JPH03216919A - Manufacture of oxide superconductor wire - Google Patents

Manufacture of oxide superconductor wire

Info

Publication number
JPH03216919A
JPH03216919A JP2011507A JP1150790A JPH03216919A JP H03216919 A JPH03216919 A JP H03216919A JP 2011507 A JP2011507 A JP 2011507A JP 1150790 A JP1150790 A JP 1150790A JP H03216919 A JPH03216919 A JP H03216919A
Authority
JP
Japan
Prior art keywords
wire
sheath
silver
powder
oxide superconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011507A
Other languages
Japanese (ja)
Other versions
JP3179084B2 (en
Inventor
Yuichi Ishikawa
雄一 石川
Junichi Ishiai
石合 淳一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority to JP01150790A priority Critical patent/JP3179084B2/en
Publication of JPH03216919A publication Critical patent/JPH03216919A/en
Application granted granted Critical
Publication of JP3179084B2 publication Critical patent/JP3179084B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To make it possible to form an oxide superconductor wire of a high critical current density by filling the inside of a silver based sheath material with oxide superconductor powder, subjecting it to wire drawing process, and high frequency heating the obtained sheath wire. CONSTITUTION:Oxide superconductor powder is packed in a sheath pipe or sheath plate made of silver or silver alloy to make a sheath wire. The sheath wire is treated with a high frequency heating device such as the zone melting device. The superconductor powder packed in the silver based sheath pipe of silver based sheath plate is sintered from the end when the silver based sheath pipe or the silver based sheath plate is heated. This method, unlike conventional method, prevents wire breakage and the arrangement of crystal direction becomes easier, and a superconductor wire of a high critical current density is obtained with a relatively simple process.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、臨界電流密度の高い酸化物超電導線材の製造
方法に関し、より詳しくは、高周波加熱処理を行うとい
う簡昼な手段で所望の特性を持つ線材が得られることを
特徴とする新規な超電導材の製造方法に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a method for producing an oxide superconducting wire having a high critical current density, and more specifically, to obtain desired characteristics by a simple means of high-frequency heating treatment. The present invention relates to a method for manufacturing a novel superconducting material, which is characterized in that a wire rod having the following properties is obtained.

[従来の技術] 従来、超電導線材を製造する代表的な方法として、以下
に示す3つの方法が知られている。
[Prior Art] Conventionally, the following three methods are known as typical methods for manufacturing superconducting wires.

第1の方法は、まず超電動体原料酸化物の粉末または超
電動体の粉末を銀あるいは金等の延性の高い金属の中空
板またはパイプに充鎮し、次いで板に付いては圧延によ
り、またバイブについてはダイスを使った引き抜きによ
って前記金属の板またパイプごと引き伸ばして細い線材
にし、その後炉内でアニール処理を施すことによって中
空板内部またはパイプ内部の粉末の粒子相互を焼結させ
て、超電導線材とする方法である。
The first method is to first fill a hollow plate or pipe of a highly ductile metal such as silver or gold with superelectric body raw material oxide powder or superelectric body powder, and then attach the plate to the plate by rolling. Regarding the vibrator, the metal plate or pipe is drawn using a die to be drawn into a thin wire, and then annealed in a furnace to sinter the powder particles inside the hollow plate or pipe. This is a method for making superconducting wires.

第2の方法は、酸化物系超電導体組成物の溶融体を所定
の成形型に入れて急冷することにより、ガラス化した線
状体を形成し、この線状体を炉内でアニール処理するこ
とによって結晶化を図り、超電導線材とする方法である
The second method is to form a vitrified linear body by placing a melt of the oxide superconductor composition in a predetermined mold and rapidly cooling it, and then annealing this linear body in a furnace. In this method, the superconducting wire is made into a superconducting wire by crystallizing the superconducting wire.

第3の方法は、懸濁紡糸法である。この方法は、超電導
体原料酸化物の粉末あるいは超電導体の粉末を水中に分
散させた水性懸濁液をポリビニルアルコール水溶液中に
加えて紡糸ドーブとし、この紡糸ドーブをNaOHとN
 a S 0 4との混合水溶液からなる沈澱浴中に押
し出して、繊維状の素材を得た後、この繊維状の素材を
水洗乾燥させ、その後に適当な熱処理を炉内で行うこと
によって、超電導体の繊維とする方法である。
The third method is suspension spinning. In this method, an aqueous suspension of superconductor raw material oxide powder or superconductor powder dispersed in water is added to an aqueous polyvinyl alcohol solution to form a spinning dove, and this spinning dove is mixed with NaOH and N
Superconductivity This is a method to make it into the body's fibers.

