JPH01169820A - Manufacture of oxide superconductive wire - Google Patents

Manufacture of oxide superconductive wire

Info

Publication number
JPH01169820A
JPH01169820A JP62329057A JP32905787A JPH01169820A JP H01169820 A JPH01169820 A JP H01169820A JP 62329057 A JP62329057 A JP 62329057A JP 32905787 A JP32905787 A JP 32905787A JP H01169820 A JPH01169820 A JP H01169820A
Authority
JP
Japan
Prior art keywords
oxide
superconductor
wire
metal tapes
supplied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62329057A
Other languages
Japanese (ja)
Inventor
Sukeyuki Kikuchi
菊地 祐行
Yasuzo Tanaka
田中 靖三
Kiyoshi Okaniwa
岡庭 潔
Hiroo Takahashi
高橋 宏郎
Hiromi Murakami
裕美 村上
Masashi Yasuda
正史 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electric Power Development Co Ltd
Furukawa Electric Co Ltd
Hokkaido Electric Power Co Inc
Tohoku Electric Power Co Inc
Tokyo Electric Power Co Holdings Inc
Original Assignee
Electric Power Development Co Ltd
Furukawa Electric Co Ltd
Hokkaido Electric Power Co Inc
Tohoku Electric Power Co Inc
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electric Power Development Co Ltd, Furukawa Electric Co Ltd, Hokkaido Electric Power Co Inc, Tohoku Electric Power Co Inc, Tokyo Electric Power Co Inc filed Critical Electric Power Development Co Ltd
Priority to JP62329057A priority Critical patent/JPH01169820A/en
Publication of JPH01169820A publication Critical patent/JPH01169820A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

PURPOSE:To provide an oxide superconductive wire with great critical current density by supplying a molten oxide to become superconductor to between two metal tapes to be supplied to between a pair of rolls rotating. CONSTITUTION:Two metal tapes 2A, 2B running are supplied to between a pair of rolls 1A, 1B rotating, and a molten oxide 4 to become superconductor is supplied to between these metal tapes 2A, 2B, followed by rapid cooling and solidification to provide an oxide superconductive wire. Different sizes (width and thickness) can be given to the wire by controlling the supply amount of molten oxide, speed of metal tapes and rolls, and the spacing of rolls. The wire 6 thus obtained is equipped with an enhanced density, and an oxide type superconductive wire having a great critical current density can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は酸化物系超電導線条体の製造方法に関するもの
であり、特に高密度で、高い臨界電流密度(J、)の値
を存する薄板状の酸化物系超電導線条体の製造方法に関
するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for producing an oxide-based superconducting wire, and in particular a thin plate having a high density and a high value of critical current density (J,). The present invention relates to a method for manufacturing an oxide-based superconducting wire body.

〔従来の技術及びその問題点〕[Conventional technology and its problems]

アルカリ土金属、希土類元素、銅及び酸素からなる酸化
物系超電導体は臨界温度(T、)が高く、その応用が期
待されているが、該酸化物系超電導体は一般に線状に加
工する事が困難であり、線条体となすにあたり、超電導
体となる酸化物の粉末材料を銀、銀合金或いは銅合金等
の金属管内に充填し、これを伸線、スウェージング、溝
ロール、平ロール等により線或いは薄板に冷間加工して
所望寸法の線条体とし、更に熱処理を施して酸化物系超
電導線条体としていた。
Oxide-based superconductors made of alkaline earth metals, rare earth elements, copper, and oxygen have high critical temperatures (T), and are expected to be used for this purpose. However, oxide-based superconductors are generally processed into linear shapes. However, in order to make a wire, a metal tube made of silver, silver alloy, copper alloy, etc. is filled with oxide powder material that will become a superconductor, and then the wire is drawn, swaged, grooved roll, or flat rolled. The wires or thin plates were cold-worked into wires or thin plates to obtain wires of desired dimensions, and then heat-treated to produce oxide-based superconducting wires.

又他の方法としては、酸化物粉末とバインダーとを混練
した後、押出加工等により線材化したり、或いはこれを
芯材の外周上にコーティングし、次いで脱バインダーを
含む熱処理を行なう方法等も試みられている。
Other methods have also been attempted, such as kneading the oxide powder and binder and then forming it into a wire rod through extrusion processing, or coating it on the outer periphery of the core material and then performing heat treatment including removal of the binder. It is being

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

然しなからこれらの方法においては、超電導体となる物
質に酸化物の粉末を使用している為、高減面率の加工を
施しても、熱処理後の超電導線条体の密度は、その真密
度に近い値が得られず、その為臨界電流密度(Jc)が
低いと言う問題点があった。
However, in these methods, since oxide powder is used as the material that becomes the superconductor, even if processing is performed with a high area reduction rate, the density of the superconducting wire after heat treatment is not the same as its true density. There was a problem that a value close to the density could not be obtained, and therefore the critical current density (Jc) was low.

