JPH06234527A - Oxide superconducting substance - Google Patents

Oxide superconducting substance

Info

Publication number
JPH06234527A
JPH06234527A JP5170054A JP17005493A JPH06234527A JP H06234527 A JPH06234527 A JP H06234527A JP 5170054 A JP5170054 A JP 5170054A JP 17005493 A JP17005493 A JP 17005493A JP H06234527 A JPH06234527 A JP H06234527A
Authority
JP
Japan
Prior art keywords
wire
platinum group
value
added
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5170054A
Other languages
Japanese (ja)
Inventor
Akihiko Endo
昭彦 遠藤
Shuhei Shimokawa
修平 下川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP5170054A priority Critical patent/JPH06234527A/en
Publication of JPH06234527A publication Critical patent/JPH06234527A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain a Bi-based oxide superconducting substance having high Jc and hardly reducing the Jc in a magnetic field. CONSTITUTION:This oxide superconducting substance has a compsn. represented by the formula Bi2Sr2Ca1Cu2AxOy (where A is one or more kinds of elements selected among Ru, Rh, Pd, Os, Ir and Pt as Pt group elements and 0.005<=x<=0.5). Since the Pt group elements are added, an impurity phase can finely be dispersed in a partially melted state and an excellent superconducting material having high Jc is obtd. by working it into a wire, etc.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、高い臨界電流密度(J
c)を有し、更に磁場によるJcの低下が小さいBi系酸化物
超伝導物質に関する。
BACKGROUND OF THE INVENTION The present invention relates to a high critical current density (J
The present invention relates to a Bi-based oxide superconducting substance having c) and having a small decrease in Jc due to a magnetic field.

【0002】[0002]

【従来の技術】超伝導臨界温度の高い酸化物系の超伝導
物質が発見されて以来、その実用化に向けての様々な研
究が進められている。多数の酸化物超伝導物質の中で
も、特にBi2Sr2Ca1Cu2y で表されるBi系超伝導材は、
液体ヘリウム温度(4.2K) での臨界電流密度(Jc)の磁場
特性が、従来から使われている金属系超伝導材よりも優
れていることが確認され、30Tesla 級の高磁場発生コイ
ルへの応用が期待されている。
2. Description of the Related Art Since the discovery of oxide-based superconducting materials having a high superconducting critical temperature, various studies have been conducted toward their practical application. Among many oxide superconducting materials, the Bi-based superconducting material represented by Bi 2 Sr 2 Ca 1 Cu 2 O y is
It has been confirmed that the magnetic field characteristics of the critical current density (Jc) at liquid helium temperature (4.2K) are superior to those of the metallic superconducting materials that have been used conventionally. Applications are expected.

【0003】Bi系超伝導物質は、銀チューブの中に仮焼
した原料粉末を詰めて、ダイス伸線、ロール圧延などに
より線材にする、いわゆるパウダーインチューブ法によ
り比較的容易に線材にすることができる物質である。Bi
系超伝導物質の中でBi2Sr2Ca1Cu2y の、いわゆる(221
2)構造をもつ物質は 890℃前後で部分溶融させた後、徐
冷すると組織の方向がそろった高配向組織が得られ、磁
場によるJcの低下の小さい線材が得られる。
The Bi-based superconducting material can be made into a wire by filling the calcined raw material powder in a silver tube and making it into a wire by die drawing, roll rolling, etc. It is a substance that can Bi
Among the superconducting materials, Bi 2 Sr 2 Ca 1 Cu 2 O y , the so-called (221
2) A material with a structure is partially melted at around 890 ℃ and then slowly cooled to obtain a highly oriented texture with uniform texture direction, and a wire with a small decrease in Jc due to a magnetic field is obtained.