[発明が解決しようとする課題] しかしながら上記従来法にはいずれも次のような欠点が
ある。まず、第1の方法では、中空の板やバイブ等の銀
系シース材の内部でY系酸化物超電導粉を焼結させても
、臨海電流密度(J c)が2007cm2程度と低く
、Jcの数値をそれ以上に高めることは困難である。ま
た、第2の方法では、線材の長さが使用する成形型の長
さによって決まるため、最終的に得られる線材の長さを
長くすることは難しい。
[Problems to be Solved by the Invention] However, all of the above conventional methods have the following drawbacks. First, in the first method, even if the Y-based oxide superconducting powder is sintered inside a silver-based sheath material such as a hollow plate or a vibrator, the critical current density (J c ) is as low as about 2007 cm2, and the J c It is difficult to increase the number beyond that. Furthermore, in the second method, since the length of the wire is determined by the length of the mold used, it is difficult to increase the length of the wire finally obtained.

一方、第3の方法の場合は、原理的には長尺の超電導線
材を得ることができるが、ポリビニルアルコール等の有
機材料で成形しているために、水洗乾燥処理を経てもカ
ーボンの残留をなくすことが困難で、残留したカーボン
が後の熱処理時に超電導体の酸化物原料と反応すること
などから、該方法によって得た超電導線材は、電流密度
が小さくなったり、あるいは電流密度にばらつきが発生
するという問題があった。
On the other hand, in the case of the third method, a long superconducting wire can be obtained in principle, but since it is molded from an organic material such as polyvinyl alcohol, no carbon remains even after washing and drying. Because it is difficult to eliminate carbon and the remaining carbon reacts with the oxide raw material of the superconductor during subsequent heat treatment, superconducting wires obtained by this method have low current density or variations in current density. There was a problem.

従って長尺の超電導線材の製造に適し、かつ、製造工程
中にカーボンの残留が発生せず、カーボンの残留に起因
した電流密度の低下といった不都合が生じない新規な超
電導線材の製造方法の開発が求められていた。
Therefore, it is necessary to develop a new method for producing superconducting wires that is suitable for producing long superconducting wires, does not leave carbon residue during the production process, and does not cause problems such as a decrease in current density due to carbon residue. It was wanted.

[課題が解決するための手段] 本発明者らは、斯る課題を解決するために鋭意研究した
ところ、超電導線材の製造工程で高周波加熱処理を行う
ことによって、臨界電流密度の高い酸化物超電導線材を
製造できることを見い出した。
[Means for Solving the Problems] In order to solve the problems, the present inventors conducted intensive research and found that by performing high-frequency heat treatment in the manufacturing process of superconducting wires, oxide superconductors with high critical current density can be produced. We discovered that it is possible to manufacture wire rods.

すなわち本発明は、銀または銀合金等の銀系シース祠(
パイプや中空の板など)に酸化物超電導体粉末を詰めて
伸線処理を行ってシース線を作製した後、得られたシー
ス線を高周波加熱処理して臨界電流密度の高い酸化物超
電導線材を得ることを特徴とする新規な酸化物超電導線
の製造方法を提供するものである。
That is, the present invention provides silver-based sheathed shrines (such as silver or silver alloys).
After filling a pipe, hollow plate, etc. with oxide superconductor powder and drawing it to create a sheathed wire, the resulting sheathed wire is subjected to high-frequency heat treatment to produce an oxide superconducting wire with a high critical current density. The present invention provides a novel method for producing an oxide superconducting wire, which is characterized by obtaining the following.

