconducting filament material
JPH02201819A (en) Compound superconductive material and manufacture thereof
JPH02252210A (en) Manufacture of oxide superconducting coil