JPH02109218A - Manufacture of oxide superconductive wire rod - Google Patents

Manufacture of oxide superconductive wire rod

Info

Publication number
JPH02109218A
JPH02109218A JP63261190A JP26119088A JPH02109218A JP H02109218 A JPH02109218 A JP H02109218A JP 63261190 A JP63261190 A JP 63261190A JP 26119088 A JP26119088 A JP 26119088A JP H02109218 A JPH02109218 A JP H02109218A
Authority
JP
Japan
Prior art keywords
oxide
mold
wire
shaped ingot
superconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63261190A
Other languages
Japanese (ja)
Inventor
Sukeyuki Kikuchi
菊地 祐行
Naoki Uno
直樹 宇野
Kiyoshi Okaniwa
岡庭 潔
Hiroo Takahashi
高橋 宏郎
Hiromi Murakami
裕美 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Hokkaido Electric Power Co Inc
Tohoku Electric Power Co Inc
Tokyo Electric Power Co Holdings Inc
Original Assignee
Furukawa Electric Co Ltd
Hokkaido Electric Power Co Inc
Tohoku Electric Power Co Inc
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd, Hokkaido Electric Power Co Inc, Tohoku Electric Power Co Inc, Tokyo Electric Power Co Inc filed Critical Furukawa Electric Co Ltd
Priority to JP63261190A priority Critical patent/JPH02109218A/en
Publication of JPH02109218A publication Critical patent/JPH02109218A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To enable oxide superconductive wire rod excellent in superconductive characteristics to be manufactured efficiently by diameter reduction processing and heat-treating a compound billet which is obtained by fusing a material oxide to become a superconductor and then solidifying it into a bar-shaped ingot. CONSTITUTION:A bar-shaped ingot of material oxide to become a superconductor is made in advance by casting, and this bar-shaped ingot 1 is arranged at the center inside a mold 2, and next fused liquid of metal 3 to become sheath material is poured into this mold 2 from a crucible 4, and this fused liquid is solidified in the mold 2 so as to make a compound billet 5 having the bar- shaped ingot 1 therein. Next, this compound billet 5 is processed into compound line material such as a round wire, a square wire, or a tape by the methods of extrusion, drawing, swaging, rolling, etc. Hereafter, heat-treatment is applied to this line material in the oxygen contained atmosphere so as to make it into oxide superconductive line material. Hereby, oxide superconductive line material which is high in density and excellent in characteristics such as critical current density, etc., can be manufactured efficiently.

Description

【発明の詳細な説明】 〔産業上の利用分野) 本発明は、電カケープル、マグネット、電力貯蔵リンク
又は磁気シールド等に用いられる酸化物超電導線材の製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing an oxide superconducting wire used for power cables, magnets, power storage links, magnetic shields, and the like.

〔従来の技術とその課題〕[Conventional technology and its issues]

アルカリ土金属、希土類元素、銅、ビスマス、タリウム
等の元素及び酸素からなる酸化物起電導体は、臨界温度
が高くその応用が期待されているが、この酸化物超電導
体は、一般に線状に加工する事が困難であり、その製造
は、通常、超電導体となる原料酸化物粉体を金属管内に
充填して複合ビレントとなし、次いでこれを減面加工し
て所望形状の複合線材となし、この複合線材に加熱処理
を施して酸化物超電導線材となす方法により行われてい
た。
Oxide-generating conductors made of alkaline earth metals, rare earth elements, copper, bismuth, thallium, and other elements and oxygen have high critical temperatures and are expected to be used, but these oxide superconductors are generally linear. It is difficult to process, and its production is usually done by filling a metal tube with the raw material oxide powder that will become the superconductor to make a composite vilent, which is then processed to reduce its area to make a composite wire of the desired shape. This was done by subjecting this composite wire to heat treatment to form an oxide superconducting wire.