[作 用] ?発明で使用するための原料は、たとえば次のようにし
て製造できる。すなわち、予めY203、BaCO,お
よびCuOの各粉末を2:l:lの割合で混合し、焼成
して焼結体を得た後、粉砕してY2 B a + C 
u + O,の粉を製造する。一方、BaOとCuOの
各粉末を3=5の割合で混合し、焼成して得た焼結体を
粉砕して別の焼成粉末を製造する。
[Effect]? Raw materials for use in the invention can be produced, for example, as follows. That is, Y203, BaCO, and CuO powders were mixed in advance at a ratio of 2:1:1, fired to obtain a sintered body, and then crushed to form Y2 Ba + C.
A powder of u + O is produced. On the other hand, BaO and CuO powders are mixed in a ratio of 3=5, and the sintered body obtained by firing is crushed to produce another fired powder.

これらの粉末を所定の割合で混合して原料用混合粉末と
する。このようにして得られた混合粉末を、銀一白金パ
イプのような融点の高い材質からなるパイプに入れ、こ
れをパイプごと伸線器で処理して適当なシース線とし、
次いで得られたシース線をゾーンメルティング装置内に
セットして、温度勾配を掛けながら包晶反応を行い、銀
一白金線に沿った方向で結晶成長を行わせて組成Y1B
a2Cu.0■一.の超伝導線材を得ることができる。
These powders are mixed at a predetermined ratio to form a mixed powder for raw materials. The mixed powder thus obtained is put into a pipe made of a material with a high melting point, such as a silver-platinum pipe, and the pipe is treated with a wire drawing machine to form a suitable sheath wire.
Next, the obtained sheath wire was set in a zone melting device, and a peritectic reaction was performed while applying a temperature gradient, and crystal growth was performed in the direction along the silver-platinum wire, resulting in composition Y1B.
a2Cu. 0■1. superconducting wire can be obtained.

あるいは、Y 1 B a 2 C u3 0 r−x
の原料粉末を銀一白金バイブに詰め込み、ゾーンメルテ
ィング装置で銀一白金(10 ago一%)パイプの融
点近くに加温し、パイプ中のY IB a 2 C u
 3 0 t−Mゐ分解してY,Ba,Cu,0,と液
相とに成し、これに温度勾配を掛けながら包晶反応を行
わせて、Y 1 B a 2 C u g O t−x
の結晶配向を有する超電導線材を得ることができる。
Or Y 1 B a 2 Cu3 0 r-x
The raw material powder of Y IB a 2 Cu in the pipe was packed into a silver-platinum vibrator and heated in a zone melting device to near the melting point of a silver-platinum (10 ago 1%) pipe.
30 t-M is decomposed to form Y, Ba, Cu, 0, and a liquid phase, and a peritectic reaction is performed while applying a temperature gradient to yield Y 1 Ba 2 Cu g O t -x
It is possible to obtain a superconducting wire having a crystal orientation of

これらの方法によって得られる酸化物超電導線材の臨界
電流密度(J c)は、従来法によって得られる線材に
比し改善された値を有するものであることを確認できた
It was confirmed that the critical current density (Jc) of the oxide superconducting wire obtained by these methods has an improved value compared to the wire obtained by the conventional method.

以下、実施例により詳細に説明する。Hereinafter, it will be explained in detail using examples.

[実施例1〕 Yz O* 、BaCOsおよびCuOの平均粒径8μ
−の各粉末をY:Ba:Cu=2: 1: 1に混合し
、これを成型後950℃にて20時間、酸素雰囲気中で
焼成して焼結体を得た。次いで得られた焼結体を粉砕し
て篩別し、平均粒径31IIaのY2Ba+ Cu1 
o,の粉末を得た。
[Example 1] Average particle size of YzO*, BaCOs and CuO 8μ
- were mixed in a ratio of Y:Ba:Cu=2:1:1, and after molding, the mixture was fired at 950° C. for 20 hours in an oxygen atmosphere to obtain a sintered body. Next, the obtained sintered body was crushed and sieved to yield Y2Ba+Cu1 with an average particle size of 31IIa.
o, powder was obtained.

次にBaOとCuOの平均粒径3伽の各粉末をBa:C
u−8:5の割合に混合し、これを成型後850℃にて
20時間、酸素雰囲気中で焼成して焼結体を得、次いで
これらの焼結体を粉砕して篩別し、平均粒径3鵬の粉末
を得た。
Next, each powder of BaO and CuO with an average particle size of 3.
U-8:5 ratio was mixed, and after molding, this was fired at 850°C for 20 hours in an oxygen atmosphere to obtain a sintered body.Then, these sintered bodies were crushed and sieved, and the average A powder with a particle size of 3 was obtained.

