JPH01246719A - Manufacture of oxide superconductor - Google Patents

Manufacture of oxide superconductor

Info

Publication number
JPH01246719A
JPH01246719A JP63073928A JP7392888A JPH01246719A JP H01246719 A JPH01246719 A JP H01246719A JP 63073928 A JP63073928 A JP 63073928A JP 7392888 A JP7392888 A JP 7392888A JP H01246719 A JPH01246719 A JP H01246719A
Authority
JP
Japan
Prior art keywords
oxide superconductor
powder
composite
molten metal
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63073928A
Other languages
Japanese (ja)
Inventor
Tsukasa Kono
河野 宰
Yoshimitsu Ikeno
池野 義光
Nobuyuki Sadakata
伸行 定方
Taichi Yamaguchi
太一 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP63073928A priority Critical patent/JPH01246719A/en
Priority to CA000579101A priority patent/CA1313031C/en
Priority to DE3880947T priority patent/DE3880947T3/en
Priority to DE19883882871 priority patent/DE3882871T2/en
Priority to EP88309195A priority patent/EP0311337B1/en
Priority to CN88107874A priority patent/CN1035220C/en
Priority to US07/251,847 priority patent/US5045527A/en
Priority to CA000579107A priority patent/CA1313032C/en
Priority to EP88309193A priority patent/EP0310453B2/en
Priority to CN89104430A priority patent/CN1025901C/en
Publication of JPH01246719A publication Critical patent/JPH01246719A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To increase the critical current density by forming a molten metal including elements of an oxide superconductor in a specific composition ratio, solidifying the molten metal to get a solid, and manufacturing an oxide superconductor from the solid as the basis. CONSTITUTION:Elements to compose an oxide superconductor are mixed to make a specific ratio of composition. Then, the mixture powder is baked temporarily, powdered, and an intermediate sintering process is applied to obtain an oxide superconductor powder. After that, the oxide superconductor powder is smashed in a crucible, and heated and fused in the ambiance presenting oxygen to obtain a molten metal. Then, the molten metal is cooled suddenly to solidify, and after holding for a specific time, it is cooled up to the room temperature. Then, the resultant solid is smashed into pieces. The smashed pieces are processed to make into a rod-form, which is inserted to a metallic tube body 2 to form a composite. Following that, the composite 3 is coldforged to reduce the diameter, and to a composite consolidated body 13 after the diameter reduction process, a sheath removal process and the final sintering process are applied to manufacture the oxide superconductor.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、超電導マグネットの巻線用、あるいは、電力
輸送線用などとして開発が進められている酸化物超電導
導体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a method for manufacturing oxide superconducting conductors, which are being developed for use in windings of superconducting magnets, power transmission lines, and the like.

「従来の技術」 最近に至り、常電導状態から超電導状態に遷移する臨界
温度が液体窒素温度を超える値を示す酸化物系の超電導
体が種々発見されている。この種の酸化物超電導体はY
 −B a−Cu−0系あるいはB1−5 r−Ca−
Cu−0系などで代表される酸化物であり、これらの酸
化物超電導体を具備する超電導線を製造するための技術
開発が進められている。
"Prior Art" Recently, various oxide-based superconductors have been discovered whose critical temperature for transitioning from a normal conducting state to a superconducting state exceeds the temperature of liquid nitrogen. This kind of oxide superconductor is Y
-B a-Cu-0 series or B1-5 r-Ca-
These oxides are typified by Cu-0-based superconductors, and technological development is underway to manufacture superconducting wires comprising these oxide superconductors.

従来、この種の酸化物超電導線を製造する方法の一例と
して、酸化物超電導体を構成する元素を含有する複数の
原料粉末を調製し、この混合粉末を仮焼して不要成分を
除去するとともに、仮焼粉末を金属管に充填して縮径加
工を施し、縮径加工後に酸素存在雰囲気中において熱処
理を行い、内部の圧粉体に固相反応を生じさせて酸化物
超電導体を生成させる方法が知られている。
Conventionally, as an example of a method for manufacturing this type of oxide superconducting wire, a plurality of raw material powders containing elements constituting the oxide superconductor are prepared, and this mixed powder is calcined to remove unnecessary components. The calcined powder is filled into a metal tube and subjected to diameter reduction processing, and after the diameter reduction processing, heat treatment is performed in an oxygen atmosphere to cause a solid phase reaction in the compacted powder inside to produce an oxide superconductor. method is known.

「発明が解決しようとする課題」 しかしながら前述の従来方法で製造された酸化物超電導
線にあっては、混合粉末を作製した段階で酸化物超電導
体を構成する各元素が完全に均一に混合されていないた
めに、所望の組成の酸化物超電導体を均一に生成できな
い問題があり、更ニ、焼結時の元素の反応が固相反応で
あって、元素の拡散反応が十分には期待できないために
、所望の組成の酸化物超電導体を均一に生成できない問
題がある。また、前述のように均一性に欠ける混合粉末
を圧密して得られた成形体に固相反応を生じさせて酸化
物超電導体が生成されているので、生成された酸化物超
電導体の粒界には微細な空孔や欠陥が存在している欠点
がある。即ちこのような酸化物超電導体は、空孔や欠陥
を含む粉末粒子の粒界部分を介して電流が流れる構造の
ために、臨界電流密度を高めることができない問題があ
った。
"Problems to be Solved by the Invention" However, in the oxide superconducting wire manufactured by the conventional method described above, the elements constituting the oxide superconductor are not completely and uniformly mixed at the stage of producing the mixed powder. There is a problem in that oxide superconductors with the desired composition cannot be produced uniformly because the oxide superconductor is not produced uniformly, and the reaction of the elements during processing and sintering is a solid phase reaction, so a sufficient diffusion reaction of the elements cannot be expected. Therefore, there is a problem that an oxide superconductor having a desired composition cannot be uniformly produced. In addition, as mentioned above, since the oxide superconductor is produced by causing a solid phase reaction in the compact obtained by compacting the mixed powder that lacks uniformity, the grain boundaries of the produced oxide superconductor has the disadvantage of having minute pores and defects. That is, such an oxide superconductor has a structure in which current flows through the grain boundaries of powder particles containing vacancies and defects, so there is a problem in that the critical current density cannot be increased.