しかしながら、上記の方法によると得られる酸化物超電
導線材の超電導体層密度は70〜90%程度と低く、こ
の為得られる線材は臨界電流密度(以下、Jcと略記)
等の超電導特性に高い値が得られないという問題があっ
た。又特に多芯超電導線材の製造方法においては、上記
の複合ビレントを複数本、大径の金属パイプに詰めて、
これを減面加工する方法により行われており、工程数が
多く且つ作業が繁雑で生産性に劣るものであった。
However, the superconductor layer density of the oxide superconducting wire obtained by the above method is as low as about 70 to 90%, and therefore the obtained wire has a critical current density (hereinafter abbreviated as Jc).
There was a problem that high values of superconducting properties could not be obtained. In addition, especially in the method of manufacturing multicore superconducting wire, multiple pieces of the above-mentioned composite vilent are packed into a large diameter metal pipe,
This is done by a method of surface reduction processing, which requires a large number of steps, is complicated, and has low productivity.

〔課題を解決するための手段〕[Means to solve the problem]

本発明はかかる状況に鑑みなされたものでその目的とす
るところは、超電導特性に優れた酸化物超電導線材を効
率よく製造する方法を提供することにある。
The present invention was devised in view of this situation, and an object of the present invention is to provide a method for efficiently manufacturing an oxide superconducting wire having excellent superconducting properties.

即ち本発明は、酸化物超電導体が金属によりシースされ
た酸化物超電導線材の製造方法において、超電導体とな
る原料酸化物を溶融し、これを棒状鋳塊に凝固させたの
ち、この棒状鋳塊を鋳型内に配置し、この鋳型内にシー
ス材となる金属の融液を注入し凝固セしめて、前記酸化
物の棒状鋳塊を内包する複合ビレットを作製し、次いで
この複合ビレットを所望形状に減面加工して複合線材と
なし、しかるのちこの複合線材を酸素含有雰囲気中で加
熱処理することを特徴とするものである。
That is, the present invention provides a method for manufacturing an oxide superconducting wire in which an oxide superconductor is sheathed with a metal, in which a raw material oxide to become a superconductor is melted, the melt is solidified into a rod-shaped ingot, and then the rod-shaped ingot is is placed in a mold, and a metal melt serving as a sheath material is injected into the mold and solidified to create a composite billet containing the rod-shaped ingot of the oxide, and then this composite billet is shaped into a desired shape. It is characterized in that it is processed to reduce its area to form a composite wire, and then this composite wire is heat-treated in an oxygen-containing atmosphere.

次に本発明の実施態様を図を参照して具体的に説明する
Next, embodiments of the present invention will be specifically described with reference to the drawings.

第1回イ、口は本発明方法の一実施例を示すそれぞれ縦
、横断面説明図である。図においてlは超電導体となる
原料酸化物の棒状鋳塊、2は鋳型、3はシース材となる
金属である。
Figures 1A and 1B are longitudinal and cross-sectional explanatory views, respectively, showing an embodiment of the method of the present invention. In the figure, 1 is a rod-shaped ingot of raw material oxide that will become a superconductor, 2 is a mold, and 3 is a metal that will be a sheath material.

予め、超電導体となる原料酸化物の棒状鋳塊1を鋳造に
より作製しておき、この棒状鋳塊■を鋳型2内中央に配
置し、次いでこの鋳型2内にシース材となる金属3の融
液をルツボ4から注入し、鋳型2内でこの融液を凝固さ
せて前記棒状鋳塊1を内包した複合ビレット5を作製し
、次いでこの複合ビレット5を押出し、引抜き、スェー
ジング、圧延等の方法により丸線、角線又はテープ等の
複合線材に加工し、しかるのち、この線材に酸素含有雰
囲気中で加熱処理を施して酸化物超電導線材となすもの
である。
In advance, a rod-shaped ingot 1 of the raw material oxide that will become the superconductor is produced by casting, and this rod-shaped ingot (2) is placed in the center of the mold 2. Then, the metal 3 that will become the sheath material is melted into the mold 2. A liquid is injected from the crucible 4 and the melt is solidified in the mold 2 to produce a composite billet 5 containing the rod-shaped ingot 1, and then this composite billet 5 is extruded, drawn, swaged, rolled, etc. The wire is processed into a composite wire such as a round wire, a square wire, or a tape, and then this wire is heat-treated in an oxygen-containing atmosphere to form an oxide superconducting wire.