上記の2種の粉末をY:Ba:Cu−1: 2:3にな
るように混合し、これらの粉末を外径5−10、内径4
IIIIIO、長さIOcmの銀一白金(PtlO%)
製のパイプに詰め込み、伸線器で処理して外径5lII
IOの銀糸のシース線を作製した。
The above two types of powders were mixed in a ratio of Y:Ba:Cu-1: 2:3, and these powders had an outer diameter of 5-10 and an inner diameter of 4.
IIIIO, silver and platinum (PtlO%) with length IO cm
It is packed into a made-in-trade pipe and processed with a wire drawer to reduce the outer diameter to 5lII.
A sheathed wire of IO silver thread was prepared.

得られたシース線をゾーンメルティング装置で処理して
高周波加熱を行った。この場合の加熱部の移動速度はl
eII/hrとした。
The obtained sheath wire was treated with a zone melting device and subjected to high frequency heating. In this case, the moving speed of the heating section is l
It was set as eII/hr.

その結果得られた酸化物超電導線材のTcおよびJcを
測定したところ、Tcは90k,Jcは103A/cm
2であった。
When Tc and Jc of the resulting oxide superconducting wire were measured, Tc was 90k and Jc was 103A/cm.
It was 2.

また、該線材を切断して内部をX線回折で調べたところ
、長手力向にC軸が成長していることがわかった。
Furthermore, when the wire was cut and the inside was examined by X-ray diffraction, it was found that the C-axis grew in the longitudinal direction.

[実施例2] 銀一白金パイプに詰め込む粉末としてYBa2(:u3
07−wの平均粒径3血の粉末のみを用いて、実施例1
と同様に銀一白金( P t lOatoI1%)製の
パイプに詰め込み、仲線器で外径5+mσの銀系のシー
ス線を製造した。
[Example 2] YBa2(:u3) was used as a powder to be packed into a silver-platinum pipe.
Example 1 using only the average particle size 3 blood powder of 07-w
Similarly, it was packed into a pipe made of silver and platinum (PtlOatoI1%), and a silver-based sheath wire with an outer diameter of 5+mσ was manufactured using a Nakasen machine.

得られたシース線を実施例1に示すゾーンメルティング
装置で同処理を施した結果、得られた酸化物超電導線材
のTcは90k%Jcは5Xl02A/C−2であった
The obtained sheath wire was subjected to the same treatment using the zone melting apparatus shown in Example 1, and as a result, the obtained oxide superconducting wire had a Tc of 90 k% and a Jc of 5Xl02A/C-2.

[実施例3] 銀一白金パイプに詰め込む粉末として7472B a 
2 C u 3 0mの平均粒径3−の粉末のみを用い
たこと以外は、実施例1と同様にして得た酸化物超電導
線材について、同様の方法で測定を行ったところ、Tc
はll5k, J cは20OA/Cm’であった。
[Example 3] 7472B a as a powder packed into a silver-platinum pipe
The oxide superconducting wire obtained in the same manner as in Example 1 was measured in the same manner as in Example 1, except that only powder with an average particle size of 3-2 Cu 30 m was used, and it was found that Tc
was 115k, and Jc was 20OA/Cm'.

[比較例1] 実施例2で得られた0.5+u3CIの銀一白金のシー
ス線を高周波処理することなく、従来法に従って単に9
60℃にて20時間、酸素雰囲気で焼成して得た酸化雰
囲気で焼成して得た酸化物超電導線材は、Tcが90k
,Jcは200/cs2であった。
[Comparative Example 1] The 0.5+u3CI silver-platinum sheathed wire obtained in Example 2 was simply treated with 90% according to the conventional method without high-frequency treatment.
The oxide superconducting wire obtained by firing in an oxidizing atmosphere obtained by firing at 60°C for 20 hours in an oxygen atmosphere has a Tc of 90k.
, Jc was 200/cs2.

