JPH0717714A - Production of superconducting oxide - Google Patents

Production of superconducting oxide

Info

Publication number
JPH0717714A
JPH0717714A JP5146138A JP14613893A JPH0717714A JP H0717714 A JPH0717714 A JP H0717714A JP 5146138 A JP5146138 A JP 5146138A JP 14613893 A JP14613893 A JP 14613893A JP H0717714 A JPH0717714 A JP H0717714A
Authority
JP
Japan
Prior art keywords
phase
atmosphere
heat treatment
calcined
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5146138A
Other languages
Japanese (ja)
Inventor
Akihiko Endo
昭彦 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP5146138A priority Critical patent/JPH0717714A/en
Publication of JPH0717714A publication Critical patent/JPH0717714A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To suppress growth of an impurity phase and to obtain high critical current density (Jc) characteristics by partially melting a specified source material in an oxidative atmosphere. CONSTITUTION:Starting powders of the source material Bi2O3, SrCO3, CaCO3 and CuO are compounded and mixed to obtain the molar ratio of Bi:Sr:Ca:Cu=2:2:1:2. The mixture is calcined at about 800 deg.C for about 12 hours, pulverized, mixed, and further calcined. The calcined material is partially molten in an oxidative atmosphere at >=0.8atm oxygen partial pressure to obtain a Bi-based superconducting oxide essentially comprising Bi2Sr2Ca1Cu2Oy.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、優れた超伝導臨界電
流密度(Jc)特性を有するBi2Sr2Ca1Cu2y(この化合
物を、以下、Bi(2212)と記す)を主体とするBi系酸化物
超伝導体の製造方法に関する。
BACKGROUND OF THE INVENTION The present invention mainly comprises Bi 2 Sr 2 Ca 1 Cu 2 O y (this compound is hereinafter referred to as Bi (2212)) having excellent superconducting critical current density (Jc) characteristics. And a method for producing a Bi-based oxide superconductor.

【0002】[0002]

【従来の技術】近年発見された酸化物超伝導体の実用化
については、多方面から様々な研究が行われている。酸
化物超伝導体は、特に液体ヘリウム温度(4.2 K)での
Jcの磁場特性が、従来から使われている金属系超伝導体
よりも優れていることが確認され、30Tesla 級の高磁場
発生コイルへの応用が期待されている。
2. Description of the Related Art Various studies have been conducted in various fields on the practical use of oxide superconductors discovered in recent years. Oxide superconductors, especially at liquid helium temperature (4.2 K)
It has been confirmed that the magnetic field characteristics of Jc are superior to those of conventional metal-based superconductors, and it is expected to be applied to high-field generating coils of 30 Tesla class.

【0003】酸化物超伝導体の線材化技術としては、パ
ウダーインチューブ法やドクターブレード法、ディック
コート法等がある。パウダーインチューブ法は銀チュー
ブの中に仮焼した原料粉末をつめてダイス伸線、ロール
圧延などにより線材にする方法であり、ドクターブレー
ド法、ディックコート法は銀板上に原料粉末を塗布した
厚膜を作製し、これをロール圧延などにより長尺化する
方法である。Bi系超伝導体はいずれの方法によっても線
材化が可能であるが、いわゆるパウダーインチューブ法
が広く線材化技術として採用されている。
As a technique for forming a wire into an oxide superconductor, there are a powder in tube method, a doctor blade method, a Dick coat method and the like. The powder-in-tube method is a method in which raw material powder calcined in a silver tube is packed into a wire material by die drawing, roll rolling, etc.The doctor blade method and the Dick coat method apply the raw material powder on a silver plate. This is a method in which a thick film is produced and the length is increased by roll rolling or the like. The Bi-based superconductor can be made into a wire rod by any method, but the so-called powder-in-tube method is widely adopted as a wire rod forming technique.