〔問題点を解決する為の手段〕[Means for solving problems]

本発明は上記の点に鑑み鋭意検討の結果なされたもので
あり、その目的とするところは、高密度で高い臨界電流
密度(JC)の値を有する酸化物系超電導線条体の製造
方法を提供する事である。
The present invention has been made as a result of intensive studies in view of the above points, and its purpose is to provide a method for manufacturing an oxide-based superconducting wire having high density and a high critical current density (JC) value. It is to provide.

即ち本発明は、回転する一対のロール間に、走行する2
枚の金属テープを供給すると共に、前記2枚の金属テー
プ間に超電導体となる酸化物の溶融体を供給して、象、
冷凝固させる事を特徴とする酸化物系超電導線条体の製
造方法である。
That is, in the present invention, two rotating rolls are moved between a pair of rotating rolls.
At the same time as supplying two metal tapes, a melt of an oxide which becomes a superconductor is supplied between the two metal tapes,
This is a method for manufacturing an oxide-based superconducting wire, which is characterized by cold solidification.

本発明において、超電導体となる酸化物の溶融体を得る
為の方法としては、超電導体となる酸化物の粉末材料を
ルツボを用いて溶融しても良く、或いは酸化物をロッド
化し、このロッドの先端を局部的に加熱して溶融させて
得る等によっても良い。
In the present invention, as a method for obtaining a melted oxide that becomes a superconductor, a powder material of the oxide that becomes a superconductor may be melted using a crucible, or the oxide may be formed into a rod and the rod may be melted. It may also be obtained by heating the tip locally to melt it.

前者において、酸化物の粉末材料を溶融するルツボの材
質として、例えばW、Mo等の純金属或いはAuto、
、MgO等の酸化物その他のセラミックス製のものは、
超電導体となる酸化物の溶融体と反応して該酸化物の特
性を変化させるが、或いは前記酸化物の溶融体との反応
が著しくて、複数回の使用に耐える事が出来ないのに対
して、白金、イリジウム又はこれらの合金(例えばPL
−Rd等)製ルツボは、この様な傾向がないので特に好
ましい、又酸化物溶融体の保持温度は、1200℃未満
であると、極めて高粘度な溶液で成形性に乏しく、15
00℃を超えると、ルツボ材との反応が著しく、該ルツ
ボの寿命が短くなるので、前記溶融体の温度は1200
〜1500℃の範囲内にする事が望ましい。
In the former, the material of the crucible for melting the oxide powder material is, for example, pure metal such as W, Mo, etc.
, those made of oxides such as MgO and other ceramics,
It reacts with the molten oxide that becomes the superconductor and changes the properties of the oxide, or the reaction with the molten oxide is so severe that it cannot withstand multiple uses. platinum, iridium or alloys thereof (e.g. PL
-Rd, etc.) are particularly preferable because they do not have this tendency. Also, if the holding temperature of the oxide melt is less than 1200°C, the solution becomes extremely viscous and has poor moldability.
If the temperature exceeds 00°C, the reaction with the crucible material will be significant and the life of the crucible will be shortened, so the temperature of the melt should be set at 1200°C.
It is desirable to keep the temperature within the range of ~1500°C.

尚ルツボ内に充填した酸化物の粉末材料を溶融する為の
加熱源としては、高周波誘導加熱、電気炉、赤外線加熱
等を適宜使用する事が出来る。
As a heat source for melting the oxide powder material filled in the crucible, high frequency induction heating, electric furnace, infrared heating, etc. can be used as appropriate.