[発明の効果] 上述のように本発明法では、銀または銀合金のシースバ
イプあるいはシース板の中に酸化物超電導体の粉末を詰
め込んてシース線を得、次いで高周波加熱装置として例
えばゾーンメルテイング装置等を用いて処理するため、
銀系シースノ々イブあるいは銀系シース板が加熱される
ことによってその内部に充填された酸化物超電導体粉末
が端から順に焼結されていくため、従来法のような断線
がなく、また、比較的に結晶配向が容易となり、その結
果、高いJc値を有する超電導線を比較的簡易な手段で
得ることができるという効果がある。
[Effects of the Invention] As described above, in the method of the present invention, a sheathed wire is obtained by packing oxide superconductor powder into a sheathed pipe or sheathed plate made of silver or silver alloy, and then a high-frequency heating device such as a zone melting device is used. For processing using etc.,
As the silver-based sheath snowboard or silver-based sheath plate is heated, the oxide superconductor powder filled inside it is sintered sequentially from the edge, so there is no disconnection as with conventional methods, and it is more Therefore, crystal orientation becomes easier, and as a result, there is an effect that a superconducting wire having a high Jc value can be obtained by a relatively simple means.

Claims (1)

【特許請求の範囲】[Claims]  銀系シース材の内部に酸化物超電導体粉末を詰めて伸
線処理を行うことにより得られたシース線を、高周波加
熱することからなる臨界電流密度の高い酸化物超電導線
材の製造方法。
A method for manufacturing an oxide superconducting wire with high critical current density, which comprises high-frequency heating of a sheathed wire obtained by filling a silver-based sheath material with oxide superconducting powder and performing a wire drawing process.
JP01150790A 1990-01-20 1990-01-20 Manufacturing method of oxide superconducting wire Expired - Fee Related JP3179084B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01150790A JP3179084B2 (en) 1990-01-20 1990-01-20 Manufacturing method of oxide superconducting wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01150790A JP3179084B2 (en) 1990-01-20 1990-01-20 Manufacturing method of oxide superconducting wire

Publications (2)

Publication Number Publication Date
JPH03216919A true JPH03216919A (en) 1991-09-24
JP3179084B2 JP3179084B2 (en) 2001-06-25

Family

ID=11779936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01150790A Expired - Fee Related JP3179084B2 (en) 1990-01-20 1990-01-20 Manufacturing method of oxide superconducting wire

Country Status (1)

Country Link
JP (1) JP3179084B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6604273B1 (en) * 1994-09-30 2003-08-12 Canon Kabushiki Kaisha Method of manufacturing an oxide superconducting wire

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6604273B1 (en) * 1994-09-30 2003-08-12 Canon Kabushiki Kaisha Method of manufacturing an oxide superconducting wire

Also Published As

Publication number Publication date
JP3179084B2 (en) 2001-06-25

Similar Documents

Publication Publication Date Title
JP2567505B2 (en) Method for producing bismuth oxide superconductor
JPH03216919A (en) Manufacture of oxide superconductor wire
JPH02275776A (en) Production of superconducting material
JPH04121912A (en) Manufacture of oxide high temperature superconductive conductor
Poeppel et al. Shape forming high-T c superconductors
JPH01305823A (en) Each production of superconductor and superconducting wire rod
JP3073798B2 (en) Superconducting wire manufacturing method
JPH0346710A (en) Manufacture of superconductive wire
JPH01239713A (en) Manufacture of oxide superconductive wire
KR960006240B1 (en) Process for the preparation of high critical-temperature superconductive coil
JPH0312313A (en) Production of superconducting ceramic fiber
JPH02192401A (en) Production of oxide superconductor and oxide superconducting wire
JPH01246719A (en) Manufacture of oxide superconductor
JPH02278616A (en) Manufacture of multicore-type oxide superconductor
JPH02109218A (en) Manufacture of oxide superconductive wire rod
JPH0528857A (en) Manufacture of ceramic superconductor
JPH01283713A (en) Manufacture of linear superconductive material
JPH04292452A (en) Production of oxide superconductor and wire
JPH0226806A (en) Production of ceramic superconducting wire
JPH01219003A (en) Production of high temperature oxide superconductor
JPH02158012A (en) Manufacture of oxide superconductive liner body
JPH02239522A (en) Manufacture of bi oxide superconducting wire having high critical current density
JPH01281613A (en) Manufacture of oxide superconducting wire material
JPS63270314A (en) Production of superconductive material of oxide type
JPH09295873A (en) Production of oxide superconductive conductor and oxide superconductive conductor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080413

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080413

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090413

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees