JPH0193010A - Manufacture of oxide type superconductive wire - Google Patents

Manufacture of oxide type superconductive wire

Info

Publication number
JPH0193010A
JPH0193010A JP62249526A JP24952687A JPH0193010A JP H0193010 A JPH0193010 A JP H0193010A JP 62249526 A JP62249526 A JP 62249526A JP 24952687 A JP24952687 A JP 24952687A JP H0193010 A JPH0193010 A JP H0193010A
Authority
JP
Japan
Prior art keywords
powder
diameter
wire
composite
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62249526A
Other languages
Japanese (ja)
Inventor
Yoshimitsu Ikeno
池野 義光
Tsukasa Kono
河野 宰
Nobuyuki Sadakata
伸行 定方
Masaru Sugimoto
優 杉本
Mikio Nakagawa
中川 三紀夫
Shinya Aoki
青木 伸哉
Atsushi Kume
篤 久米
Kenji Goto
謙次 後藤
Toshio Usui
俊雄 臼井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP62249526A priority Critical patent/JPH0193010A/en
Priority to DE3880947T priority patent/DE3880947T3/en
Priority to CN88107874A priority patent/CN1035220C/en
Priority to EP88309193A priority patent/EP0310453B2/en
Priority to CA000579101A priority patent/CA1313031C/en
Priority to US07/251,847 priority patent/US5045527A/en
Priority to DE88309195T priority patent/DE3882871T2/en
Priority to CA000579107A priority patent/CA1313032C/en
Priority to EP88309195A priority patent/EP0311337B1/en
Publication of JPH0193010A publication Critical patent/JPH0193010A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain a superconductive wire of an excellent mechanical strength and an excellent superconductive property by applying a diameter reduction process to a composite formed by filling at least either an oxide superconductor or a precursor of an oxide superconductor in a metal pipe while forging it with a die. CONSTITUTION:Y2O3 powder, BaCO3 powder, and CuO powder are mixed at the ratio Y:Ba:Cu=1:2:3, to obtain a mixture powder, which is heated in the atmospheric ambiance at 700 deg.C for 24 hours to carry out a temporary treatment. Then the temporarily heated powder is filled in a pipe made of Ag, and the resultant composite is processed for diameter reduction while forging in a cold condition by using a rotary swaging device A with a die 6, to reduce the diameter of the Ag pipe, from the outer diameter 10mm to 1.4mm, for example, step by step. In this diameter reduction process, the section reduction rate in one pass is set about 20%. In such a way, the powder can be pressed densely in the rate higher than the case of a drawing-out process using a die. As a result, when the heat treatment is applied to produce a superconductor, the elements are diffused easily inside the powder formation, and a superconductor wire of an excellent mechanical strength and superconductive property can be obtained.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は超電導マグネットコイルや電力輸送用等に使用
される超電導線に係わり、超電導体として酸化物系超電
導体を用いたものに関する。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to superconducting magnet coils, superconducting wires used for power transport, etc., and relates to superconducting wires using oxide-based superconductors as the superconductor.

「従来の技術」 最近に至り、常電導状態から超電導状態へ遷移する臨界
温度(Tc)が液体窒素温度以上の値を示す酸化物系の
超電導材料が種々発見されている。
"Prior Art" Recently, various oxide-based superconducting materials have been discovered whose critical temperature (Tc) for transitioning from a normal conducting state to a superconducting state is higher than the temperature of liquid nitrogen.

この種の酸化物超電導材料は、一般式A −B −Cu
−0(ただし、AはLa、Ce、Yb、Sc、Er等の
周期律表ma族元素の1種以上を示し、BはBa、Sr
等の周期律表na族元素の1種以上を示す)で示される
ものである。そして、この種の酸化物超電導体を製造す
るには、前記ma族元素を含む粉末とIIa族元素を含
む粉末と酸化銅粉末を混合して混合粉末を作成し、この
混合粉末を所定の形状に成形した後に、得られた成形体
に熱処理を施し、各元素を固相反応させて超電導物質を
生成さ仕ることにより製造するようにしている。
This type of oxide superconducting material has the general formula A-B-Cu
-0 (However, A represents one or more elements of group MA of the periodic table, such as La, Ce, Yb, Sc, Er, etc., and B represents Ba, Sr.
(indicates one or more elements of group na of the periodic table). To manufacture this type of oxide superconductor, a powder containing the Ma group element, a powder containing the IIa group element, and a copper oxide powder are mixed to create a mixed powder, and this mixed powder is shaped into a predetermined shape. After molding, the obtained molded body is heat-treated and each element undergoes a solid phase reaction to produce a superconducting material.