【0004】例えば、Japanese Journal of Applied Ph
ysics,Vol.29,No.7,L1066 には、原料粉として Bi2O3
SrCO3、 CaCO3、 CuO、Ag2Oの各粉末をBi:Sr:Ca:C
u:Agの原子比で2:2:1:2:0.8 となるように混
合し、 880℃で仮焼を行って得た粉末を銀パイプに充填
し、これを伸線、圧延してテープ状の線材に加工してか
ら、ArとO2の混合ガス中で 880℃で部分溶融させ徐冷す
る熱処理を施して、最高8.88×104A/cm2 (温度 4.2K、
磁場1Tesla 中) のJcを達成したとの報告がある。
For example, Japanese Journal of Applied Ph
ysics, Vol.29, No.7, L1066 contains Bi 2 O 3 as raw material powder,
Powders of SrCO 3 , CaCO 3 , CuO, and Ag 2 O were added to Bi: Sr: Ca: C.
The u: Ag atomic ratio was mixed in a ratio of 2: 2: 1: 2: 0.8 and calcined at 880 ° C. The powder obtained was filled into a silver pipe, which was drawn and rolled to form a tape. After being processed into a wire-shaped wire, it is heat-treated by partially melting it in a mixed gas of Ar and O 2 at 880 ° C and then gradually cooling it to a maximum of 8.88 × 10 4 A / cm 2 (temperature 4.2K,
It is reported that the Jc of 1 Tesla of magnetic field) was achieved.

【0005】Bi(2212)系線材の熱処理において共通なこ
とは、部分溶融を行うために 875℃以上に昇温し、更に
粒成長させるために徐冷を行うことである。なお、部分
溶融とは、Bi(2212)相は全部溶融するが、それ以外の C
aO、Sr−Ca−Cu−O相のような不純物相は溶融しない状
態をいう。
What is common to the heat treatment of Bi (2212) -based wire is that the temperature is raised to 875 ° C. or higher for partial melting, and then gradually cooled for further grain growth. Note that partial melting means that the Bi (2212) phase is wholly melted, but the other C
Impurity phases such as aO and Sr-Ca-Cu-O phases do not melt.

【0006】しかし、部分溶融温度が高すぎたり、その
時間が長すぎると、不純物相であるSr−Ca−Cu−O相の
粒成長が促進され、Jcが低下する。そこで、一般には 8
75℃から 895℃程度までの温度域に昇温して部分溶融さ
せた後、Bi(2212)相を結晶化し、更に粒成長が起きるよ
うに 880℃前後の温度まで5〜20℃/hrのゆっくりした
冷却速度で下げる熱処理が行われている (例えば、Japa
nese Journal of Applied Physics,Vol.30,No.12A, pp.
3371−3376参照) 。
However, if the partial melting temperature is too high or the time is too long, grain growth of the Sr-Ca-Cu-O phase, which is an impurity phase, is promoted and Jc is lowered. So generally 8
After the temperature was raised from 75 ℃ to 895 ℃ and partially melted, the Bi (2212) phase was crystallized, and the temperature around 880 ℃ was maintained at 5 to 20 ℃ / hr so that grain growth would occur. Heat treatment is being performed at a slow cooling rate (eg Japa
nese Journal of Applied Physics, Vol.30, No.12A, pp.
3371-3376).

【0007】[0007]

【発明が解決しようとする課題】これまでに知られてい
る前述の熱処理方法の問題点は以下の点にある。即ち、 前記のように、部分溶融温度ではBi(2212)相は溶融
するが、それ以外のCaO、Sr−Ca−Cu−O相のような不
純物相は固体粒状のまま線材中に存在する。従って、Bi
(2212)相の結晶化温度以上では固液共存状態となり、不
純物相は粒成長を起こす。特にSr−Ca−Cu−O相の粒成
長速度が大きく、結晶化温度以下の低温でも成長したSr
−Ca−Cu−O粒が残存する。
The problems of the above-mentioned heat treatment methods known so far are as follows. That is, as described above, the Bi (2212) phase is melted at the partial melting temperature, but the other impurity phases such as CaO and Sr-Ca-Cu-O phases are present in the wire as solid particles. Therefore Bi
Above the crystallization temperature of the (2212) phase, a solid-liquid coexistence state occurs, and the impurity phase causes grain growth. Especially, the grain growth rate of the Sr-Ca-Cu-O phase is high, and Sr grown even at a low temperature below the crystallization temperature.
-Ca-Cu-O grains remain.