本発明は、前記課題を解決するためになされたもので、
臨界電流密度が高い酸化物超電導導体を製造する方法を
提供することを目的とする。
The present invention has been made to solve the above problems,
It is an object of the present invention to provide a method for manufacturing an oxide superconductor having a high critical current density.

[課題を解決するための手段」 本発明は、多元素系の酸化物超電導体を具備してなる酸
化物超電導導体の製造方法において、酸化物超電導体を
構成する各元素を所定の成分比となるように含有させた
溶湯を形成し、この溶湯を凝固させて凝固体を得、この
凝固体を粉砕して得た粉砕物を圧縮成形して棒状体を得
、次いでこの棒状体を金属管に充填して複合体を得ると
ともに、複合体に縮径加工を施して圧密体と金属シース
とからなる複合圧密体を形成し、次いでこの複合圧密体
の金属シースを除去した後に、圧密体を酸素存在雰囲気
で熱処理することを課題解決の手段とした。
[Means for Solving the Problems] The present invention provides a method for manufacturing an oxide superconductor comprising a multi-element oxide superconductor, in which each element constituting the oxide superconductor is mixed in a predetermined component ratio. A molten metal is formed, this molten metal is solidified to obtain a solidified body, this solidified body is crushed and the resulting crushed product is compression molded to obtain a rod-shaped body, and then this rod-shaped body is molded into a metal tube. to obtain a composite, and the composite is subjected to diameter reduction processing to form a composite consolidated body consisting of a consolidated body and a metal sheath, and then, after removing the metal sheath of this composite consolidated body, the consolidated body is The solution to this problem was heat treatment in an atmosphere containing oxygen.

「作用 」 所定の成分比の溶湯から作成した凝固体には同相反応よ
りも拡散の速い溶融拡散による反応によって特性の優れ
た酸化物超電導体が生成されており、この凝固体の粉砕
物から形成した棒状体を金属管に充填して熱処理を行い
、臨界電流密度の高い高特性の酸化物超電導導体を得る
``Effect'' An oxide superconductor with excellent properties is produced in a solidified body made from a molten metal with a predetermined component ratio due to a reaction by melt diffusion, which is faster than an in-phase reaction. The resulting rod-shaped body is filled into a metal tube and heat-treated to obtain a high-performance oxide superconducting conductor with a high critical current density.

以下に本発明を更に詳細に説明する。The present invention will be explained in more detail below.

本発明を実施して酸化物超電導導体を製造するには、ま
ず、出発物を調製する。この出発物としては、酸化物超
電導体の粉末、酸化物超電導体を構成する元素を含む材
料あるいはこれらの混合物が用いられ、各元素が所定の
組成比になるように秤量されて混合される。
To practice the present invention and produce oxide superconducting conductors, starting materials are first prepared. As the starting material, a powder of an oxide superconductor, a material containing elements constituting the oxide superconductor, or a mixture thereof is used, and each element is weighed and mixed so as to have a predetermined composition ratio.

前記酸化物超電導体としては、A −B −Cu−0系
(ただしAは、Y、Sc、La、Ce、Pr、Nd、P
m、Sm。
The oxide superconductor may be A-B-Cu-0 (where A is Y, Sc, La, Ce, Pr, Nd, P
m, Sm.

Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、L
uなどの周期律表ma族元素またはBiなどの周期律表
vb族元素またはTI、A1などの周期律表mb族元素
の内、1種以上を示し、Bは、S r、Ba、Ca、B
e、Raなどの周期律表IIa族元素の内、1種以上を
示す。)のものが用いられる。
Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, L
Represents one or more of the elements of group MA of the periodic table such as u, group VB of the periodic table such as Bi, or elements of group M of the periodic table such as TI, A1, and B is S r, Ba, Ca, B
One or more of Group IIa elements of the periodic table, such as e and Ra. ) are used.

また、酸化物超電導体を構成する元素を含む材料として
は、周期律表Ua族元素を含む粉末と、周期律表[[a
族元素または周期律表vb族元素または周期律表111
b族元素を含む粉末と、酸化銅粉末などからなる混合粉
末あるいはこの混合粉末を仮焼した粉末、または、前記
混合粉末と仮焼粉末の混合粉末などが用いられる。ここ
で用いられる周期律表Ila族元素を含む粉末としては
、Ca、 S r。
In addition, materials containing elements constituting the oxide superconductor include powders containing elements of group Ua of the periodic table, and powders containing elements of group Ua of the periodic table [[a
Group elements or periodic table group vb elements or periodic table 111
A mixed powder consisting of a powder containing a group B element and a copper oxide powder, a powder obtained by calcining this mixed powder, a mixed powder of the above mixed powder and calcined powder, etc. are used. Examples of powders containing elements of group Ila of the periodic table used here include Ca and Sr.

Ba、Raなどの炭酸塩粉末、酸化物粉末、塩化物粉末
、硫化物粉末、フッ化物粉末などの化合物粉末あるいは
合金粉末などである。また、周期律表I[1a族元素を
含む粉末としては、Sc、Y、La、Ce。
These include carbonate powders such as Ba and Ra, compound powders such as oxide powders, chloride powders, sulfide powders, and fluoride powders, and alloy powders. In addition, powders containing elements of group I [1a of the periodic table include Sc, Y, La, and Ce.

P r、Nd、Pn+、S a+、Eu、Gd、Tb、
Dy、Ho、E r、Tm。
P r, Nd, Pn+, S a+, Eu, Gd, Tb,
Dy, Ho, E r, Tm.

Yb、Luの各元素の酸化物粉末、炭酸塩粉末、塩化物
粉末、硫化物粉末、フッ化物粉末などの化合物粉末ある
いは合金粉末などが用いられ、周期律表vb族元素を含
む粉末として、Biなどの元素の化合物粉末あるいは合
金粉末、周期律表■b族元素を含む粉末として、T I
、A 1などの元素の化合物粉末あるいは合金粉末が用
いられる。更に、前記酸化銅粉末としては、Cuo 、
 Cuyo 、 CLi2O2゜Cu403などの粉末
が用いられる。
Compound powders or alloy powders such as oxide powders, carbonate powders, chloride powders, sulfide powders, fluoride powders, etc. of each element of Yb and Lu are used, and Bi As a compound powder or alloy powder of elements such as T I
A compound powder or alloy powder of elements such as , A 1 is used. Further, as the copper oxide powder, Cuo,
Powders such as Cuyo, CLi2O2°Cu403 are used.

ところで前記混合粉末を調製するには、通常、前述の粉
末法が用いられるが、この粉末法に限定されるものでは
なく、各元素を塩として共沈させ、その沈澱物を乾燥さ
せて混合粉末を得る共沈法を適用することも自由である
。また、前記必要な元素の化合物を所定の比率で混合し
て混合液とし、この混合液に酸を加えてゾル状にすると
ともに、このゾル状の物質を加熱してゲル化し、このゲ
ルを更に加熱して固相とした上で粉砕して混合粉末を得
るゾルゲル法を適用しても良い。
By the way, to prepare the mixed powder, the above-mentioned powder method is usually used, but it is not limited to this powder method.Each element is co-precipitated as a salt, and the precipitate is dried to prepare the mixed powder. It is also free to apply the coprecipitation method to obtain . In addition, compounds of the necessary elements are mixed in a predetermined ratio to form a mixed solution, acid is added to this mixed solution to form a sol, this sol-like substance is heated to gel, and this gel is further A sol-gel method may be applied in which the mixture is heated to form a solid phase and then pulverized to obtain a mixed powder.

次に前記混合粉末を750〜950℃で、3〜50時間
、加熱して仮焼する。仮焼処理が終了したならば、仮焼
物を更に粉砕して粒径を揃える。
Next, the mixed powder is heated and calcined at 750 to 950°C for 3 to 50 hours. When the calcining process is completed, the calcined product is further crushed to make the particle size uniform.

次いで前記仮焼粉末を酸素ガス雰囲気中において800
〜950℃で3〜50時間加熱するとともに、加熱後に
冷却する中間焼結処理を行って、所望の組成比(例えば
、Yl B a2CLi2O?−δ(0≦8≦0.5)
、Bi+Sr+Ca、Cu*0x1Tl、CatBaz
CLI30Xなる組成)の酸化物超電導粉末を得る。な
お、この中間焼結処理において、Y −B a−Cu−
0系の酸化物超電導体を製造する場合には、加熱後に徐
冷することか好ましく、B i−S r−Ca−Cu−
0系の酸化物超電導体を製造する場合には890℃で2
0分間加熱した後に、880℃で9時間加熱し、加熱後
は急冷するなどの処理を行うことが好ましい。
Next, the calcined powder was heated for 800 min in an oxygen gas atmosphere.
By heating at ~950°C for 3 to 50 hours and performing an intermediate sintering process of cooling after heating, a desired composition ratio (for example, YlBa2CLi2O?-δ (0≦8≦0.5) is obtained.
, Bi+Sr+Ca, Cu*0x1Tl, CatBaz
An oxide superconducting powder having a composition of CLI30X is obtained. In addition, in this intermediate sintering process, Y-B a-Cu-
When manufacturing a 0-based oxide superconductor, it is preferable to slowly cool it after heating, and B i-S r-Ca-Cu-
When manufacturing 0-based oxide superconductors, 2
It is preferable to perform a treatment such as heating for 0 minutes, then heating at 880° C. for 9 hours, and then rapidly cooling after heating.

このように得られた酸化物超電導粉末を白金製あるいは
CaO製などのルツボに投入し、酸素存在雰囲気で13
00℃程度に加熱して溶解し、溶湯を得る。
The oxide superconducting powder thus obtained was placed in a crucible made of platinum or CaO, and heated for 13 hours in an oxygen atmosphere.
It is heated to about 00°C to melt and obtain a molten metal.