また、前記A −B −Cu−0系の超電導体を具備す
る超電導線を製造する方法として従来、前記混合粉末を
金属管に充填するか、あるいは、混合粉末に熱処理を施
して得た超電導粉末を金属管に充填し、充填後にダイス
などを用いて金属管を引抜加工して所望の直径の線材を
得、この線材に熱処理を施して内部の粉末成形体の元素
を固相反応させ、金属管の内部に超電導物質を生成させ
ることにより超電導線を得る方法が知られている。
In addition, as a method for producing a superconducting wire comprising the A-B-Cu-0 system superconductor, conventionally, the mixed powder is filled into a metal tube, or the mixed powder is heat-treated to obtain a superconducting powder. is filled into a metal tube, and after filling, the metal tube is drawn using a die or the like to obtain a wire rod of the desired diameter.The wire rod is heat-treated to cause a solid phase reaction of the elements in the powder compact inside, and the metal A method of obtaining a superconducting wire by producing a superconducting substance inside a tube is known.

「発明が解決しようとする問題点」 前記従来方法においては、ダイスを用いた引抜加工によ
って金属管を縮径して混合粉末を圧粉する関係から、引
抜加工時に断線しない程度に加工する必要があって、加
工率に限界を生じるために、粉末の圧密度を十分に高め
ることができない問題がある。従って圧密度が十分では
ない粉末成形体に熱処理を施して焼結することになるた
めに、得られた超電導線にあっては、各元素の面子反応
が十分にはなされていない傾向があり、優れた超電導特
性が得られない問題がある。また、前述のように圧密度
が十分ではない粉末成形体を焼結して超電導線を製造し
た場合、超電導体内部の気孔率が比較的大きいために、
超電導線の曲げ強度か不足するなど、強度面での不満が
大きい問題かある。
``Problems to be Solved by the Invention'' In the conventional method, since the metal tube is reduced in diameter and the mixed powder is compacted by drawing using a die, it is necessary to process the metal tube to the extent that it does not break during the drawing process. However, since there is a limit to the processing rate, there is a problem that the compaction density of the powder cannot be sufficiently increased. Therefore, since a powder compact with insufficient compaction density is heat-treated and sintered, the resulting superconducting wire tends to not undergo sufficient face-to-face reactions between the various elements. There is a problem that excellent superconducting properties cannot be obtained. In addition, as mentioned above, when a superconducting wire is manufactured by sintering a powder compact with insufficient compaction density, the porosity inside the superconductor is relatively large.
There are problems with major dissatisfaction in terms of strength, such as the lack of bending strength of superconducting wires.

このため超電導マグネットの巻線用などとして超電導線
を巻胴に巻回しようとする場合に、超電導体にクラック
が入り易いおそれがあり、超電導特性が著しく低下する
おそれがある。
For this reason, when a superconducting wire is wound around a winding drum for use in winding a superconducting magnet, the superconductor is likely to be easily cracked, and the superconducting properties may be significantly degraded.

本発明は前記問題に鑑みてなされたもので、粉末成形体
の圧密度を十分に高くすることかでき、浸れた超電導特
性を発揮するとともに、機械強度ら高い酸化物系超電導
線を提供することを目的とする。
The present invention has been made in view of the above problems, and provides an oxide-based superconducting wire that can sufficiently increase the compaction density of a powder compact, exhibits excellent superconducting properties, and has high mechanical strength. With the goal.

「問題点を解決するための手段」 本発明は、酸化物系超電導体からなる超電導導体を具備
してなる酸化物系超電導線の製造方法であって、酸化物
超電導体と酸化物超電導体の萌駆体の内、少なくとも一
方を金属シース内に充填して複合体を形成し、次いでこ
の複合体をその長さ方向に移動させつつ縮径するに際し
、複合体の移動空間の周囲に、移動空間を囲んで設けら
れて複合体の移動空間に交差する方向に移動自在に設け
られた複数のダイスにより複合体を外周面側から押圧し
て複合体を鍛造しつつ縮径するとともに、縮径加工後に
熱処理を行うことを問題解決の手段とした。
"Means for Solving the Problems" The present invention provides a method for manufacturing an oxide superconducting wire comprising a superconducting conductor made of an oxide superconductor, the method comprising: an oxide superconductor; At least one of the seed precursors is filled into a metal sheath to form a composite, and then when this composite is moved in its length direction and reduced in diameter, the movement around the movement space of the composite is A plurality of dies surrounding the space and movable in a direction intersecting the movement space of the composite press the composite from the outer peripheral side to forge the composite and reduce its diameter. The solution to the problem was to perform heat treatment after processing.