【0008】 その結果、線材中で所定の組成からの
ずれが生じ、Sr−Ca−Cu−O粒以外に常伝導相である B
i2Sr2Cu1y 即ち(2201)相が生成し、Jc特性を劣化させ
る。この(2201)相は、Bi(2212)相が結晶化して粒成長す
る際に、その配向性を乱すので、Jc特性を更に劣化させ
るという問題もある。
As a result, a deviation from a predetermined composition occurs in the wire, and in addition to the Sr-Ca-Cu-O grains, the normal phase B
i 2 Sr 2 Cu 1 O y, that is, the (2201) phase is generated and deteriorates the Jc characteristics. The (2201) phase disturbs the orientation of the Bi (2212) phase when the Bi (2212) phase is crystallized and grows in grains, which causes a problem that the Jc characteristic is further deteriorated.

【0009】本発明の目的は、上記のSr−Ca−Cu−O相
の粒成長が起きにくく、Jc特性の優れた超伝導物質を提
供することにある。
An object of the present invention is to provide a superconducting substance having excellent Jc characteristics, in which grain growth of the Sr-Ca-Cu-O phase described above hardly occurs.

【0010】[0010]

【課題を解決するための手段】本発明は、下記の超伝導
物質を要旨とする。組成式 Bi2Sr2Ca1Cu2x y で表
される酸化物超伝導物質。
The subject of the present invention is the following superconducting material. An oxide superconducting substance represented by the composition formula Bi 2 Sr 2 Ca 1 Cu 2 A x O y .

【0011】但し、上記の組成式のAは白金族元素(R
u、Rh、Pd、Os、IrおよびPt) の中から選ばれた1種以
上の元素であり、0.005 ≦x≦ 0.5 である。
However, A in the above composition formula is a platinum group element (R
u, Rh, Pd, Os, Ir and Pt), and 0.005 ≦ x ≦ 0.5.

【0012】[0012]

【作用】本発明者は、前記の部分溶融法によるBi2Sr2Ca
1Cu2y 系酸化物主体の超伝導材を製造する方法につい
て詳細に検討した。その結果、以下の点が明らかになっ
た。
The inventor of the present invention has made Bi 2 Sr 2 Ca by the partial melting method described above.
The method for producing a 1 Cu 2 O y based oxide-based superconducting material was studied in detail. As a result, the following points became clear.

【0013】1. 部分溶融状態でのSr−Ca−Cu−O粒が
大きいほど、徐冷後の超伝導材中に残存するSr−Ca−Cu
−O粒が大きい。
1. The larger the Sr-Ca-Cu-O grains in the partially molten state, the more the Sr-Ca-Cu remaining in the superconducting material after slow cooling.
-O grains are large.

【0014】2. 残存するSr−Ca−Cu−O粒の総量が同
程度であっても、個々の粒が小さいほどJcを劣化させる
悪影響は小さい。
2. Even if the total amount of remaining Sr-Ca-Cu-O grains is about the same, the smaller the individual grains, the smaller the adverse effect of degrading Jc.

【0015】3. 従って、部分溶融状態でのSr−Ca−Cu
−O粒をできるだけ小さく分散させることがJcの向上に
つながる。
3. Therefore, Sr-Ca-Cu in the partially molten state
-Dispersing O grains as small as possible leads to an improvement in Jc.

【0016】4. Sr−Ca−Cu−O粒を 0.1μm 以下の微
細粒子として分散させることができれば、これがピンニ
ングサイトとして働き、更にJcを向上させることができ
る。
4. If the Sr-Ca-Cu-O particles can be dispersed as fine particles of 0.1 μm or less, they can function as pinning sites and further improve Jc.