次いでこの溶湯を800〜950℃の温度範囲まで急冷
して凝固させ、続いてこの凝固体を800〜950℃に
数時間〜数十時間保持した後に室温まで冷却する。前記
溶湯を急冷する処理は、加熱炉や加熱装置からるつぼを
空気中に引き出して急冷する方法、あるいは、冷媒を用
いて急冷する方法などにより実施できる。このように溶
湯から凝固させて得られた凝固体においては、固相反応
に比較して拡散速度の速い溶融拡散反応によって均一で
高品質の酸化物超電導体が生成されている。
Next, this molten metal is rapidly cooled to a temperature range of 800 to 950°C to solidify it, and then this solidified body is maintained at 800 to 950°C for several hours to several tens of hours, and then cooled to room temperature. The process of rapidly cooling the molten metal can be carried out by a method in which the crucible is pulled out into the air from a heating furnace or a heating device, or by a method in which the crucible is rapidly cooled using a refrigerant. In the solidified body obtained by solidifying the molten metal in this manner, a uniform, high-quality oxide superconductor is produced by the melt diffusion reaction, which has a faster diffusion rate than the solid phase reaction.

なお、前記溶湯から得た凝固体を室温まで冷却する場合
、Y−Ba−Cu−0系のものは徐冷することか好まし
いがB i−S r−Ca−Cu−0系のものは急冷し
ても差し支えない。
In addition, when cooling the solidified body obtained from the molten metal to room temperature, it is preferable to slowly cool the Y-Ba-Cu-0 type solidified body, but rapid cooling is preferable for the B i-S r-Ca-Cu-0 type solidified body. It's okay to do that.

次にこのように得られた凝固体の表面部分を1mm以下
、好ましくは数μ〜数百μの厚さにわたり削り取り、削
り取った部分を粉砕機により粉砕して粉末(分離物)を
得る。凝固体の表面部分を削り取るには機械切削などを
行えば良いが、研削加工などを行って削り取りと同時に
粉末化することも可能である。なお、表面部分が削り取
られた後の凝固体の中心部分は再び溶融した後に凝固さ
れ、更に表面を削り取る処理を繰り返し行って粉末を得
るために再利用する。また、溶湯をキャリアガスととも
に800〜950℃の温度の空間に噴出させて粉末化す
る方法を用いることによって前述゛の粉末を得るように
しても良い。
Next, the surface portion of the coagulated body thus obtained is scraped off to a thickness of 1 mm or less, preferably several microns to several hundred microns, and the scraped portion is ground using a grinder to obtain a powder (separated product). Mechanical cutting or the like may be used to scrape off the surface portion of the coagulated body, but it is also possible to perform grinding or the like to simultaneously scrape off and powderize. Note that the central portion of the solidified body after the surface portion has been scraped off is melted again and then solidified, and the surface is further repeatedly scraped off to be reused to obtain powder. Alternatively, the above-mentioned powder may be obtained by using a method in which the molten metal is jetted together with a carrier gas into a space at a temperature of 800 to 950° C. to be powdered.

このような処理を繰り返し行って粉末を収集する。この
ように凝固体の表面部分のみを集める理由は、溶湯を凝
固させた場合に、表面部分に主に酸素が十分に供給され
、表面部分に純度の高い均一な酸化物超電導体が生成さ
れるのでこのような純度の高い均一な酸化物超電導体を
集めるためである。また、キャリアガスを用いて溶湯か
ら直接粉末を製造した場合に、粉末の粒径が数百μm以
下になっているならばこの粉末をそのまま捕集して以下
の工程に使用する。
This process is repeated to collect powder. The reason why only the surface portion of the solidified material is collected is that when the molten metal is solidified, sufficient oxygen is mainly supplied to the surface portion, and a highly pure and uniform oxide superconductor is generated at the surface portion. The purpose is to collect such highly pure and uniform oxide superconductors. Further, when powder is produced directly from molten metal using a carrier gas, if the particle size of the powder is several hundred μm or less, this powder is collected as it is and used in the following process.

次に前述のように収集した粉末をラバープレスで静水圧
をかけるなどの加圧手段を行って棒状体を得る。なお、
この棒状体に対し、酸素ガス雰囲気中において800〜
950℃で6〜50時間加熱する熱処理を施し、棒状体
の内部における酸化物超電導体の生成率を更に向上させ
るようにしても良い。
Next, the powder collected as described above is subjected to pressing means such as applying hydrostatic pressure with a rubber press to obtain a rod-shaped body. In addition,
For this rod-shaped body, 800~
A heat treatment of heating at 950° C. for 6 to 50 hours may be performed to further improve the production rate of the oxide superconductor inside the rod-shaped body.

次に前述の棒状体Iを第1図に示す金属製の管体2に挿
入して複合体3を作成する。前記管体2は、CulAg
、AIあるいはこれらの合金、またはステンレスなどの
金属材料から形成されている。
Next, the above-mentioned rod-shaped body I is inserted into the metal tube body 2 shown in FIG. 1 to create a composite body 3. The tube body 2 is made of CulAg
, AI, an alloy thereof, or a metal material such as stainless steel.

なお、管体の構成材料は棒状体から酸素を奪わないよう
な非酸化性の材料で、好ましくは酸素を良好に透過させ
る材料を選択する必要がある。従って貴金属あるいは貴
金属を含有する合金などを用いることが好ましいが、管
体の内周面に非酸化性の材料からなる被覆層を形成した
ものでも差し支えない。
Note that it is necessary to select a material constituting the tube body from a non-oxidizing material that does not take away oxygen from the rod-shaped body, and preferably from a material that allows oxygen to permeate well. Therefore, it is preferable to use a noble metal or an alloy containing a noble metal, but a coating layer made of a non-oxidizing material may be formed on the inner peripheral surface of the tube.