第2図は、本発明方法により製造された多芯複合ビレッ
ト6の断面説明図である。ごの多芯複合ビレット6は、
前記棒状鋳塊1を複数本鋳型内に所定の間隔をあけて配
置し、この鋳型内にシース材となる金属3の融液を注入
し凝固させて製造されるもので、シース材となる金属3
の凝固体に7本の棒状鋳塊】が内包されたものである。
FIG. 2 is an explanatory cross-sectional view of a multicore composite billet 6 manufactured by the method of the present invention. The multicore composite billet 6 is
It is manufactured by arranging a plurality of the rod-shaped ingots 1 at predetermined intervals in a mold, and pouring a melt of the metal 3 that will become the sheath material into the mold and solidifying it. 3
The solidified body contains seven rod-shaped ingots.

本発明方法において超電導体となる原料酸化物とは、例
えばY−Ba−Cu−0系酸化物超電導体では、Y2O
3、BaC0,+及びCuO等の原料粉末を所望組成と
なるよう配合し、混合したものを言い、B 1−3r−
Ca−Cu−0系酸化物超電導体にあっては、その原料
粉末には、BizOz、5rCCh、CaCO3及びC
uO等が用いられる。
The raw material oxide that becomes a superconductor in the method of the present invention is, for example, Y-Ba-Cu-0 based oxide superconductor, Y2O
3. B1-3r- refers to a mixture of raw material powders such as BaC0,+ and CuO, which are blended and mixed to have a desired composition.
In the Ca-Cu-0 based oxide superconductor, the raw material powder contains BizOz, 5rCCh, CaCO3 and C
uO etc. are used.

本発明方法において、超電導体となる酸化物を棒状に鋳
造するのに用いられる加熱炉には、高周波誘導加熱炉、
電気抵抗加熱炉、赤外線加熱炉等が用いられる。
In the method of the present invention, the heating furnace used to cast the oxide that becomes the superconductor into a rod shape includes a high frequency induction heating furnace,
An electric resistance heating furnace, an infrared heating furnace, etc. are used.

又上記において用いられるルツボには、酸化物の種類に
応じてPL、、PL金合金CaOlMgO等の材質のも
のが使用できる。
The crucible used in the above may be made of materials such as PL, PL gold alloy CaOlMgO, etc. depending on the type of oxide.

本発明方法において、シース材となる金属容器には、A
g、Cu、Ni及びこれらの合金製のもの等が用いられ
るが、これらのうちAg、Ag合金は、酸素を透過し易
いので、線材加工後の加熱処理において、超電導体層へ
の酸素供給が十分になされ好ましいものである。
In the method of the present invention, the metal container serving as the sheath material contains A
Among these, Ag and Ag alloys are easily permeable to oxygen, so it is difficult to supply oxygen to the superconductor layer during the heat treatment after wire processing. It is well done and desirable.

〔作用〕[Effect]

本発明方法においては、複合ビレットを製造するのに、
超電導体となる原料酸化物を溶融し、これを棒状鋳塊に
凝固させて複合するので、得られた複合ビレットを減面
加工及び加熱処理して得られる酸化物超電導線材の超電
導体層の密度は、真密度に極めて近いものとなる。
In the method of the present invention, to produce a composite billet,
The raw material oxide that becomes the superconductor is melted, and this is solidified into a rod-shaped ingot and composited, so the density of the superconductor layer of the oxide superconducting wire obtained by reducing the area and heat treating the resulting composite billet is very close to the true density.

又シース材となる金属はこれを溶融して前記棒状鋳塊を
鋳包んで複合するので、シース金属をバイブに加工する
等の手間が省ける。
Further, since the metal that becomes the sheath material is melted and composited by casting the rod-shaped ingot, it is possible to save the labor of processing the sheath metal into a vibrator.

〔実施例〕〔Example〕

以下に本発明を実施例により詳細に説明する。 The present invention will be explained in detail below using examples.

実施例l Y2O3、BaC0t、CuOの原料粉末をY:Ba:
Cuが原子比でI:2:3になるよう秤量し混合して原
料酸化物となし、これを白金ルツボに入れて、エレマ炉
にて1300 ’Cに加熱して溶融し、この融液を鉄製
鋳型に鋳込んで外径10mmの棒状鋳塊となした。
Example 1 Raw material powders of Y2O3, BaC0t, and CuO were mixed into Y:Ba:
Cu is weighed and mixed so that the atomic ratio is I:2:3 to obtain a raw material oxide, which is placed in a platinum crucible and heated to 1300'C in an Elema furnace to melt it, and this melt is It was cast into an iron mold to form a rod-shaped ingot with an outer diameter of 10 mm.