後者の酸化物をロッド化し、このロッドの先端を局部的
に加熱して溶融させる方法においても、加熱温度が12
00℃未満であると、得られる溶融体は極めて高粘度な
溶液で成形性に乏しく、又1600℃を超えると、酸化
物中の酸素の欠損量が多くなりすぎ、得られた線条体に
酸素雰囲気中で熱処理を施しても、超電導状態の発現に
必要な酸素量を供給する事が困難であるか、或いは極め
て長時間を要する様になるので、前記酸化物の溶融化の
為の加熱温度は1200〜1600℃の範囲内にするの
が望ましい。
In the latter method, in which the oxide is made into a rod and the tip of the rod is locally heated and melted, the heating temperature is 12
If the temperature is below 00°C, the resulting melt will be an extremely viscous solution with poor moldability, and if it exceeds 1,600°C, the amount of oxygen vacancies in the oxide will be too large, causing the resulting filament to Even if heat treatment is performed in an oxygen atmosphere, it is difficult to supply the amount of oxygen necessary to develop a superconducting state, or it takes an extremely long time. It is desirable that the temperature be within the range of 1200 to 1600°C.

又前記酸化物ロッド体の先端を局部的に加熱する為の手
段としては、例えばレーザー、高周波、赤外線等による
加熱を利用する事が出来、又ロッド先端が溶融して落下
するのに伴って、該ロッドを下方に移動させるか又はレ
ーザー等の加熱源を上方に移動させる等の方策を講じる
事が望まれる。
In addition, as a means for locally heating the tip of the oxide rod body, for example, heating by laser, high frequency, infrared rays, etc. can be used, and as the tip of the rod melts and falls, It is desirable to take measures such as moving the rod downward or moving the heating source such as a laser upward.

本発明方法に用いる金属テープとしては、例えばAg、
Ag合金、Cu合金、5tJS、Ni等の材質のものが
好ましいものである。
Examples of the metal tape used in the method of the present invention include Ag,
Preferably, the material is Ag alloy, Cu alloy, 5tJS, Ni, or the like.

又本発明方法では、溶融酸化物の供給量、金属テープ及
びロールの速度或いはロール間の間隙等を制御する事に
よって、種々の寸法(幅及び厚さ)の線条体を得る事が
可能である。この様にして得られた線条体に適宜熱処理
を行なう事により酸化物系超電導線条体が製造される。
Furthermore, in the method of the present invention, it is possible to obtain filaments of various dimensions (width and thickness) by controlling the amount of molten oxide supplied, the speed of the metal tape and rolls, the gap between the rolls, etc. be. By appropriately heat-treating the filament thus obtained, an oxide-based superconducting filament is manufactured.

面この際条体にあっては、長さ方向にスリットした後熱
処理を施す事も出来、またこれらを複数枚積層して熱処
理する事も可能である。
In this case, the strips can be heat-treated after being slit in the length direction, or a plurality of strips can be laminated and heat-treated.

次に本発明の実施態様を図面を用いて具体的に説明する
。第1図は本発明方法の一例を示す説明図であって、I
A、IBはロール、2A、2Bは金属テープ、3はルツ
ボ、4は超電導体となる酸化物の溶融体、5はヒーター
、6は成形された線条体、7A、7Bは金属テープ供給
装置(アンコイラ−等)である。この方法は、回転する
一対のロールIA、IB間に、走行する2枚の金属テー
プ2A、2Bを供給すると共に、前記2枚の金属テープ
2A、2B間に、ルツボ3内にて溶融した超電導体とな
る酸化物の溶融体4を供給して、急冷凝固させる事によ
り、酸化物の両面に金属テープ2A、2Bが複合した連
続線条体6を得る方法である。
Next, embodiments of the present invention will be specifically described using the drawings. FIG. 1 is an explanatory diagram showing an example of the method of the present invention,
A and IB are rolls, 2A and 2B are metal tapes, 3 is a crucible, 4 is a melted oxide that becomes a superconductor, 5 is a heater, 6 is a formed filament, 7A and 7B are metal tape supply devices (Uncoiler, etc.). In this method, two running metal tapes 2A, 2B are supplied between a pair of rotating rolls IA, IB, and a superconducting material molten in a crucible 3 is placed between the two metal tapes 2A, 2B. This is a method of obtaining a continuous filament 6 in which metal tapes 2A and 2B are composited on both sides of the oxide by supplying a melt 4 of the oxide that becomes the body and rapidly solidifying it.

第2図は本発明方法の他の例を示す説明図であって、8
は超電導体となる酸化物のロッド、9はレーザー、10
はチャックである。この方法は、チャック10で保持さ
れた酸化物のロッド8の先端をレーザー9等によって局
部的に加熱し、熔融した融液を第1図の場合と同様に2
枚の金属テープ2A、2B間に供給し、急冷凝固させて
線条体6となす方法である。
FIG. 2 is an explanatory diagram showing another example of the method of the present invention,
is an oxide rod that becomes a superconductor, 9 is a laser, and 10
is Chuck. In this method, the tip of an oxide rod 8 held by a chuck 10 is locally heated by a laser 9 or the like, and the molten liquid is heated by a laser beam 9, as in the case of FIG.
This is a method in which the metal tapes are supplied between the metal tapes 2A and 2B and rapidly solidified to form the filament 6.