【0017】本発明者は、部分溶融状態でのSr−Ca−Cu
−O粒を小さくする手段を探索し、Bi2Sr2Ca1Cu2y
酸化物に特定量の白金族元素を添加するのが効果的であ
ることを確認した。即ち、Bi(2212)に Ru(ルテニウム)
、Rh(ロジウム) 、Pd(パラジウム) 、Os(オスミウ
ム)、Ir(イリジウム) 及びPt(白金) の中の1種以上
の元素を選んで、その適正量を添加することで、部分溶
融状態でのSr−Ca−Cu−Oの微細分散が可能となり、そ
の結果、徐冷後の酸化物超伝導材のJcを向上させること
ができる。
The present inventor has found that Sr-Ca-Cu in a partially molten state
Searching means for reducing the -O grains, to add specific amounts of a platinum group element Bi 2 Sr 2 Ca 1 Cu 2 O y based oxide was confirmed to be effective. That is, Ru (ruthenium) on Bi (2212)
, Rh (rhodium), Pd (palladium), Os (osmium), Ir (iridium), and Pt (platinum), select one or more elements, and add appropriate amount of them in the partially molten state. It becomes possible to finely disperse Sr-Ca-Cu-O, and as a result, it is possible to improve Jc of the oxide superconductor after slow cooling.

【0018】白金族元素の添加量は、前記の組成式Bi2S
r2Ca1Cu2x y (ただし、この組成式のAは、前記の
白金族元素に一つ、または二つ以上の組合せ)における
xが0.005〜0.5 となる範囲でなければならない。後述
する図1に示すように、xが0.005より小さい場合に
は、Sr−Ca−Cu−Oを微細分散させる効果が見られな
い。一方、xが 0.5を超えると、微細分散は促される
が、Sr−Ca−Cu−Oの総量が白金族元素無添加の場合よ
り増加し、徐冷後のBi(2212)の生成量が少なくなって、
Jc特性が低下する。好ましいxの範囲は0.05〜0.3 で、
x=0.2 のときに最高のJcが得られる。
The addition amount of the platinum group element is determined by the above composition formula Bi 2 S.
x in r 2 Ca 1 Cu 2 A x O y (however, A in this composition formula is one or a combination of two or more of the above platinum group elements) must be in the range of 0.005 to 0.5. As shown in FIG. 1 described later, when x is smaller than 0.005, the effect of finely dispersing Sr—Ca—Cu—O is not seen. On the other hand, when x exceeds 0.5, fine dispersion is promoted, but the total amount of Sr-Ca-Cu-O increases compared to the case where no platinum group element is added, and the production amount of Bi (2212) after slow cooling is small. Become,
Jc characteristics deteriorate. The preferable range of x is 0.05 to 0.3,
The best Jc is obtained when x = 0.2.

【0019】本発明の超伝導物質を主体とする超伝導材
(例えば線材) は、従来のBi系超伝導材と同じく部分溶
融法によって製造される。即ち、酸化物等の原料粉末を
仮焼して得たBi:Sr:Ca:Cu:Aの原子比が2:2:
1:2:x (x= 0.005〜0.5)の組成の粉末を銀シース
に入れ、伸線、圧延等により所定形状に加工し、部分溶
融処理を施して徐冷する。部分溶融処理の温度は、後に
説明する図3に示されるように、 870〜910 ℃が好まし
い。 870℃より低温では部分溶融が十分に起こらず高配
向組織が得られない。また、 910℃を超える温度上では
Sr−Ca−Cu−O粒の成長が大きく、Jc特性が低下する。
Superconducting material mainly composed of superconducting material of the present invention
The wire (for example, a wire) is manufactured by the partial melting method like the conventional Bi-based superconducting material. That is, the atomic ratio of Bi: Sr: Ca: Cu: A obtained by calcining raw material powder such as oxide is 2: 2:
A powder having a composition of 1: 2: x (x = 0.005 to 0.5) is put into a silver sheath, processed into a predetermined shape by wire drawing, rolling, etc., partially melted and gradually cooled. The temperature of the partial melting treatment is preferably 870 to 910 ° C., as shown in FIG. 3 described later. At temperatures lower than 870 ° C, partial melting does not occur sufficiently and a highly oriented structure cannot be obtained. Also, at temperatures above 910 ° C
The growth of Sr-Ca-Cu-O grains is large and the Jc characteristic is deteriorated.

【0020】なお、白金族元素の原料としては、酸化物
の外に、塩化物、硝酸塩、純金属の各粉末を使用するこ
とができる。また、本発明の超伝導物質は、線材以外に
も様々な形状の超伝導材料として利用できる。
In addition to oxides, chloride, nitrate, and pure metal powders can be used as the raw material for the platinum group element. Further, the superconducting substance of the present invention can be used as a superconducting material having various shapes other than a wire rod.

【0021】[0021]

【実施例】本発明の組成物を利用した線材の超伝導特性
を確認するために銀シース法(パウダーインチューブ
法)により線材を作製した。
[Examples] In order to confirm the superconducting properties of a wire using the composition of the present invention, a wire was prepared by the silver sheath method (powder in tube method).

【0022】原料粉末として Bi2O3、 SrCO3、 CaCO3
CuO の他に白金族元素 (A) の原料として RuO2 、 Rh2
O3、 PdO、 Os2O3、 Ir2O3、PtO2のいずれかを用いた。
これらの原料粉末をBi:Sr:Ca:Cu:Aの原子比で2:
2:1:2:x (x= 0.001〜0.8)となるように配合し
混合して、大気中 800℃で12時間仮焼したのち粉砕混合
し、更に同じく大気中で 800℃×12時間の仮焼を行い、
線材用原料粉とした。
As raw material powders, Bi 2 O 3 , SrCO 3 , CaCO 3 ,
In addition to CuO, RuO 2 and Rh 2 as raw materials for platinum group element (A)
Any one of O 3 , PdO, Os 2 O 3 , Ir 2 O 3 and PtO 2 was used.
These raw material powders have an atomic ratio of Bi: Sr: Ca: Cu: A of 2:
It is mixed and mixed so that it becomes 2: 1: 2: x (x = 0.001 to 0.8), calcined in the air at 800 ° C for 12 hours, then pulverized and mixed, and further in the air at 800 ° C × 12 hours. Calcining,
Raw material powder for wire rod.

【0023】上記の原料粉を外径6mm、内径4mmの銀パ
イプに充填し、ダイス伸線とロール圧延により幅3mm、
厚さ 0.1mmのテープ状線材に加工した。
The above raw material powder was filled in a silver pipe having an outer diameter of 6 mm and an inner diameter of 4 mm, and the width was 3 mm by die drawing and roll rolling.
It was processed into a tape-shaped wire with a thickness of 0.1 mm.

【0024】このようにして製造したテープ状線材を、
種々の部分溶融温度(Tm、℃)まで昇温し、10分間保持
した後、5℃/hr で 800℃まで徐冷し、更に室温まで炉
冷した。
The tape-shaped wire produced in this way is
The temperature was raised to various partial melting temperatures (Tm, ° C), held for 10 minutes, gradually cooled to 800 ° C at 5 ° C / hr, and further cooled to room temperature.

【0025】表1にTm= 885℃として処理した線材の
4.2K、1Tesla 中のJc値と添加した白金族元素の量
(xの値)、ならびにSr−Ca−Cu−O粒の平均粒径と総
量(体積分率)を示す。なお、表1に示すのは、白金族
元素の中の1種のみをそれぞれxの値だけ添加した例で
ある。
Table 1 shows the wires treated at Tm = 885 ° C.
The Jc value in 4.2K and 1 Tesla, the amount of the platinum group element added (value of x), and the average particle size and total amount (volume fraction) of Sr-Ca-Cu-O particles are shown. In addition, shown in Table 1 is an example in which only one kind of platinum group element is added by the value of x.