次に第1図に示すロータリースウエージング装置などの
鍛造装置によって前記複合体3に冷間鍛造加工を施して
所望の線径まで縮径する。
Next, the composite body 3 is subjected to cold forging using a forging device such as a rotary swaging device shown in FIG. 1 to reduce the wire diameter to a desired wire diameter.

第1図に示すロータリースウエージング装置Aは、図示
略の駆動装置によって移動自在に設けられた複数のダイ
ス6を備えてなるものである。これらダイス6は、棒状
の複合体3をその長さ方向に移動させる際の移動空間の
周囲に、この移動空間を囲むように設けられたもので、
前記移動空間と直角な方向(第1図に示す矢印a方向)
に移動自在に、かつ、移動空間の周回り(第1図に示す
矢印す方向)に回転自在に保持されている。また、各ダ
イス6の内面には、前記複合体3を縮径加工するための
テーパ面6aが形成されていて、各ダイス6のテーパ面
6aで囲む間隙が先窄まり状となるようになっている。
The rotary swaging device A shown in FIG. 1 includes a plurality of dies 6 that are movably provided by a drive device (not shown). These dice 6 are provided around the movement space when the rod-shaped composite body 3 is moved in its length direction, so as to surround this movement space.
A direction perpendicular to the movement space (direction of arrow a shown in FIG. 1)
It is held so as to be freely movable and rotatable around the movement space (in the direction of the arrow shown in FIG. 1). Further, a tapered surface 6a for reducing the diameter of the composite body 3 is formed on the inner surface of each die 6, so that the gap surrounded by the tapered surface 6a of each die 6 becomes tapered. ing.

前記複合体3を縮径するには、前記ロータリースウェー
ジング装置Aを作動させるとともに、第1図に示すよう
に複合体3の一端をダイス6・・・の間の間隙に押し込
む。ここで前記ダイス6・・・は第1図の矢印a方向に
所定間隔往復移動しつつ回転しているために、複合体3
は一端側から順次鍛造しつつ縮径されて第1図に2点鎖
線で示す線径まで縮径され、複合圧密体13が得られる
。この縮径加工においては、回転しつつ往復運動する複
数のダイス6によって複合体3を鍛造しつつ縮径するた
めに、縮径加工中の複合体3に断線を起こすことなく大
きな加工率で縮径加工することができる。
To reduce the diameter of the composite 3, the rotary swaging device A is operated and one end of the composite 3 is pushed into the gap between the dies 6, as shown in FIG. Here, since the dice 6 are rotating while reciprocating at a predetermined interval in the direction of the arrow a in FIG.
is sequentially forged from one end side and is reduced in diameter to the wire diameter shown by the two-dot chain line in FIG. 1 to obtain a composite consolidated body 13. In this diameter reduction process, the composite body 3 is reduced in diameter while being forged by a plurality of dies 6 that reciprocate while rotating, so that the composite body 3 is reduced in diameter at a large processing rate without causing wire breakage. Diameter processing is possible.

なお、この例では複合体3の縮径加工にロータリースウ
ェージング装置Aを用いたが、縮径加工を行う場合、第
1図に示すロータリースウェージング装置Aを用いるこ
となく、その他の公知の鍛造装置、縮径装置などを用い
てら差し支えない。
In this example, the rotary swaging device A was used to reduce the diameter of the composite 3. However, when performing the diameter reduction process, other known forging methods may be used instead of using the rotary swaging device A shown in FIG. There is no problem with using a device, diameter reduction device, etc.

第1図に示すロータリースウェージング装置Aにより縮
径加工を行って複合体3を所望の線径まで縮径したなら
ば、縮径後に得られた複合圧密体13に以下に説明する
シースの除去処理と最終焼結処理を施して酸化物超電導
導体を製造する。
Once the diameter of the composite body 3 has been reduced to a desired wire diameter by the rotary swaging device A shown in FIG. An oxide superconducting conductor is produced by processing and final sintering.

即ち、前記複合圧密体I3から外側の金属シースとなっ
ている管体部分を除去し、これにより内部の圧密体を露
出させる。ここでの金属シースの除去には、例えば硝酸
などの酸、あるいは、苛性ソーダなどのアルカリの水溶
液などの処理液中に複合圧密体を浸漬させ、金属シース
のみを上記処理液中に溶解させる化学的な方法などが用
いられる。
That is, the tubular portion serving as the outer metal sheath is removed from the composite compacted body I3, thereby exposing the internal compacted body. To remove the metal sheath, the composite compacted body is immersed in a treatment solution such as an acid such as nitric acid or an alkaline solution such as caustic soda, and only the metal sheath is dissolved in the treatment solution. Various methods are used.

なお、前記金属シースを除去する方法として、機械切削
加工あるいは線材全体を高周波誘導加熱炉に通し、金属
シースのみを選択的に加熱溶融させて除去する手段など
を用いることも可能である。
Note that as a method for removing the metal sheath, it is also possible to use mechanical cutting or passing the entire wire through a high-frequency induction heating furnace to selectively heat and melt only the metal sheath to remove it.