次いで、第1図イ、口に示したように、上記棒状鋳塊1
を内径23I1111の鉄製鋳型2の中央に配置し、こ
の鋳型2内にシース材となるAg3の1100°Cに加
熱した融液をルツボ4から注入し凝固させて複合ビレッ
ト5を作製した。次いで上記複合ビレット5をスェージ
ング加工及び溝ロール圧延により0.5 mmφの複合
線材となし、しかるのちこの複合線材を酸素気流中で9
00°CIO時間加熱処理して酸化物超電導線材を製造
した。
Next, as shown in Fig. 1A, the rod-shaped ingot 1 is
was placed in the center of an iron mold 2 with an inner diameter of 23I1111, and a melt of Ag3 heated to 1100°C serving as a sheath material was poured into the mold 2 from a crucible 4 and solidified to produce a composite billet 5. Next, the composite billet 5 was formed into a 0.5 mmφ composite wire by swaging and groove roll rolling, and then this composite wire was rolled in an oxygen stream for 90 minutes.
An oxide superconducting wire was manufactured by heat treatment for 00°CIO time.

実施例2 実施例1と同様にして作った複合ビレット5を圧延によ
り1.Omm’のテープ状の複合線材となした他は、実
施例1と同じ方法により酸化物超電導線材を製造した。
Example 2 A composite billet 5 made in the same manner as in Example 1 was rolled into 1. An oxide superconducting wire was manufactured in the same manner as in Example 1, except that a tape-shaped composite wire of 0 mm' was used.

実施例3 実施例1で用いたのと同じ超電導体となる酸化物の棒状
鋳塊を7本、内径70++II++の鉄製鋳型内に等間
隔に配置し、次いでこの鋳型内に1100°Cに加熱し
たAg融液を注入し凝固させて、第2図に示した如き多
芯複合ビレット6を作製し、次いでこの複合ビレット6
を熱間静水圧押出法により10IIIIllφの棒材に
加工し、引続き溝ロール圧延により1鴫φの複合線材と
なしたのち、これを酸素気流中で900°C20時間加
熱処理して酸化物超電導線材を製造した。
Example 3 Seven rod-shaped ingots of the same superconducting oxide used in Example 1 were placed at equal intervals in an iron mold with an inner diameter of 70++II++, and then heated to 1100°C in this mold. A multicore composite billet 6 as shown in FIG. 2 is produced by injecting and solidifying Ag melt, and then this composite billet 6 is
was processed into a bar with a diameter of 10IIIll by hot isostatic extrusion, followed by a composite wire with a diameter of 1 by groove roll rolling, which was then heat-treated at 900°C for 20 hours in an oxygen stream to produce an oxide superconducting wire. was manufactured.

比較例I Y、O,、BaC0+、CuOの原料粉末をY:Ba:
Cuが原子比で1:2:3になるように秤量し混合した
原料酸化物を大気中で900°CIO時間仮焼成し、次
いでこの仮焼成体を粉砕分級して仮焼成粉となし、しか
るのちこの仮焼成粉を内径10mm、外径23閣のAg
パイプ内に充填して複合ビレットとなし、この複合ビレ
ットを実施例1と同じ方法により0.5 mmφの酸化
物超電導線材となした。
Comparative Example I Y, O, BaC0+, CuO raw material powders Y:Ba:
The raw material oxides were weighed and mixed so that the atomic ratio of Cu was 1:2:3, and the raw material oxides were calcined in the atmosphere for 900°CIO hours, and then this calcined body was pulverized and classified to form calcined powder, and then Later, this calcined powder was made into Ag with an inner diameter of 10 mm and an outer diameter of 23 mm.
It was filled into a pipe to form a composite billet, and this composite billet was made into an oxide superconducting wire of 0.5 mmφ by the same method as in Example 1.