【0004】Bi系超伝導体の中でもBi(2212)の線材は、
890 ℃前後で部分溶融させた後に徐冷することによっ
て、結晶方位のそろった高配向組織が得られ、磁場によ
るJc特性の低下が小さい線材が得られる。
Among the Bi-based superconductors, the Bi (2212) wire is
By partially melting at around 890 ° C and then slowly cooling, a highly oriented structure with uniform crystallographic orientation can be obtained, and a wire with little deterioration in Jc characteristics due to a magnetic field can be obtained.

【0005】例えば、Japanese Journal of Applied Ph
ysics,Vol.29,No.7, L1066−L1068(文献1)には、原
料粉として Bi2O3、 SrCO3、 CaCO3、CuO 、 Ag2O の各
粉末をBi:Sr:Ca:Cu:Agの原子比で2:2:1:2:
0.8 となるように混合し 880℃で仮焼を行って得た粉末
を銀パイプに充填し、これを伸線、圧延してテープ状の
線材に加工してから、ArとO2の混合ガス中で 880℃で部
分溶融させ徐冷する熱処理を施して、最高 8.88 ×104A
/cm2(温度 4.2K、磁場1Tesla 中) のJcを達成したと
の報告がある。
For example, Japanese Journal of Applied Ph
ysics, Vol.29, No.7, the L1066-L1068 (Document 1), Bi 2 O 3 as a raw material powder, SrCO 3, CaCO 3, CuO , each powder of Ag 2 O Bi: Sr: Ca : Cu The atomic ratio of: Ag is 2: 2: 1: 2 :.
The mixture was mixed to 0.8 and calcined at 880 ℃ to fill the powder into a silver pipe, which was drawn and rolled to form a tape-shaped wire, and then a mixed gas of Ar and O 2 A maximum of 8.88 × 10 4 A after heat treatment of partial melting at 880 ℃ and slow cooling
It is reported that Jc of / cm 2 (temperature 4.2K, magnetic field 1 Tesla) was achieved.

【0006】Bi(2212)系線材の熱処理において共通なこ
とは、部分溶融を行うために 875℃以上に昇温し、更に
粒成長させるために徐冷を行うことである。なお、部分
溶融とは、Bi(2212)相は全部溶融するが、それ以外の C
aO、Sr−Ca−Cu−O相のような不純物相は溶融しない状
態をいう。
What is common in the heat treatment of the Bi (2212) series wire is that the temperature is raised to 875 ° C. or higher for partial melting, and then gradually cooled for further grain growth. Note that partial melting means that the Bi (2212) phase is wholly melted, but the other C
Impurity phases such as aO and Sr-Ca-Cu-O phases do not melt.

【0007】しかし、部分溶融温度が高すぎたり、その
時間が長すぎると、不純物相であるSr−Ca−Cu−O相の
粒成長が促進され、Jcが低下する。そこで、一般には 8
75℃から 895℃程度まで昇温して部分溶融させた後、Bi
(2212)相が結晶化し、更に粒成長が起きるように 800℃
前後の温度まで5〜20℃/hrのゆっくりした冷却速度で
下げる熱処理が行われている(例えば Japanese Journa
l of Applied Physics,Vol.30,No.12A,pp.3371−3376…
文献2、参照) 。
However, if the partial melting temperature is too high or the time is too long, grain growth of the Sr-Ca-Cu-O phase, which is an impurity phase, is promoted and Jc is lowered. So generally 8
After partially heating by raising the temperature from 75 ℃ to 895 ℃, Bi
800 ° C so that the (2212) phase crystallizes and further grain growth occurs
Heat treatment is performed at a slow cooling rate of 5 to 20 ° C / hr to the surrounding temperature (eg Japanese Journal
l of Applied Physics, Vol.30, No.12A, pp.3371-3376 ...
Reference 2,).

【0008】一方、これらの部分溶融に使用される熱処
理雰囲気は、上記の文献2では大気であり、文献1では
アルゴンガスである。
On the other hand, the heat treatment atmosphere used for these partial melting is atmospheric air in the above Document 2 and argon gas in the above Document 1.