次いで、このようにして露出せしめられた圧密体に対し
て熱処理を施して焼結体を得る。この熱処理は酸素ガス
雰囲気中において800〜950℃で、6〜50時間程
゛度加熱した後に、冷却することによって行う。なお、
Y −B a−Cu−0系の酸化物超電導体を製造する
場合は、加熱後に徐冷することか好ましく、B i−S
 r−Ca−Cu−0系、あるいはT ic a−B 
a−Cu−0系の酸化物超電導体を製造する場合は急冷
しても差し支えない。
Next, the thus exposed compacted body is subjected to heat treatment to obtain a sintered body. This heat treatment is carried out by heating at 800 to 950 DEG C. for about 6 to 50 hours in an oxygen gas atmosphere, and then cooling. In addition,
When producing a Y-B a-Cu-0-based oxide superconductor, it is preferable to slowly cool it after heating.
r-Ca-Cu-0 system or Tica-B
When producing an a-Cu-0-based oxide superconductor, rapid cooling may be used.

萌述の熱処理により、上記圧密体中の各構成元素どうし
が互いに十分に固相反応を起こすとともに、圧密体の表
面が露出せしめられていることから、圧密体の表面全体
からその内部に酸素が効率よく拡散されて焼結され、酸
化物超電導導体が得られる。
Due to the heat treatment described above, each of the constituent elements in the compacted body undergoes a sufficient solid phase reaction with each other, and since the surface of the compacted body is exposed, oxygen is absorbed from the entire surface of the compacted body into its interior. It is efficiently diffused and sintered to obtain an oxide superconducting conductor.

このように製造された酸化物超電導導体は、溶融凝固体
から形成した組成の均一な純粋な粉末を用いて形成され
ているので、極めて高い臨界電流密度を示すとともに、
この酸化物超電導導体は、高磁界中においても十分に高
い臨界電流密度を示す。また、ロータリースウェージン
グ装置Aによって十分に圧密された後に熱処理されてい
るのて圧密体の内部で固相反応が十分になされ、臨界電
流密度の高い酸化物超電導体が生成される。更に、凝固
体の表面部分から、より均一で純粋な組成比の粉末を取
り出してこの粉末から超電導導体を製造すると、全体的
に不純物の少ない均一な組成の酸化物超電導体を生成さ
せることができ、高い臨界電流密度の酸化物超電導導体
が得られる。
Since the oxide superconductor manufactured in this way is formed using pure powder with a uniform composition formed from a molten solidified body, it exhibits an extremely high critical current density, and
This oxide superconductor exhibits a sufficiently high critical current density even in high magnetic fields. Furthermore, since the compact is heat-treated after being sufficiently compacted by the rotary swaging device A, a solid phase reaction is sufficiently carried out inside the compact, and an oxide superconductor with a high critical current density is produced. Furthermore, if a powder with a more uniform and pure composition is extracted from the surface part of the solidified body and a superconducting conductor is produced from this powder, an oxide superconductor with a uniform composition with less impurities can be produced. , an oxide superconducting conductor with a high critical current density can be obtained.

なお、このように得られた酸化物超電導導体は、超電導
特性の劣化を防止し、安定化するために、あるいは、補
強のために、外面に保護コーティング層を形成しておく
ことが好ましい。この保護コーティング層を形成するに
は、溶融バスに錫や半田などの低融点金属の溶湯を満た
し、溶湯に超音波を付加した状態で酸化物超電導導体を
浸漬してコーティングする方法、あるいは、絶縁や補強
のためにエナメルやホルマールなどの有機物をコーティ
ングするなどの方法を採用することができる。
Note that it is preferable that a protective coating layer be formed on the outer surface of the oxide superconducting conductor obtained in this manner in order to prevent deterioration of superconducting properties and stabilize it, or for reinforcement. This protective coating layer can be formed by filling a molten bath with molten metal of a low melting point such as tin or solder, and coating the oxide superconducting conductor by immersing it in the molten metal while applying ultrasonic waves. Alternatively, methods such as coating with organic materials such as enamel or formal can be adopted for reinforcement.

なお、成膜法を利用してアモルイファスカーボンなどか
らなるコーティング層を形成しても良い。
Note that a coating layer made of amorphous carbon or the like may be formed using a film forming method.

このように保護コーティング層を形成しておくならば、
Y −B a−Cu−0系の超電導体などにおいては水
分による超電導特性の劣化現象を防止することができる
If a protective coating layer is formed in this way,
In Y-B a-Cu-0 type superconductors, deterioration of superconducting properties due to moisture can be prevented.

「実施例」 Y、03粉末とBaCO3粉末とCuO粉末をY:Ba
:Cu= 1 :2 :3の比率になるように混合して
混合粉末を得、この混合粉末を900℃で24時間加熱
して仮焼粉末を得た。次に仮焼粉末を粉砕し、更に酸素
ガス雰囲気中において890℃で14時間加熱する処理
を行ってY +B atc 11307−δなる組成の
酸化物超電導体を得た。
"Example" Y, 03 powder, BaCO3 powder, and CuO powder
:Cu = 1:2:3 to obtain a mixed powder, and this mixed powder was heated at 900° C. for 24 hours to obtain a calcined powder. Next, the calcined powder was pulverized and further heated at 890° C. for 14 hours in an oxygen gas atmosphere to obtain an oxide superconductor having a composition of Y + B atc 11307-δ.

次にこの酸化物超電導体を白金ルツボに投入し、酸素存
在雰囲気中で1300℃に加熱して酸化物超電導体を溶
解し、溶湯とした。
Next, this oxide superconductor was placed in a platinum crucible and heated to 1300° C. in an oxygen-existing atmosphere to melt the oxide superconductor and form a molten metal.