ここで超電導体となる酸化物のロッド8の作製は、原料
粉、例えばY−Ba−Cu−0系の場合は、Y2O1、
BaC0,及びCuOの粉末を、又La−3r−Cu−
0系の場合は、L a 、0.、S「COl及びCuO
の粉末を、所望組成となる様に混合した混合粉末を棒状
に圧粉成形して作るか、又はこの混合粉末を大気中又は
酸素雰囲気中で仮焼結し、更にボールミルで粉砕して得
た粉末を圧粉成形して作ると良い。またこの様な粉末を
溶融させ、これを冷却、凝固させて棒状の酸化物ロッド
としたものでも良い。
Here, the oxide rod 8 that becomes the superconductor is manufactured using raw material powder, for example, in the case of Y-Ba-Cu-0 system, Y2O1,
BaC0 and CuO powders, and La-3r-Cu-
In the case of 0 series, L a , 0. , S “COl and CuO
The mixed powder is mixed to have the desired composition and compacted into a rod shape, or the mixed powder is pre-sintered in air or oxygen atmosphere, and then ground in a ball mill. It is best to make it by compacting the powder. Alternatively, such a powder may be melted, cooled and solidified to form a rod-shaped oxide rod.

〔作用〕[Effect]

本発明の方法においては、超電導体となる酸化物の粉末
材料或いはロッドを一旦溶融させた後、これを走行する
2枚の金属テープ間に供給して急冷凝固させる事によっ
て線条体としているので、得られる線条体は密度が向上
し、臨界電流密度(J、)の大きい酸化物系超電導線条
体を得る事が出来る。
In the method of the present invention, the oxide powder material or rod that becomes the superconductor is once melted, and then it is supplied between two running metal tapes and rapidly solidified to form a filament. The density of the resulting filament is improved, and an oxide-based superconducting filament having a large critical current density (J) can be obtained.

〔実施例〕〔Example〕

次に本発明を実施例により更に具体的に説明する。前記
第1図及び第2図の方法により、超T1導体となる酸化
物の両面に金属テープ2A、2Bが複合した連続線条体
6を得た。尚使用した超電導体となる酸化物はY −B
 a −Cu−0系であり、原料としてY2O1、Ba
cOz、CuO粉末をY:Ba:Cuが1:2:3’(
モル比)となる様に秤量して、これを混合し、次いでこ
の混合物を酸素雰囲気中で900℃X10hr仮焼結し
、これをボールミルで粉砕し、第1図方法ではその粉末
をそのまま溶融させた。第2図方法の場合は、上記の方
法で得た粉末を10mmφの棒状に圧粉成形し、次いで
この棒状体を大気中で900℃×1hr(Jij焼結し
て得たロッドを用いた。尚第2図方法の場合では、酸化
物ロッド8が、その先端が溶融して落下するのに伴なっ
て、該酸化物ロッド8をチャック10によって下方に移
動させて行なった。
Next, the present invention will be explained in more detail with reference to Examples. By the method shown in FIGS. 1 and 2, a continuous filament 6 was obtained in which metal tapes 2A and 2B were composited on both sides of an oxide that would become a super T1 conductor. The oxide used as the superconductor was Y-B.
a -Cu-0 system, with Y2O1 and Ba as raw materials
cOz, CuO powder was mixed with Y:Ba:Cu in 1:2:3' (
This mixture is then pre-sintered at 900°C for 10 hours in an oxygen atmosphere, and pulverized in a ball mill. In the method shown in Figure 1, the powder is melted as it is. Ta. In the case of the method shown in FIG. 2, the powder obtained by the above method was compacted into a rod shape of 10 mmφ, and then this rod was sintered at 900° C. for 1 hr (Jij) in the atmosphere. In the case of the method shown in FIG. 2, the oxide rod 8 was moved downward by the chuck 10 as the tip of the oxide rod 8 melted and fell.