【0009】[0009]

【発明が解決しようとする課題】これまでに知られてい
る前述の熱処理方法の問題点は以下の点にある。即ち、 前記のように、部分溶融温度ではBi(2212)相は溶融
するが、 CaO、Sr−Ca−Cu−O相のような不純物相は固
体粒状のまま線材中に存在する。従って、Bi(2212) 相
の結晶化温度以上では固液共存状態となり、不純物相は
粒成長を起こす。
The problems of the above-mentioned heat treatment methods known so far are as follows. That is, as described above, the Bi (2212) phase melts at the partial melting temperature, but the impurity phase such as CaO and Sr-Ca-Cu-O phase exists in the wire as it is in the form of solid particles. Therefore, a solid-liquid coexisting state occurs above the crystallization temperature of the Bi (2212) phase, and the impurity phase causes grain growth.

【0010】特にSr−Ca−Cu−O相の粒成長速度が大き
く、結晶化温度以下の低温でも成長した粗大なSr−Ca−
Cu−O粒が残存する。
In particular, the grain growth rate of the Sr-Ca-Cu-O phase is high, and the coarse Sr-Ca-phase grown even at a low temperature below the crystallization temperature.
Cu-O grains remain.

【0011】 上記の固液共存状態で、固体の不純物
相が粒成長をおこすと、液相の組成に変化が生じ、目的
とするBi(2212)相の組成からのずれが生じる。その結
果、Sr−Ca−Cu−O粒以外にも、常伝導相である Bi2Sr
2Cu1y 、即ち、(2201)相が生成し超伝導電流のパスを
妨げる。また、粒成長したSr−Ca−Cu−O粒の周辺では
Bi(2212)相の配向性が乱れて、これも、Jc特性を劣化さ
せる原因となる。
When the solid impurity phase causes grain growth in the solid-liquid coexistence state described above, the composition of the liquid phase changes, and a deviation from the intended composition of the Bi (2212) phase occurs. As a result, in addition to the Sr-Ca-Cu-O grains, the normal phase Bi 2 Sr
2 Cu 1 O y , that is, the (2201) phase is generated and prevents the superconducting current path. In addition, in the vicinity of the grain-grown Sr-Ca-Cu-O grains,
The orientation of the Bi (2212) phase is disturbed, which also causes deterioration of Jc characteristics.

【0012】本発明の目的は、上記の問題点を解決し、
Jc特性に優れたBi2Sr2Ca1Cu2y を主体とする超伝導体
を製造する方法を提供することにある。
The object of the present invention is to solve the above problems,
It is an object of the present invention to provide a method for producing a superconductor mainly composed of Bi 2 Sr 2 Ca 1 Cu 2 O y having excellent Jc characteristics.

【0013】[0013]

【課題を解決するための手段】本発明は、『Bi、Sr、Ca
およびCuのモル比(Bi:Sr:Ca:Cu)が2:2:1:2
であるように配合された原料に酸素分圧が0.8atm以上の
酸素雰囲気中で部分溶融処理を施すことを特徴とする酸
化物超伝導体の製造方法』を要旨とする。
[Means for Solving the Problems] The present invention provides "Bi, Sr, Ca
And the molar ratio of Cu (Bi: Sr: Ca: Cu) is 2: 2: 1: 2.
The method for producing an oxide superconductor is characterized in that the raw material mixed as described above is subjected to partial melting treatment in an oxygen atmosphere having an oxygen partial pressure of 0.8 atm or more ”.

【0014】[0014]

【作用】前掲の文献1および2に示されているように、
Bi系酸化物超伝導体の部分溶融熱処理は、通常、大気中
またはアルゴンガス中で行われる。これは、この系の超
伝導物質が発見された当時、超伝導性の単一相にする熱
処理を低酸素雰囲気で行ったことに由来すると考えられ
る。ところが、このような雰囲気での部分溶融熱処理に
は、前述したおよびのような難点がある。
[Operation] As shown in the above-mentioned references 1 and 2,
The partial melting heat treatment of the Bi-based oxide superconductor is usually performed in the atmosphere or argon gas. It is considered that this is because, when the superconducting material of this system was discovered, the heat treatment for making the superconducting single phase was performed in a low oxygen atmosphere. However, the partial melting heat treatment in such an atmosphere has the above-mentioned disadvantages.