比較例2 比較例Iで用いたのと同じ仮焼成粉を内径】O鵬、外径
23mmのAgパイプ内に充填して複合ビレット5を作
製し、この複合ビレットを7本内径70mmのAgパイ
プ内に詰め込んで多芯複合ピレノFを作製し、この多芯
複合ビレットを実施例3と同じ方法により直径1mmの
酸化物超電導線材となした。
Comparative Example 2 Composite billet 5 was prepared by filling an Ag pipe with an inner diameter of 23 mm with the same pre-sintered powder as used in Comparative Example I, and seven Ag pipes with an inner diameter of 70 mm were filled with this composite billet. A multicore composite billet was prepared by packing the billet into an oxide superconducting wire having a diameter of 1 mm using the same method as in Example 3.

斯くの如くして得られた各々の酸化物超電導線材につい
て、相対密度及びJ、を測定した。結果は主な製造条件
を併記して第1表に示した。
The relative density and J of each of the oxide superconducting wires thus obtained were measured. The results are shown in Table 1 along with the main manufacturing conditions.

第1表より明らかなように、本発明方法品(実施例1〜
3)は、比較方法品(比較例1〜2)に較べていずれも
J、が高い値を示している。
As is clear from Table 1, the method products of the present invention (Examples 1 to 3)
3) all have higher values of J than the comparative method products (Comparative Examples 1 and 2).

これは、本発明方法品は超電導体となる原料酸化物を溶
融し、次いでこれを棒状鋳塊に凝固させて複合ビレット
を作製した為、得られる酸化物超電導線材の超電導体層
の密度が極めて高いものとなった為である。
This is because the method of the present invention melts the raw material oxide that becomes the superconductor, and then solidifies it into a rod-shaped ingot to create a composite billet, so the density of the superconductor layer of the obtained oxide superconducting wire is extremely high. This is because it has become expensive.

他方比較方法品は、仮焼成粉を粉末のまま金属容器に充
填したので、得られる線材の密度が低く、超電導特性が
劣るものとなった。
On the other hand, in the comparative product, the pre-sintered powder was filled in the metal container as a powder, so the density of the resulting wire was low and the superconducting properties were poor.

又従来の酸化物超電導線材の製造方法は比較例1.2に
記述したように、仮焼成粉の調整、Agパイプの作製及
びAgパイプへの仮焼成粉の充填等の多くの繁雑な工程
を要し、実施例1〜3に示した本発明方法に較べて生産
性に劣るものであることが判る。
In addition, as described in Comparative Example 1.2, the conventional manufacturing method for oxide superconducting wire requires many complicated steps such as adjusting the pre-sintered powder, producing the Ag pipe, and filling the Ag pipe with the pre-sintered powder. In short, it can be seen that the productivity is inferior to the method of the present invention shown in Examples 1 to 3.

以上Y系酸化物超電導線材について説明したが、本発明
方法は、Bl系等他の酸化物超電導線材にも適用できる
ことは言うまでもない。
Although the Y-based oxide superconducting wire has been described above, it goes without saying that the method of the present invention can also be applied to other oxide superconducting wires such as Bl-based.

〔効果〕〔effect〕

以上述べたように本発明方法によれば、密度が高く、J
c等の特性に優れた酸化物超電導線材が効率よく製造で
きるので、工業上顕著な効果を奏する。
As described above, according to the method of the present invention, the density is high and the J
Since oxide superconducting wires having excellent characteristics such as c can be efficiently produced, this method has a significant industrial effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図イ、口は、本発明方法の一実施例を示す縦、横断
面説明図、第2図は、多芯複合ビレットの断面説明図で
ある。 1・・・原料酸化物の棒状鋳塊、 2・・・鋳型、 3
・・・シース材となる金属、  4・・・ルツボ、  
5・・・複合ビレット、 6・・・f’ 芯複合ビレン
ト。
FIG. 1A is a vertical and cross-sectional explanatory view showing an embodiment of the method of the present invention, and FIG. 2 is a cross-sectional view of a multicore composite billet. 1... Rod-shaped ingot of raw material oxide, 2... Mold, 3
...Metal as sheath material, 4...Crucible,
5... Composite billet, 6... f' core composite billet.