上記の方法について、酸化物の溶融方法及び溶融温度、
金属テープの材質、第1図方法の場合におけるルツボ材
質等の製造条件を第1表にまとめて示した。又得られた
線条体6に酸素雰囲気中で900’CXl0hrの熱処
理を行ない、酸化物系超電導線条体を得た。而して得た
線条体について、線条体の厚さ、該線条体中の超電導体
層の厚さ及び密度(真密度に対する比、%)及び臨界温
度(Tc)、液体窒素温度(77°K)における臨界N
、vL密度(Jc)等の超電導特性を測定した。
Regarding the above method, the method and melting temperature of the oxide,
The manufacturing conditions such as the material of the metal tape and the material of the crucible in the case of the method shown in FIG. 1 are summarized in Table 1. Further, the obtained filament 6 was subjected to heat treatment for 900'CX10 hr in an oxygen atmosphere to obtain an oxide superconducting filament. Regarding the obtained striatum, the thickness of the striatum, the thickness and density of the superconductor layer in the striatum (ratio to true density, %), critical temperature (Tc), liquid nitrogen temperature ( critical N at 77°K)
, vL density (Jc), and other superconducting properties were measured.

得られた結果をまとめて第2表に示す。The results obtained are summarized in Table 2.

尚比較の為、前記Y2O3、B a CO3、CuO粉
末をY:Ba:Cu=1:2:3 (モル比)となる様
に秤量、混合し、これを酸素雰囲気中で900℃X10
hr仮焼結した後、ボールミルでわ〕砕して得た酸化物
粉末を、内径6mmのAgパイプに充填した後、冷間で
伸線加工を行ない、0゜6mmの複合線材とした。続い
て該複合線材に酸素雰囲気中で900℃X10hrの熱
処理を施して、酸化物系超電導線材を製造した。この様
にして得られた酸化物系超電導線材について、諸特性を
測定た。得られた結果を比較例11として第1表及び第
2表に併記した。
For comparison, the Y2O3, B a CO3, and CuO powders were weighed and mixed so that Y:Ba:Cu=1:2:3 (mole ratio), and this was heated at 900°C x 10 in an oxygen atmosphere.
After pre-sintering for several hours, the resulting oxide powder was crushed in a ball mill and filled into an Ag pipe with an inner diameter of 6 mm, followed by cold wire drawing to obtain a 0°6 mm composite wire. Subsequently, the composite wire was heat treated at 900°C for 10 hours in an oxygen atmosphere to produce an oxide superconducting wire. Various properties of the oxide superconducting wire thus obtained were measured. The obtained results are also listed in Tables 1 and 2 as Comparative Example 11.

第2表から明らかな様に、本発明方法により製造した本
発明測高1〜8では、何れも高密度で、臨界電流密度(
JC)が大きい酸化物系超電導線条体が得られている。
As is clear from Table 2, all of the height measurements 1 to 8 of the present invention manufactured by the method of the present invention have a high density and a critical current density (
An oxide-based superconducting wire body with a large JC) has been obtained.

−力筒1図の方法において、酸化物溶融体の温度が低す
ぎた比較測高9は、ルツボから溶融体を連続的に供給す
る事が出来なく、又前記溶融体の温度が高すぎた比較測
高10は、溶融体がルツボと反応して該ルツボが破損し
、やはり線条体を得る事が出来なかった。
- In the method shown in Fig. 1, the temperature of the oxide melt was too low in comparison height measurement 9, in which the melt could not be continuously supplied from the crucible, and the temperature of the melt was too high. In Comparative Height Measurement 10, the melt reacted with the crucible and the crucible was damaged, and a filament could not be obtained.

又従来の方法で線材を製造した比較測高11では、86
にで超電導を示したが、超電導体の密度が小さい為、本
発明測高1〜8に比べて臨界電流密度(Jc)値が著し
く低かった。
In addition, in Comparative Height Measurement 11, in which wire rods were manufactured using the conventional method, 86
2 showed superconductivity, but because the density of the superconductor was low, the critical current density (Jc) value was significantly lower than in Invention Measurements 1 to 8.

〔発明の効果〕〔Effect of the invention〕

本発明の方法によれば、臨界電流密度(JC)の大きい
酸化物系超電導線条体を得る事が出来る等、工業上顕著
な効果を奏するものである。
According to the method of the present invention, it is possible to obtain an oxide-based superconducting wire having a large critical current density (JC), which brings about significant industrial effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は、本発明による酸化物系超電導線条
体の製造方法の一例を示す説明図である。 l A、  I B−一ロール、2A12B−金属テー
プ、3−ルツボ、4−酸化物溶融体、5・−ヒーター、
6−・−線条体、7A、7B−金属テープ供給装置、8
−酸化物ロッド、9− レーザー、10−チャック。
FIG. 1 and FIG. 2 are explanatory diagrams showing an example of the method for manufacturing an oxide-based superconducting wire according to the present invention. l A, I B - one roll, 2A12B - metal tape, 3 - crucible, 4 - oxide melt, 5 - heater,
6-.-striatal body, 7A, 7B-metal tape supply device, 8
- oxide rod, 9- laser, 10- chuck.