【0015】本発明者は、従来の常識に反して、部分溶
融熱処理を酸素雰囲気で行う実験を試みた。
Contrary to conventional wisdom, the present inventor tried an experiment in which the partial melting heat treatment was carried out in an oxygen atmosphere.

【0016】後の実施例に示す条件で作製した試料(テ
ープ状線材から切り出したもの)を表1に示す種々の酸
素分圧(PO2)の雰囲気で 885℃まで加熱し10分間保持
した後、室温まで5000℃/分の冷却速度で急冷した試料
について組織観察を行った。
Samples (cut out from a tape-shaped wire) produced under the conditions shown in the following Examples were heated to 885 ° C. in an atmosphere of various oxygen partial pressures (PO 2 ) shown in Table 1 and held for 10 minutes. The structure was observed for the sample rapidly cooled to room temperature at a cooling rate of 5000 ° C./min.

【0017】雰囲気の調整は、Arガス (純度99.9%) と
O2ガス (純度99%) 各々の流量を変化させることによっ
て行った。
The atmosphere is adjusted with Ar gas (purity 99.9%).
O 2 gas (purity 99%) was performed by changing each flow rate.

【0018】表1に酸素分圧とSr−Ca−Cu−O粒の平均
粒径との関係を示す。酸素分圧が高くなるほどSr−Ca−
Cu−O粒の平均粒径は小さくなる傾向を示すが、PO2
0.7atm までは大きな変化はなく、約40μm程度の粒径
である。しかし、PO2が 0.8atm 以上になるとSr−Ca−
Cu−O粒成長が顕著に抑制され、PO2=0.99atm では10
μm以下の微細なものになる。なお、平均粒径はSr−Ca
−Cu−O粒の平均面積を求め、粒を球とみなして算出し
た。
Table 1 shows the relationship between the oxygen partial pressure and the average particle size of Sr-Ca-Cu-O particles. The higher the oxygen partial pressure, the more Sr-Ca-
The average particle size of Cu-O grains show a smaller tendency but, PO 2 is
There is no big change up to 0.7 atm, and the particle size is about 40 μm. However, when PO 2 exceeds 0.8 atm, Sr-Ca-
Cu-O grain growth was remarkably suppressed, and when PO 2 = 0.99 atm, 10
It becomes as fine as μm or less. The average particle size is Sr-Ca.
The average area of -Cu-O grains was calculated, and the grains were regarded as spheres for calculation.

【0019】[0019]

【表1】 [Table 1]

【0020】図1の (a)は表1の試料No.1、(b) は同じ
く試料No.8についての断面組織の観察図 (倍率:1000
倍) である。符号DおよびEで示す黒い相は、PO2=0.
2 atmの雰囲気 (大気雰囲気) で熱処理した (a)では大
きいもので 100μm以上に成長しているが、PO2=0.99
atm の酸素雰囲気で熱処理した(b) の試料では、10μm
程度の大きさで細かく分散していることがわかる。(a)
図のDは(Sr0.5Ca0.5)1Cu1y 相の粒、(b) 図のEは(S
r0.5Ca0.5)3Cu5y 相の粒であり、通常、これらをまと
めてSr−Ca−Cu−O相と呼んでいる。
FIG. 1A is an observation view of the cross-sectional structure of sample No. 1 in Table 1 and FIG. 1B is the same as sample No. 8 (magnification: 1000
Times). The black phase designated by the symbols D and E is Po 2 = 0.
In (a), which was heat-treated in an atmosphere of 2 atm (atmosphere), the large one grew to 100 μm or more, but PO 2 = 0.99
10 μm for the sample (b) heat-treated in an oxygen atmosphere of atm
It can be seen that the particles are finely dispersed in the size of the degree. (a)
D in the figure is (Sr 0.5 Ca 0.5 ) 1 Cu 1 O y phase grains, (b) E in the figure is (S
r 0.5 Ca 0.5 ) 3 Cu 5 O y phase grains, which are generally collectively referred to as Sr-Ca-Cu-O phase.

【0021】図1の (c)及び(d) は、 (a)及び(b) とそ
れぞれ同じ雰囲気で、同じく 885℃で10分間保持する部
分溶融処理を施した後、 840℃まで5℃/hrで徐冷して
Bi(2212)相を結晶化させた後、室温まで急冷した試料の
断面組織観察図である。この場合も大気中で熱処理した
(c) の黒い相〔D、即ち(Sr0.5Ca0.5)1Cu1y 相〕は粗
大であり、一方、酸素雰囲気で熱処理した(d) の黒い相
〔E、即ち(Sr0.5Ca0. 5)3Cu5y 相〕の粒は小さい。な
お、(b) 図のFはBi−Sr−Ca−O相の粒である。このF
相は徐冷後に急冷した組織には観察されず、Jcに影響を
及ぼすものではないと考えられる。
FIGS. 1 (c) and 1 (d) show the same atmospheres as (a) and (b), respectively, and after partially melting at 885 ° C. for 10 minutes, 5 ° C./840° C. slowly cool with hr
FIG. 6 is an observation view of a cross-sectional structure of a sample that was rapidly cooled to room temperature after crystallizing a Bi (2212) phase. Also in this case, heat treatment was performed in the atmosphere
The black phase of (c) [D, that is, (Sr 0.5 Ca 0.5 ) 1 Cu 1 O y phase] is coarse, while the black phase of (d) [E, that is (Sr 0.5 Ca 0 . 5) 3 grains of Cu 5 O y phase] is small. In addition, F of the figure (b) is a grain of Bi-Sr-Ca-O phase. This F
The phase was not observed in the structure that was rapidly cooled after rapid cooling, and it is considered that it does not affect Jc.

【0022】図1から明らかなように、酸素雰囲気を用
いれば、部分溶融温度に保持した後に、直ちに急冷して
も、あるいは、一旦徐冷してBi(2212)を結晶化させた後
に急冷しても、最終的に得られた超伝導体中の不純物相
は、(b) および(d) に示されるように、微細なものとな
る。なお、後述する実施例に示すように、部分溶融温度
から室温まで徐冷した場合にも同じ結果が得られる。こ
のことは、酸素雰囲気での熱処理であれば、冷却のヒー
トパターンによらず、不純物相が微細でJc特性の優れた
超伝導材が得られることを意味する。
As is apparent from FIG. 1, if an oxygen atmosphere is used, the material is maintained at the partial melting temperature and then immediately quenched, or is gradually cooled once to crystallize Bi (2212) and then rapidly cooled. However, the impurity phase in the finally obtained superconductor becomes fine as shown in (b) and (d). As shown in Examples described later, the same result is obtained when the partial melting temperature is gradually cooled to room temperature. This means that if the heat treatment is performed in an oxygen atmosphere, a superconducting material having a fine impurity phase and excellent Jc characteristics can be obtained regardless of the cooling heat pattern.

【0023】上記の試験結果から、Sr−Ca−Cu−O粒の
成長を抑制するためには、部分溶融熱処理の際の雰囲気
の酸素分圧 (PO2) を 0.8atm 以上とするのがよく、更
に、PO2≧0.99atm の純酸素雰囲気が効果的であると言
える。
From the above test results, in order to suppress the growth of Sr-Ca-Cu-O grains, it is preferable that the oxygen partial pressure (PO 2 ) in the atmosphere during the partial melting heat treatment be 0.8 atm or more. Furthermore, it can be said that a pure oxygen atmosphere with PO 2 ≧ 0.99 atm is effective.

【0024】このように、酸素雰囲気がSr−Ca−Cu−O
粒の成長抑制に効果がある理由は、通常の 875〜895 ℃
での部分溶融熱処理を行う場合、PO2≧0.8atmの雰囲気
では(Sr0.5Ca0.5)3Cu5y 〔35相〕の粒が成長し、PO2
<0.8atmの雰囲気では(Sr0.5Ca0.5)1Cu1y 〔11相〕が
粒成長するが、〔35相〕は〔11相〕に較べて粒成長速度
が小さいことにあると推定される。
Thus, the oxygen atmosphere is Sr-Ca-Cu-O.
The reason why it is effective in suppressing grain growth is the usual 875-895 ℃.
In the atmosphere of PO 2 ≧ 0.8 atm, the grains of (Sr 0.5 Ca 0.5 ) 3 Cu 5 O y [35 phase] grow and the PO 2
In an atmosphere of <0.8 atm, (Sr 0.5 Ca 0.5 ) 1 Cu 1 O y [11 phase] grows grains, but it is presumed that [35 phase] has a smaller grain growth rate than [11 phase]. It

【0025】部分溶融を行わせる温度は 875〜895 ℃程
度が望ましく、前述のように、その後の冷却条件には特
に制約はない。また、少なくともBi(2212)相の結晶化が
終了する 840〜865 ℃程度までは酸素雰囲気とするのが
良い。
The temperature at which partial melting is performed is preferably about 875 to 895 ° C., and as described above, there are no particular restrictions on the cooling conditions thereafter. In addition, it is preferable that the oxygen atmosphere is at least up to about 840 to 865 ° C. at which crystallization of the Bi (2212) phase is completed.

【0026】この酸化物超伝導物質を銀シース管に充填
するか、または銀板上に塗布する従来の方法で線材とす
ることができる。即ち、原料粉末を所定比率に配合して
仮焼して得た粉末を銀シース管に充填するか、銀板の上
にドクターブレード法等によって塗布する。
The oxide superconducting material can be formed into a wire by a conventional method of filling a silver sheath tube or coating it on a silver plate. That is, the raw material powder is blended in a predetermined ratio and calcined to obtain a powder, which is filled in a silver sheath tube or applied on a silver plate by a doctor blade method or the like.

【0027】なお、銀シース管に充填した後、直ちに次
の熱処理を施してもよいが、更に、伸線、圧延等の方法
で線材とした後に熱処理を施してもよい。また、銀板の
上に塗布した場合にも、そのまま熱処理を施してもよ
く、加工後に熱処理を施してもよい。
Although the following heat treatment may be performed immediately after filling the silver sheath tube, it may be further performed after forming the wire by a method such as wire drawing or rolling. Further, even when applied on a silver plate, the heat treatment may be performed as it is, or the heat treatment may be performed after processing.

【0028】[0028]

【実施例】原料粉末として、 Bi2O3、 SrCO3、 CaCO3
CuO およびAg2Oの各粉末を用い、Bi:Sr:Ca:Cu:Agの
モル比で2:2:1:2:0.8 となるように秤量し、乳
鉢で混合した。AgO を添加した理由は、Bi(2212)相の配
向性を向上させ、Jc特性を改善するためである。
Example: As raw material powders, Bi 2 O 3 , SrCO 3 , CaCO 3 ,
CuO and Ag 2 O powders were used and weighed so that the molar ratio of Bi: Sr: Ca: Cu: Ag was 2: 2: 1: 2: 0.8, and mixed in a mortar. The reason for adding AgO is to improve the orientation of the Bi (2212) phase and the Jc characteristics.

【0029】上記の配合原料を 800℃×12時間大気中で
仮焼した後、粉砕、混合し、更に、800 ℃×12時間、同
じく大気中で仮焼し、原料粉とした。この原料粉末を長
さ10cm、外径12mm、内径6mmの銀パイプに充填し、これ
をダイス伸線およびロール圧延により、幅3mm、厚さ
0.1mmのテープ状線材に加工した。
The above blended raw materials were calcined in the air at 800 ° C. for 12 hours, pulverized and mixed, and further calcined in the air at 800 ° C. for 12 hours to obtain raw material powder. This raw material powder was filled into a silver pipe with a length of 10 cm, an outer diameter of 12 mm and an inner diameter of 6 mm, and this was drawn by die and rolled to obtain a width of 3 mm and a thickness.
It was processed into a 0.1 mm tape-shaped wire.