【0026】図1は、白金族元素としてRhを用い、Tm=
885℃として処理した線材のRhの量(xの値)と 4.2
K、1Tesla 中のJc値との関係を示すものである。図示
のように、x=0.005 まではほとんどJcの向上が見られ
ないが、0.005 以上でJcが向上しはじめ、x=0.2 で最
高値をとる。その後再びJcが減少し始め、xが 0.5を超
えるとRh無添加のものよりJcが低下する。これは、xが
大きくなるとともにSr−Ca−Cu−O粒の成長が抑えら
れ、その平均粒径が小さくなってJc値が上がるが、xが
或る値を超えるとSr−Ca−Cu−O粒の総量が増して、Jc
値が低下するからである。Rh以外の白金族元素を添加し
た場合にも同じ傾向となる。
In FIG. 1, Rm is used as the platinum group element, and Tm =
The amount of Rh (x value) of the wire treated at 885 ℃ and 4.2
K shows the relationship with the Jc value in 1 Tesla. As shown in the figure, there is almost no improvement in Jc until x = 0.005, but Jc begins to improve at 0.005 or higher and reaches the maximum value at x = 0.2. After that, Jc starts to decrease again, and when x exceeds 0.5, Jc becomes lower than that without Rh. This is because the growth of Sr-Ca-Cu-O grains is suppressed as x increases, the average grain size decreases, and the Jc value increases, but when x exceeds a certain value, Sr-Ca-Cu- The total amount of O grains increases, and Jc
This is because the value decreases. The same tendency is observed when platinum group elements other than Rh are added.

【0027】[0027]

【表1】 [Table 1]

【0028】同様にして、2種類以上の白金族元素を添
加して銀シース線材を作製した。そのときに各元素の添
加量と 4.2K、1Tesla 中のJc値との関係を表2に示
す。表2に示すxの値は2種類以上の白金族元素の合計
添加量、即ち、x=x1 +x2+x3 +x4 +x5 +x
6 である。
Similarly, two or more kinds of platinum group elements were added to produce a silver sheath wire. Table 2 shows the relationship between the addition amount of each element and the Jc value in 4.2 Tesla at 4.2K. The value of x shown in Table 2 is the total addition amount of two or more platinum group elements, that is, x = x 1 + x 2 + x 3 + x 4 + x 5 + x
Is 6 .

【0029】表2から2種類以上の白金族元素の複合添
加の場合もその合計添加量(xの値)が 0.005〜0.5 で
あればJc値が向上することがわかる。
It can be seen from Table 2 that even in the case of composite addition of two or more platinum group elements, the Jc value is improved if the total addition amount (value of x) is 0.005 to 0.5.

【0030】[0030]

【表2】 [Table 2]

【0031】表3に白金族元素としてRhを用いた試料と
これを添加していない試料(x=0.2 とx=0)のゼロ
磁場および1Tesla の磁場中でのJc値を示す。この表か
らわかるように、白金族元素を添加した本発明の酸化物
超伝導体は、Jc値が大きいだけでなく磁場中におけるJc
値の低下が小さい。これは、微細に分散されたSr−Ca−
Cu−O粒がピンニングサイトとして働くからであると考
えられる。
Table 3 shows the Jc values in the zero magnetic field and the 1 Tesla magnetic field of the sample using Rh as a platinum group element and the sample not adding this (x = 0. 2 and x = 0). As can be seen from this table, the oxide superconductor of the present invention to which the platinum group element is added not only has a large Jc value but also Jc in a magnetic field.
The decrease in value is small. This is a finely dispersed Sr-Ca-
It is considered that this is because the Cu-O grains act as pinning sites.

【0032】[0032]

【表3】 [Table 3]

【0033】図2は、白金族元素としてRhを用い 885℃
で10分間の部分溶融処理を行った後に急冷した線材の断
面組織の顕微鏡写真(500倍) の複写図である。 (a)がx
=0、即ち、Rh無添加のもの、(b) がx=0.2 のもので
ある。 (a)では黒く観察されるSr−Ca−Cu−O粒が粗大
であるが、(b) のRh添加材ではこれが微細に分散してい
ることがわかる。このような部分溶融処理をした状態で
のSr−Ca−Cu−Oの粒径の相違が、表2に示すようなJc
値の相違となって現れるのである。
FIG. 2 shows that Rh is used as a platinum group element at 885 ° C.
FIG. 3 is a copy of a micrograph (500 times) of a cross-sectional structure of a wire rod which has been quenched after performing partial melting treatment for 10 minutes. (a) is x
= 0, that is, Rh is not added, and (b) is x = 0.2. It can be seen that the black Sr-Ca-Cu-O grains are coarse in (a), but are finely dispersed in the Rh-added material in (b). The difference in the particle size of Sr-Ca-Cu-O under the condition of such partial melting treatment is as shown in Table 2
It appears as a difference in value.

【0034】図3に、白金族元素としてRhを添加 (x=
0.2)した線材 (○印) と、Rh無添加(x=0) の線材
(△印) の部分溶融処理温度 (Tm) と 4.2K、1Tesla
でのJc値との関係を示す。いずれの試料においてもTmが
880℃付近の時に最大のJcを示すが、Rh添加材の方がは
るかにJcが高く、しかも高いJcを示すTmの範囲が広い。
In FIG. 3, Rh is added as a platinum group element (x =
0.2) wire (○) and Rh-free (x = 0) wire
Partial melting process temperature (Tm) (marked with △) and 4.2K, 1 Tesla
Shows the relationship with the Jc value in. Tm of all samples
The maximum Jc is shown at around 880 ° C, but the Rh-added material has a much higher Jc, and the Tm range showing a higher Jc is wider.

【0035】Rh以外の白金族元素を添加した場合も、同
じ傾向になる。このことは、本発明の白金族元素を添加
したBi系酸化物超伝導体は、部分溶融温度の選択幅が広
いことを意味し、例えば大型の超伝導コイルのように全
体を均一な温度に加熱しにくい材料であっても、材料全
体を部分溶融させることができるので目的とするJcの磁
場による低下が小さい材料を容易に製造することができ
る、ということを意味する。
The same tendency is obtained when a platinum group element other than Rh is added. This means that the Bi-based oxide superconductor to which the platinum group element of the present invention is added has a wide selection range of the partial melting temperature. For example, a large superconducting coil has a uniform temperature throughout. This means that even if a material is difficult to heat, the entire material can be partially melted, so that the target material whose decrease in Jc due to the magnetic field is small can be easily manufactured.

【0036】[0036]

【発明の効果】本発明の白金族元素の1種以上を適正な
範囲で添加したBi系酸化物超伝導物質は、この系の物質
に必須の処理である部分溶融処理を施した状態で、不純
物相を微細に分散させることができる。従って、線材等
に加工した場合にJcが高く、かつ磁場中でのJcの低下が
小さい超伝導材となる。
The Bi-based oxide superconducting material to which one or more of the platinum group elements of the present invention is added in an appropriate range is obtained by subjecting this material to the partial melting treatment, which is an essential treatment. The impurity phase can be finely dispersed. Therefore, it becomes a superconducting material having a high Jc when processed into a wire or the like and having a small decrease in Jc in a magnetic field.

【図面の簡単な説明】[Brief description of drawings]

【図1】Bi2Sr2Ca1Cu2x y (Aは白金族元素)のA
としてRhを使用した場合のxの値(Rh添加量)と 4.2
K、1Tesla でのJc値との関係を示す図である。
FIG. 1A of Bi 2 Sr 2 Ca 1 Cu 2 A x O y (A is a platinum group element)
X value (Rh addition amount) when Rh is used as 4.2
It is a figure which shows the relationship with the Jc value in K and 1 Tesla.

【図2】Bi2Sr2Ca1Cu2Rhx y の線材を 885℃で10分間
の部分溶融処理を行った後に急冷したものの断面組織の
顕微鏡写真(500倍) の複写図で、 (a)がx=0、即ち、
Rh無添加のもの、(b) がx=0.2 のものである。
FIG. 2 is a copy of a micrograph (500 times) of the cross-sectional structure of a Bi 2 Sr 2 Ca 1 Cu 2 Rh x O y wire rod that has been subjected to partial melting treatment at 885 ° C. for 10 minutes and then rapidly cooled. a) is x = 0, that is,
Rh is not added, and (b) is x = 0.2.