Claims (3)

【特許請求の範囲】[Claims] (1)回転する一対のロール間に、走行する2枚の金属
テープを供給すると共に、前記2枚の金属テープ間に超
電導体となる酸化物の溶融体を供給して、急冷凝固させ
る事を特徴とする酸化物系超電導線条体の製造方法。
(1) Two running metal tapes are supplied between a pair of rotating rolls, and a molten oxide that becomes a superconductor is supplied between the two metal tapes and rapidly solidified. A method for producing a featured oxide-based superconducting wire.
(2)超電導体となる酸化物の溶融に際し、白金、イリ
ジウム又はこれらの合金製ルツボを用いて溶融し、且つ
酸化物溶融体の温度を1200〜1500℃の範囲内に
する事を特徴とする特許請求の範囲第1項記載の酸化物
系超電導線条体の製造方法。
(2) A crucible made of platinum, iridium, or an alloy thereof is used to melt the oxide that becomes the superconductor, and the temperature of the molten oxide is within the range of 1200 to 1500°C. A method for producing an oxide-based superconducting wire according to claim 1.
(3)超電導体となる酸化物の溶融体が、超電導体とな
る酸化物のロッドの先端を局部的に、1200〜160
0℃の温度範囲内に加熱して溶融させてなる溶融体であ
る事を特徴とする特許請求の範囲第1項記載の酸化物系
超電導線条体の製造方法。
(3) The melt of the oxide that will become a superconductor will locally touch the tip of the oxide rod that will become a superconductor at a temperature of 1200 to 160
2. The method for producing an oxide superconducting wire according to claim 1, wherein the molten material is obtained by heating and melting the material within a temperature range of 0.degree.
JP62329057A 1987-12-25 1987-12-25 Manufacture of oxide superconductive wire Pending JPH01169820A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62329057A JPH01169820A (en) 1987-12-25 1987-12-25 Manufacture of oxide superconductive wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62329057A JPH01169820A (en) 1987-12-25 1987-12-25 Manufacture of oxide superconductive wire

Publications (1)

Publication Number Publication Date
JPH01169820A true JPH01169820A (en) 1989-07-05

Family

ID=18217128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62329057A Pending JPH01169820A (en) 1987-12-25 1987-12-25 Manufacture of oxide superconductive wire

Country Status (1)

Country Link
JP (1) JPH01169820A (en)

Similar Documents

Publication Publication Date Title
EP0281444B1 (en) Process for manufacturing a superconducting wire of compound oxide-type ceramic
JPH01211813A (en) Production of superconductive wire
EP0311337B1 (en) Method of producing a superconductive oxide conductor and a superconductive oxide conductor produced by the method
EP0397943A1 (en) Method of producing a superconductive oxide cable and wire
KR910009198B1 (en) Method of manufacturing superconductive products
JPH01169820A (en) Manufacture of oxide superconductive wire
JP2610033B2 (en) Method for producing oxide-based superconducting molded body
JPS63276819A (en) Manufacture of ceramic superconductive filament
JP2593520B2 (en) Method for producing oxide-based superconducting wire
JP2567891B2 (en) Method for producing oxide superconducting molded body
JP2589084B2 (en) Method for producing oxide-based superconducting wire or tape
JP2556545B2 (en) Method for manufacturing oxide superconducting wire
JPH01175128A (en) Manufacture of oxide superconducting linear body
JPH02109218A (en) Manufacture of oxide superconductive wire rod
JPH02263606A (en) Manufacture of oxide superconductor
JPH02158012A (en) Manufacture of oxide superconductive liner body
JPH01204314A (en) Manufacture of oxide superconductor
JPH02278616A (en) Manufacture of multicore-type oxide superconductor
JPH0279310A (en) Manufacture of oxide superconductive wire
JPH07105765A (en) Manufacture of oxide superconducting wire raw material and oxide superconducting wire
JPH01281613A (en) Manufacture of oxide superconducting wire material
JPH01286210A (en) Manufacture of oxide superconducting filament body
JPH01239713A (en) Manufacture of oxide superconductive wire
JPH01281612A (en) Manufacture of oxide superconducting wire material
JPH01283713A (en) Manufacture of linear superconductive material