次にこの溶湯を酸素ガス雰囲気中において、900℃ま
で急冷し、900℃で10時間保持し、その後室温まで
200℃/時間の割合で徐冷して凝固体を得た。次いで
この凝固体の表面層のみを取り出して粉砕機にかけて粉
末を得た。
Next, this molten metal was rapidly cooled to 900°C in an oxygen gas atmosphere, held at 900°C for 10 hours, and then gradually cooled to room temperature at a rate of 200°C/hour to obtain a solidified body. Next, only the surface layer of this coagulated body was taken out and pulverized to obtain a powder.

このように得られた粉末をラバープレスで静水圧をかけ
て直径8v++の棒状体を形成した。次いでこの棒状体
を外径15m+++、内径10mmの銀製の管体に挿入
し、ロータリースウェージング装置や伸線機によって冷
間加工を施して縮径し、酸化物コアと銀シースからなる
直径1.0mfllの複合圧密体を得た。次いでこの複
合圧密体の銀シースを希硝酸で溶解し、酸化物コアを露
出させた。次にこの酸化物コアを酸素ガス雰囲気中にお
いて890℃で3時間加熱する熱処理を施して酸化物超
電導導体を得た。
The powder thus obtained was subjected to hydrostatic pressure using a rubber press to form a rod-shaped body having a diameter of 8V++. Next, this rod-shaped body is inserted into a silver tube having an outer diameter of 15 m + + + and an inner diameter of 10 mm, and is cold-worked using a rotary swaging device or a wire drawing machine to reduce the diameter to a diameter of 1.5 mm consisting of an oxide core and a silver sheath. A composite compact of 0 mfl was obtained. The silver sheath of this composite compact was then dissolved with dilute nitric acid to expose the oxide core. Next, this oxide core was heat-treated at 890° C. for 3 hours in an oxygen gas atmosphere to obtain an oxide superconducting conductor.

この酸化物超電導体はOT(テスラ)の磁場中において
、 Jc=1.6XlO’A/am” を示し、2Tの磁場中においても、 J c= 1.2 X I O’A/cm”を示した。
This oxide superconductor exhibits Jc=1.6XIO'A/am" in an OT (Tesla) magnetic field, and Jc=1.2 Indicated.

ところで、前記混合粉末と同等の組成の混合粉末を仮焼
して銀シースに充填し、これをロータリースウェージン
グ装置により縮径した後に銀シースを溶解除去し、更に
熱処理を施して得られた酸化物超電導導体のJcは1X
10’A/am程度であり、その他に現在知られている
酸化物超電導導体のJcは大略0.1〜I X I O
’A/am”程度である。
Incidentally, a mixed powder having the same composition as the above-mentioned mixed powder is calcined and filled into a silver sheath, the diameter of which is reduced using a rotary swaging device, the silver sheath is dissolved and removed, and the obtained oxidized powder is further heat-treated. Jc of physical superconducting conductor is 1X
Jc of other currently known oxide superconducting conductors is approximately 0.1 to IXIO
It is about 'A/am'.

ところが、これら従来の酸化物超電導導体は、磁界中で
はITの磁場中であってもJcが0.1−IX 10 
’A/cm”に低下することが知られている。
However, these conventional oxide superconducting conductors have a Jc of 0.1-IX 10 even in an IT magnetic field.
It is known that the temperature decreases to 'A/cm'.

従って本発明を実施することにより、強い磁場中におい
ても臨界電流密度の高い酸化物超電導導体を得ることが
できることが明らかとなった。
Therefore, it has been revealed that by carrying out the present invention, it is possible to obtain an oxide superconducting conductor with a high critical current density even in a strong magnetic field.

「発明の効果」 以上説明したように本発明によれば、固相反応に比較し
て拡散速度の大きな溶融拡散反応がなされる溶湯から凝
固させて凝固体を得、この凝固体から得た均一な組成の
粉砕物を用いて棒状体を形成し、これを元に酸化物超電
導導体を製造するので、臨界電流密度の高い高品質の酸
化物超電導導体を製造できる効果がある。また、本発明
を実施して得られた酸化物超電導導体は、組成が整った
均一な酸化物超電導体が生成されているので高い磁場に
おいても優れた臨界電流密度を発揮する。
"Effects of the Invention" As explained above, according to the present invention, a solidified body is obtained by solidifying a molten metal in which a melt-diffusion reaction with a higher diffusion rate than a solid phase reaction is performed, and a uniform solidified body is obtained from this solidified body. Since a rod-shaped body is formed using a pulverized material having a similar composition, and an oxide superconducting conductor is manufactured from the rod-shaped body, there is an effect that a high-quality oxide superconducting conductor with a high critical current density can be manufactured. In addition, the oxide superconductor obtained by carrying out the present invention exhibits an excellent critical current density even in a high magnetic field because a uniform oxide superconductor with a uniform composition is produced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は複合体をロータリースウェージング装置で縮径
加工する状態を説明するための断面図である。 ■・・・棒状体、 2・・・管体、 3・・・複合体、
6・・・ダイス、  13・・・複合圧密体、14・・
・圧密体、A・・・ロータリースウェージング装置。
FIG. 1 is a sectional view for explaining the state in which a composite body is reduced in diameter by a rotary swaging device. ■...rod-shaped body, 2...tubular body, 3...complex,
6...Dice, 13...Composite consolidated body, 14...
- Consolidated body, A...Rotary swaging device.