【0030】上記のテープ状線材から長さ10cmの試料を
切り出し、次の熱処理を連続的に施した。
A sample having a length of 10 cm was cut out from the above tape-shaped wire and subjected to the following heat treatment continuously.

【0031】(1) 885 ℃まで10℃/hr で昇温し、10分間
保持して部分溶融。 (2) 820 ℃まで5℃/hr で徐冷し、その後、室温まで炉
冷。
(1) The temperature was raised to 885 ° C. at a rate of 10 ° C./hr and kept for 10 minutes to partially melt. (2) Slowly cool to 820 ° C at 5 ° C / hr, and then cool to room temperature in a furnace.

【0032】上記(1) および(2) はいずれもアルゴンガ
ス (純度99.9%) と酸素ガス (純度99%) の流量の比を
変えて調整した表2に示す酸素分圧の雰囲気で実施し
た。なお、部分溶融を 885℃で行ったのは、885 ℃が大
気中 (PO2=0.2atm) および酸素気流中 (PO2=0.99at
m)のいずれにおいても最高のJc値が得られる熱処理温度
であることを別途確認したからである。
Both (1) and (2) above were carried out in an atmosphere of oxygen partial pressure shown in Table 2 which was adjusted by changing the flow rate ratio of argon gas (purity 99.9%) and oxygen gas (purity 99%). . The reason was partially melted at 885 ° C. is, 885 ° C. is in the air (PO 2 = 0.2atm) and an oxygen stream (PO 2 = 0.99at
This is because it was separately confirmed that the heat treatment temperature at which the highest Jc value was obtained was obtained in any of m).

【0033】表2に液体ヘリウム温度(4.2K) で、外部
磁場1Tesla 中でのJcと熱処理時の酸素分圧の関係を示
す。外部磁場は試料面に対して平行に印加した。
Table 2 shows the relationship between Jc in a liquid magnetic helium temperature (4.2 K) in an external magnetic field of 1 Tesla and oxygen partial pressure during heat treatment. The external magnetic field was applied parallel to the sample surface.

【0034】表2から明らかなように、PO2が 0.2atm
から0.7atm まではJc特性に大きな変化は見られない
(試料No.1〜4) 。しかし、PO2が 0.8atm 以上になる
とJcの改善が見られ、100 %酸素雰囲気 (PO2=0.99at
m)の試料(No.8) において最も高いJcが得られている。
As is clear from Table 2, PO 2 is 0.2 atm.
To 0.7atm, no significant change in Jc characteristics
(Sample Nos. 1 to 4). However, the improvement of Jc was observed when PO 2 was 0.8 atm or more, and 100% oxygen atmosphere (PO 2 = 0.99at
The highest Jc is obtained in the sample (No. 8) of m).

【0035】表2のJc測定値は、先の表1のSr−Ca−Cu
−O粒径の変化と対応し、Sr−Ca−Cu−O粒の成長を抑
制し、これを細粒として分散させることがJc特性の向上
に結びつくことを示している。
The measured Jc values in Table 2 are the Sr-Ca-Cu values in Table 1 above.
It is shown that the growth of Sr-Ca-Cu-O particles is suppressed and dispersed as fine particles in response to the change in -O particle size, leading to improvement of Jc characteristics.

【0036】[0036]

【表2】 [Table 2]

【0037】[0037]

【発明の効果】Bi(2212)を主体とする超伝導体の製造に
おいて必須の工程である部分溶融熱処理を高い酸素分圧
の雰囲気中で行う本発明方法によれば、不純物相の成長
を抑制し、高い臨界電流密度(Jc)特性を持つ超伝導体を
製造することが可能である。
According to the method of the present invention in which the partial melting heat treatment, which is an essential step in the production of a superconductor mainly composed of Bi (2212), is performed in an atmosphere of high oxygen partial pressure, the growth of an impurity phase is suppressed. However, it is possible to manufacture a superconductor having a high critical current density (Jc) characteristic.