「作用」 金属管内に粉末を充填した複合体を外方から複数のダイ
スで押圧して鍛造しつつ縮径するために、高い加工率で
縮径することができ、粉末の圧密度が向上する。
"Operation" A composite body filled with powder inside a metal tube is pressed from the outside with multiple dies to reduce its diameter while being forged, making it possible to reduce the diameter at a high processing rate and improve the compaction density of the powder. .

以下に本発明について更に詳細に説明する。The present invention will be explained in more detail below.

第1図は本発明の一実施例を説明するためのもので、本
発明を実施して酸化物系超電導線を製造するには、まず
、出発物を調整する。この出発物としては、酸化物超電
導体、酸化物超電導体を構成する元素を含む材料あるい
はこれらの混合物が用いられる。
FIG. 1 is for explaining one embodiment of the present invention. In order to carry out the present invention and manufacture an oxide-based superconducting wire, starting materials are first prepared. As this starting material, an oxide superconductor, a material containing an element constituting the oxide superconductor, or a mixture thereof is used.

前記の酸化物超電導体としては、A −B −C−D系
(ただしAは、Y、Sc、La、Ce、Pr、Nd、P
m。
The above-mentioned oxide superconductors include A-B-C-D system (where A is Y, Sc, La, Ce, Pr, Nd, P
m.

S m、Eu、Gd、Tb、Dy、Ho、Er、Tm、
Yb、Luなどの周期律表Iffa族元素のうち1種あ
るいは2種以上を示し、BはS r、Ba、Ca、Be
、Mg、Raなどの周期律表Ua族元素のうち1種ある
いは2種以上を示し、CはCu、Ag、Auの周期律表
rb族元素とNbのうちCuあるいはCuを含む2種以
上を示し、DはO,S、Se、Te、Poなどの周期律
表■b族元素およびF、CI、Br等の周期律表■b族
元素のうちOあるいは0を含む2種以上を示す)のもの
が用いられる。
S m, Eu, Gd, Tb, Dy, Ho, Er, Tm,
Indicates one or more elements of the Iffa group of the periodic table such as Yb and Lu, and B represents S r, Ba, Ca, Be.
, Mg, Ra, and other elements of the Ua group of the periodic table, and C represents one or more elements of the RB group of the periodic table, such as Cu, Ag, and Au; (D represents two or more elements of Group B of the Periodic Table, such as O, S, Se, Te, and Po, and Group B elements of the Periodic Table, such as F, CI, and Br, including O or 0) are used.

また、酸化物超電導体を構成する元素を含む材料として
は、周期律表Ua族元素を含む粉末と周期律表Ia族元
素を含む粉末と酸化銅粉末などからなる混合粉末あるい
はこの混合粉末を仮焼した粉末、または、前記混合粉末
と仮焼粉末の混合粉末などが用いられる。ここで用いら
れる周期律表IIa族元素粉末としては、Be、S r
、Mg、Ba、Raの各元素の炭酸塩粉末、酸化物粉末
、塩化物粉末、硫化物粉末、フッ化物粉末などの化合物
粉末あるいは合金粉末などである。また、周期律表11
1a族元素粉末としては、Sc、Y 、La、Ce、P
r、Nd、Pm。
In addition, as a material containing elements constituting the oxide superconductor, a mixed powder consisting of a powder containing an element of group Ua of the periodic table, a powder containing an element of group Ia of the periodic table, and a copper oxide powder, or a mixed powder of this kind may be used. A calcined powder or a mixed powder of the above-mentioned mixed powder and calcined powder is used. The periodic table IIa group element powder used here includes Be, S r
, Mg, Ba, and Ra, compound powders such as carbonate powders, oxide powders, chloride powders, sulfide powders, and fluoride powders, and alloy powders. Also, periodic table 11
Group 1a element powders include Sc, Y, La, Ce, and P.
r, Nd, Pm.

Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Y
b、Luの各元素の酸化物粉末、炭酸塩粉末、塩化物粉
末、硫化物粉末、フッ化物粉末などの化合物粉末あるい
は合金粉末などが用いられる。更に、酸化銅粉末として
は、CuO,CuzO,CutO*、Cu*Osなどが
用いられる。
Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Y
Compound powders or alloy powders such as oxide powders, carbonate powders, chloride powders, sulfide powders, and fluoride powders of the elements B and Lu are used. Further, as the copper oxide powder, CuO, CuzO, CutO*, Cu*Os, etc. are used.

ところで前記混合粉末を調整するには、通常、前述の粉
末法が用いられるが、この方法に限定されるものではな
く、各元素をシュウ酸塩として共沈させ、その沈澱物を
乾燥させて粉末状の混合粉末として得る共沈法を適用さ
せることも自由である。また、前記必要な元素のアルコ
キシド化合物、オキシケトン化合物、シクロペンタジェ
ニル化合物などを所定の比率で混合して混合液とし、こ
の混合液に水を加えて加水分解などしてゾル状にすると
ともに、このゾル状の物質を加熱してゲル化し、このゲ
ルを更に加熱して固相とした上で粉砕 □して混合粉末
を得るゾルゲル法を適用しても良い。
By the way, to prepare the mixed powder, the powder method described above is usually used, but the method is not limited to this method. Each element is coprecipitated as an oxalate, and the precipitate is dried to form a powder. It is also free to apply a coprecipitation method to obtain a mixed powder. In addition, an alkoxide compound, an oxyketone compound, a cyclopentagenyl compound, etc. of the necessary elements are mixed in a predetermined ratio to form a mixed solution, and water is added to this mixed solution to hydrolyze it to form a sol, A sol-gel method may be applied in which this sol-like substance is heated to form a gel, and the gel is further heated to form a solid phase, which is then pulverized to obtain a mixed powder.

次に前述のように調整された粉末1を第1図に示す金属
製の管体2に充填して複合体3を作成する。前記管体2
は、CuSAg5Alあるいはこれらの合金、またはス
テンレスなどの金属材料から形成されている。なお、管
体2の構成材料は塑性加工可能なものであれば金属材料
に限らない。
Next, the powder 1 prepared as described above is filled into a metal tube 2 shown in FIG. 1 to prepare a composite 3. Said tube body 2
is made of CuSAg5Al, an alloy thereof, or a metal material such as stainless steel. Note that the constituent material of the tubular body 2 is not limited to a metal material as long as it can be plastically worked.

次に第1図に示すロータリースウェージング装置Aによ
って前記複合体3に縮径加工を施す。このロータリース
ウェージング装置Aは、図示路の駆動装置によって移動
自在に設けられた複数のダイス6を備えてなるものであ
る。これらダイス6は、棒状の複合体3をその長さ方向
に移動させる際の移動空間の周囲に、この移動空間を囲
むように設けられたもので、前記移動空間と直角な方向
(第1図に示す矢印a方向)に移動自在に、かつ、移動
空間の周回り(第1図に示す矢印す方向)に回転自在に
保持されている。また、各ダイス6の内面には、前記複
合体3を縮径加工するためのテーパ而6aが形成されて
いて、各ダイス6のテーパ而6aで囲む間隙が先窄まり
状となるようになっている。
Next, the composite body 3 is subjected to a diameter reduction process using a rotary swaging device A shown in FIG. This rotary swaging device A includes a plurality of dies 6 that are movably provided by a drive device along the path shown in the figure. These dice 6 are provided around a movement space when the rod-shaped composite body 3 is moved in its length direction, so as to surround this movement space, and are arranged in a direction perpendicular to the movement space (see Fig. 1). It is held movably in the direction of the arrow a shown in FIG. 1) and rotatably around the movement space (in the direction of the arrow shown in FIG. 1). Further, a taper 6a for reducing the diameter of the composite body 3 is formed on the inner surface of each die 6, so that the gap surrounded by the taper 6a of each die 6 becomes tapered. ing.