Claims (1)

【特許請求の範囲】[Claims]  多元素系の酸化物超電導体を具備してなる酸化物超電
導導体の製造方法において、酸化物超電導体を構成する
各元素を所定の成分比となるように含有させた溶湯を形
成し、この溶湯を凝固させて凝固体を得、この凝固体を
粉砕して得た粉砕物を圧縮成形して棒状体を得、次いで
この棒状体を金属管に充填して複合体を得るとともに、
複合体に縮径加工を施して圧密体と金属シースとからな
る複合圧密体を形成し、次いでこの複合圧密体の金属シ
ースを除去した後に、圧密体を酸素存在雰囲気で熱処理
することを特徴とする酸化物超電導導体の製造方法。
In a method for producing an oxide superconductor comprising a multi-element oxide superconductor, a molten metal containing each element constituting the oxide superconductor in a predetermined component ratio is formed, and the molten metal is is solidified to obtain a coagulated body, this coagulated body is pulverized, the resulting pulverized product is compression molded to obtain a rod-shaped body, and then this rod-shaped body is filled into a metal tube to obtain a composite body,
The composite body is subjected to diameter reduction processing to form a composite consolidated body consisting of a consolidated body and a metal sheath, and then, after removing the metal sheath of this composite consolidated body, the consolidated body is heat-treated in an oxygen-present atmosphere. A method for producing an oxide superconducting conductor.
JP63073928A 1987-10-02 1988-03-28 Manufacture of oxide superconductor Pending JPH01246719A (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP63073928A JPH01246719A (en) 1988-03-28 1988-03-28 Manufacture of oxide superconductor
CA000579101A CA1313031C (en) 1987-10-02 1988-10-03 Method of producing a superconductive oxide conductor and an oxide superconductor produced by the method
DE3880947T DE3880947T3 (en) 1987-10-02 1988-10-03 Process for the preparation of an oxide superconductor without sheathing and an oxide superconductor produced by this process.
DE19883882871 DE3882871T2 (en) 1987-10-02 1988-10-03 A method for producing an oxide superconducting conductor and an oxide superconducting conductor produced by this method.
EP88309195A EP0311337B1 (en) 1987-10-02 1988-10-03 Method of producing a superconductive oxide conductor and a superconductive oxide conductor produced by the method
CN88107874A CN1035220C (en) 1987-10-02 1988-10-03 Method of producing a superconductive oxide conductor and a superconductive oxide conductor produced by the method
US07/251,847 US5045527A (en) 1987-10-02 1988-10-03 Method of producing a superconductive oxide conductor
CA000579107A CA1313032C (en) 1987-10-02 1988-10-03 Method of producing an oxide superconductor without sheath and an oxide superconductor produced by the method
EP88309193A EP0310453B2 (en) 1987-10-02 1988-10-03 Method of producing an oxide superconductor without a sheath and an oxide superconductor produced by the method
CN89104430A CN1025901C (en) 1988-03-28 1989-05-19 Method of producing superconductive oxide conductor and oxide superconductor produced by method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP63073928A JPH01246719A (en) 1988-03-28 1988-03-28 Manufacture of oxide superconductor
CN89104430A CN1025901C (en) 1988-03-28 1989-05-19 Method of producing superconductive oxide conductor and oxide superconductor produced by method

Publications (1)

Publication Number Publication Date
JPH01246719A true JPH01246719A (en) 1989-10-02

Family

ID=36741178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63073928A Pending JPH01246719A (en) 1987-10-02 1988-03-28 Manufacture of oxide superconductor

Country Status (2)

Country Link
JP (1) JPH01246719A (en)
CN (1) CN1025901C (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2374547T3 (en) * 2005-04-27 2012-02-17 Nexans SUPERCONDUCTOR CABLE.
DE102015010676A1 (en) * 2015-08-12 2017-02-16 Karlsruher Institut für Technologie Method and device for producing a superconducting conductor

Also Published As

Publication number Publication date
CN1047416A (en) 1990-11-28
CN1025901C (en) 1994-09-07

Similar Documents

Publication Publication Date Title
US5045527A (en) Method of producing a superconductive oxide conductor
EP0311337B1 (en) Method of producing a superconductive oxide conductor and a superconductive oxide conductor produced by the method
EP0397943B1 (en) Method of producing a superconductive oxide cable and wire
JPH01246719A (en) Manufacture of oxide superconductor
JPH01246720A (en) Manufacture of oxide superconductor
JPH01246717A (en) Oxide superconductive wire and its manufacture
JPH01246716A (en) Oxide superconductive wire
JP2595309B2 (en) Manufacturing method of oxide superconducting wire
JP2583575B2 (en) Manufacturing method of oxide superconducting wire
JP2612009B2 (en) Method for producing oxide-based superconducting wire
JPH01122519A (en) Manufacture of oxide superconducting wire
JPH01115012A (en) Manufacture of oxide superconducting wire
JPH01122518A (en) Manufacture of oxide semiconductor wire
JPH01194212A (en) Manufacture of oxide superconductive wire
JPH01241711A (en) Manufacture of oxide superconductor wire
JPH02189817A (en) Manufacture of wire rod of oxide superconductive tape state
JPH01151109A (en) Manufacture of oxide system superconductive wire
JPH07105765A (en) Manufacture of oxide superconducting wire raw material and oxide superconducting wire
JPH01145365A (en) Production of oxide-based superconductor
JPH01122402A (en) Manufacture of oxide superconductive bulk material
JPH0193010A (en) Manufacture of oxide type superconductive wire
JPH01175124A (en) Manufacture of oxide superconducting wire
JPH01122520A (en) Manufacture of oxide superconducting wire
JPH01151107A (en) Manufacture of oxide system superconductive wire
JPH01175126A (en) Manufacture of multi-core oxide superconducting wire