【図面の簡単な説明】[Brief description of drawings]

【図1】大気中または酸素中において、885 ℃または84
0 ℃から急冷したBi(2212)線材の断面観察図の模写図で
あり、黒く見える相がSr−Ca−Cu−Oの不純物粒子であ
る。
Figure 1: 885 ° C or 84 in air or oxygen
It is a copy of a cross-sectional view of a Bi (2212) wire quenched from 0 ° C., and a black-looking phase is Sr—Ca—Cu—O impurity particles.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // H01B 12/00 ZAA 7244−5G ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location // H01B 12/00 ZAA 7244-5G

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】Bi、Sr、CaおよびCuのモル比(Bi:Sr:C
a:Cu)が2:2:1:2であるように配合された原料
に酸素分圧が0.8atm以上の酸素雰囲気中で部分溶融処理
を施すことを特徴とする酸化物超伝導体の製造方法。
1. A molar ratio of Bi, Sr, Ca and Cu (Bi: Sr: C).
a: Cu) is mixed in a ratio of 2: 2: 1: 2, and a partial melting treatment is performed in an oxygen atmosphere having an oxygen partial pressure of 0.8 atm or more to produce an oxide superconductor. Method.
JP5146138A 1993-06-17 1993-06-17 Production of superconducting oxide Pending JPH0717714A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5146138A JPH0717714A (en) 1993-06-17 1993-06-17 Production of superconducting oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5146138A JPH0717714A (en) 1993-06-17 1993-06-17 Production of superconducting oxide

Publications (1)

Publication Number Publication Date
JPH0717714A true JPH0717714A (en) 1995-01-20

Family

ID=15401007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5146138A Pending JPH0717714A (en) 1993-06-17 1993-06-17 Production of superconducting oxide

Country Status (1)

Country Link
JP (1) JPH0717714A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105702388A (en) * 2016-04-25 2016-06-22 西北有色金属研究院 Heat processing method of Bi-2212 superconducting wire/strip material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105702388A (en) * 2016-04-25 2016-06-22 西北有色金属研究院 Heat processing method of Bi-2212 superconducting wire/strip material
CN105702388B (en) * 2016-04-25 2017-03-29 西北有色金属研究院 A kind of heat treatment method of 2212 superconducting wires/strips of Bi

Similar Documents

Publication Publication Date Title
US4968663A (en) Ductile, single phase-continuous super-conducting oxide conductors
JPH0717714A (en) Production of superconducting oxide
US6103670A (en) Method of manufacturing oxide superconductor containing Ag and having substantially same crystal orientation
JP3889139B2 (en) Oxide superconductor containing silver and method for producing the same
JP3330962B2 (en) Manufacturing method of oxide superconductor
JP3854364B2 (en) Method for producing REBa2Cu3Ox-based superconductor
JP3242350B2 (en) Oxide superconductor and manufacturing method thereof
JP3195041B2 (en) Oxide superconductor and manufacturing method thereof
JP4019132B2 (en) RE-Ba-Cu-O-based oxide superconductor and method for producing the same
JPH0365509A (en) Rare earth metal oxide superconductor
JP4153651B2 (en) Seed crystal of oxide superconducting material and manufacturing method of oxide superconducting material using the same
JPH061616A (en) Production of bi based oxide superconductor
JPH0656426A (en) Thermal treatment of oxide superconductor wire
JP3471443B2 (en) Manufacturing method of oxide superconductor material
JPH07106906B2 (en) Oxide superconducting material containing rare earth element and method for producing the same
JPH06234527A (en) Oxide superconducting substance
JP3538620B2 (en) Method for producing thallium-based superconducting silver-based sheath wire having high crystal orientation and thallium-based superconducting silver-based sheath wire obtained by the method
JP2692614B2 (en) Oxide superconductor with new structure
JPH10265221A (en) Production of oxide superconductor
JP2914799B2 (en) Manufacturing method of oxide superconducting bulk material
JPH05234437A (en) Manufacture of oxide superconductive wire
JP3050572B2 (en) Manufacturing method of oxide superconducting conductor
JPH06211519A (en) Superconductor and its production
JPH0753218A (en) Production of bi-base superconducting material
JPH0818910B2 (en) Method for producing oxide superconducting single crystal