Claims (1)

【特許請求の範囲】[Claims] 酸化物超電導体が金属によりシースされた酸化物超電導
線材の製造方法において、超電導体となる原料酸化物を
溶融し、これを棒状鋳塊に凝固させたのち、この棒状鋳
塊を鋳型内に配置し、この鋳型内にシース材となる金属
の融液を注入し凝固せしめて、前記酸化物の棒状鋳塊を
内包する複合ビレットを作製し、次いでこの複合ビレッ
トを所望形状に減面加工して複合線材となし、しかるの
ちこの複合線材を酸素含有雰囲気中で加熱処理すること
を特徴とする酸化物超電導線材の製造方法。
In a method for manufacturing oxide superconducting wire in which an oxide superconductor is sheathed with metal, the raw material oxide that becomes the superconductor is melted, solidified into a rod-shaped ingot, and then this rod-shaped ingot is placed in a mold. Then, a molten metal that will become a sheath material is injected into this mold and solidified to produce a composite billet containing the rod-shaped ingot of the oxide, and then this composite billet is subjected to area reduction processing into a desired shape. A method for producing an oxide superconducting wire, which comprises forming a composite wire and then heat-treating the composite wire in an oxygen-containing atmosphere.
JP63261190A 1988-10-17 1988-10-17 Manufacture of oxide superconductive wire rod Pending JPH02109218A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63261190A JPH02109218A (en) 1988-10-17 1988-10-17 Manufacture of oxide superconductive wire rod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63261190A JPH02109218A (en) 1988-10-17 1988-10-17 Manufacture of oxide superconductive wire rod

Publications (1)

Publication Number Publication Date
JPH02109218A true JPH02109218A (en) 1990-04-20

Family

ID=17358392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63261190A Pending JPH02109218A (en) 1988-10-17 1988-10-17 Manufacture of oxide superconductive wire rod

Country Status (1)

Country Link
JP (1) JPH02109218A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116612930A (en) * 2023-07-20 2023-08-18 西安聚能超导线材科技有限公司 Nb (Nb) alloy 3 Sn superconducting wire preparation method and superconducting wire

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116612930A (en) * 2023-07-20 2023-08-18 西安聚能超导线材科技有限公司 Nb (Nb) alloy 3 Sn superconducting wire preparation method and superconducting wire
CN116612930B (en) * 2023-07-20 2023-09-15 西安聚能超导线材科技有限公司 Nb (Nb) alloy 3 Sn superconducting wire preparation method and superconducting wire

Similar Documents

Publication Publication Date Title
CA1325102C (en) Method of producing superconducting wire
US5045527A (en) Method of producing a superconductive oxide conductor
JP2672334B2 (en) Superconductor manufacturing method
EP0311337B1 (en) Method of producing a superconductive oxide conductor and a superconductive oxide conductor produced by the method
CA1327119C (en) Method of producing a superconductive oxide conductor
JPH02109218A (en) Manufacture of oxide superconductive wire rod
KR910009198B1 (en) Method of manufacturing superconductive products
JPH01305823A (en) Each production of superconductor and superconducting wire rod
JPH02109219A (en) Manufacture of oxide superconductive wire rod
JPH02278616A (en) Manufacture of multicore-type oxide superconductor
JPH02263606A (en) Manufacture of oxide superconductor
JPH01239713A (en) Manufacture of oxide superconductive wire
JPH01169820A (en) Manufacture of oxide superconductive wire
JPH02158012A (en) Manufacture of oxide superconductive liner body
JP2611778B2 (en) Superconducting wire manufacturing method
JPH01281613A (en) Manufacture of oxide superconducting wire material
JP2583288B2 (en) Method for producing flake-like oxide superconductor
JPH02192401A (en) Production of oxide superconductor and oxide superconducting wire
JP3033606B2 (en) Manufacturing method of oxide superconducting wire
JPH04118816A (en) Manufacture of ceramic superconductor
JPH09295813A (en) Oxide superconducting material, production of superconducting material and superconducting wire rod
JPH01176608A (en) Manufacture of oxide superconductive linear body
JPH03122918A (en) Manufacture of ceramics superconductive conductor
JPH03216919A (en) Manufacture of oxide superconductor wire
JPH01195616A (en) Manufacture of long oxide superconductive material