【図3】Bi2Sr2Ca1Cu2x y (Aは白金族元素)のA
としてRhを使用した線材 (x=0.2 、○印) と、Rh無添
加 (x=0、△印 )の線材の部分溶融処理温度 (Tm) と
4.2K、1Tesla でのJc値との関係を示す図である。
FIG. 3 A of Bi 2 Sr 2 Ca 1 Cu 2 A x O y (A is a platinum group element)
As a wire material using Rh (x = 0.2, ○ mark), and a partial melting treatment temperature (Tm) of the wire without Rh additive (x = 0, △ mark)
It is a figure which shows the relationship with the Jc value in 4.2K and 1 Tesla.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】組成式Bi2Sr2Ca1Cu2x y で表される酸
化物超伝導物質。但し、上記の組成式のAは白金族元素
(Ru、Rh、Pd、Os、IrおよびPt) の中から選ばれた1種
以上の元素であり、0.005 ≦x≦ 0.5 である。
1. An oxide superconducting material represented by the composition formula Bi 2 Sr 2 Ca 1 Cu 2 A x O y . However, A in the above composition formula is at least one element selected from the platinum group elements (Ru, Rh, Pd, Os, Ir and Pt), and 0.005 ≦ x ≦ 0.5.
JP5170054A 1992-12-18 1993-07-09 Oxide superconducting substance Pending JPH06234527A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5170054A JPH06234527A (en) 1992-12-18 1993-07-09 Oxide superconducting substance

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4-338405 1992-12-18
JP33840592 1992-12-18
JP5170054A JPH06234527A (en) 1992-12-18 1993-07-09 Oxide superconducting substance

Publications (1)

Publication Number Publication Date
JPH06234527A true JPH06234527A (en) 1994-08-23

Family

ID=26493180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5170054A Pending JPH06234527A (en) 1992-12-18 1993-07-09 Oxide superconducting substance

Country Status (1)

Country Link
JP (1) JPH06234527A (en)

Similar Documents

Publication Publication Date Title
JPH04212215A (en) Manufacture of bismuthal oxide superconductor
US5670459A (en) Bismuth oxide superconductor of preparing the same
JPH06196031A (en) Manufacture of oxide superconductive wire
US5648322A (en) Tl-based superconductive material, a superconductive body, and a method of forming such a superconductive material or body
JPH06234527A (en) Oxide superconducting substance
JP3330962B2 (en) Manufacturing method of oxide superconductor
US6255255B1 (en) Oxide superconducting material and method of producing the same
JPH06176637A (en) Manufacture of bi oxide superconductive wire
JP3242350B2 (en) Oxide superconductor and manufacturing method thereof
JP3195041B2 (en) Oxide superconductor and manufacturing method thereof
JPH0717714A (en) Production of superconducting oxide
JPH07106906B2 (en) Oxide superconducting material containing rare earth element and method for producing the same
JP3538620B2 (en) Method for producing thallium-based superconducting silver-based sheath wire having high crystal orientation and thallium-based superconducting silver-based sheath wire obtained by the method
JP2694921B2 (en) Oxide superconducting wire and method for producing the same
JP3053411B2 (en) Manufacturing method of oxide superconducting wire
JP3050572B2 (en) Manufacturing method of oxide superconducting conductor
JP4019132B2 (en) RE-Ba-Cu-O-based oxide superconductor and method for producing the same
JPH04124032A (en) Superconductor and its synthesis
JP2966134B2 (en) Method for producing Bi-based oxide superconductor
JP2761727B2 (en) Manufacturing method of oxide superconductor
JP3044732B2 (en) Method for producing bismuth-based oxide superconductor
JPH0656426A (en) Thermal treatment of oxide superconductor wire
JPH05816A (en) Oxide superconductor production and superconducting wire
JPH08245297A (en) Oxide superconductor
JPH03265523A (en) Bismuth-containing oxide superconductor and production thereof