前記複合体3を縮径するには、前記ロータリースウエー
ジング装置Aを作動させるとともに、第1図に示すよう
に複合体3の一端をダイス6・・・の間の間隙に押し込
む。ここで前記ダイス6・・・は第1図の上下方向に所
定間隔往復移動しつつ回転しているために、複合体3は
一端側から順次鍛造しつつ縮径されて第1図の2点鎖線
に示す線径まで縮径され、複合体I3が得られる。この
縮径加工においては、回転しつつ往復連動する複数のダ
イス6によって複合体13を鍛造しつつ縮径するために
、縮径加工中の複合体3に断線を起こすことなく大きな
加工率で縮径加工することができる。
To reduce the diameter of the composite body 3, the rotary swaging device A is operated and one end of the composite body 3 is pushed into the gap between the dies 6, as shown in FIG. Here, since the dies 6 are rotating while reciprocating at a predetermined interval in the vertical direction of FIG. 1, the composite body 3 is sequentially forged from one end and is reduced in diameter to two points in FIG. 1. The wire diameter is reduced to the wire diameter shown by the chain line to obtain composite I3. In this diameter reduction process, in order to reduce the diameter while forging the composite body 13 using a plurality of dies 6 that rotate and reciprocate, the composite body 13 is reduced in diameter at a high processing rate without causing wire breakage in the composite body 3 during the diameter reduction process. Diameter processing is possible.

第1図に示す縮径加工が終了し、これによって作成され
た複合体13の線径が未だ所望の線径に達していない場
合には、複合体I3を先ロータリースウェージング装置
Aに設けられたダイス6よりも更に小さい成形空隙を有
するダイスを備えたロータリースウエージング装置を用
いて縮径加工を行って所望の線径の複合体とする。
When the diameter reduction process shown in FIG. 1 is completed and the wire diameter of the composite 13 thus created has not yet reached the desired wire diameter, the composite I3 is placed in the rotary swaging device A. A diameter reduction process is performed using a rotary swaging device equipped with a die having a molding gap smaller than that of the die 6, to obtain a composite having a desired wire diameter.

前記のように、1回あるいは2回以上の縮径加工を行っ
て複合体を所望の線径まで縮径したならば、縮径後の複
合体に以下に説明する処理を施して超電導線を製造する
As mentioned above, once the diameter of the composite is reduced to the desired wire diameter by performing diameter reduction processing one or more times, the composite after diameter reduction is subjected to the treatment described below to form a superconducting wire. Manufacture.

即ち、前記複合体から外側の金属シースとなっている管
体部分を除去し、これにより粉末成形体部分を露出させ
る。ここでの金属シースの除去には、例えば酸あるいは
アルカリの水溶液などの処理液中に複合体を浸漬させ、
金属シースのみを上記処理液中に溶解させる化学的な方
法などが用いられる。この方法には、金属シースに銅、
銀あるいはこれらの合金を用いた場合、処理液として希
硝酸などが用いられ、金属シースにアルミニウムを用い
た場合、処理液として苛性ソーダなどが用いられ、金属
シースにステンレスを用いた場合、処理液として王水な
どが用いられるが、シース材料と処理液との組み合わせ
はこれらに限定されるものではない。そして、このよう
な除去操作の後には、速やかに成形体の表面に水洗処理
あるいは中和処理を行なって処理液の成形体などへの影
響を排除することが望ましい。なお、上記金属シースの
除去には、他に切削加工を用いる方法も考えられるが、
この切削加工を用いると、成形体が細径の場合、除去操
作時に折れ曲がってしまうなどの不都合が生じることが
あり、好ましくない。このような理由から、本実施例で
は、成形体に上記の不都合が生じにくい上記の化学的な
方法を採用した。
That is, the tube portion serving as the outer metal sheath is removed from the composite, thereby exposing the powder compact portion. To remove the metal sheath, for example, the composite is immersed in a treatment solution such as an acid or alkali aqueous solution.
A chemical method or the like is used in which only the metal sheath is dissolved in the processing liquid. This method includes copper in a metal sheath,
When silver or alloys of these are used, dilute nitric acid is used as the treatment liquid, when aluminum is used for the metal sheath, caustic soda is used as the treatment liquid, and when stainless steel is used for the metal sheath, the treatment liquid is Although aqua regia or the like is used, the combination of the sheath material and the treatment liquid is not limited to these. After such a removal operation, it is desirable to immediately wash or neutralize the surface of the molded article to eliminate the influence of the treatment liquid on the molded article. Note that cutting may be another method for removing the metal sheath, but
When this cutting process is used, if the molded body has a small diameter, it may cause problems such as bending during the removal operation, which is not preferable. For this reason, in this example, the above-mentioned chemical method, which is less likely to cause the above-mentioned disadvantages in the molded article, was adopted.

次いで、このようにして露出仕しめられた成形体に対し
て熱処理を施す。この熱処理は好ましくは酸化雰囲気中
で800〜1100℃に1〜100時間程度加熱した後
に徐冷することによって行う。この熱処理により、上記
成形体中の各構成元素どうしが互いに十分に固相反応を
起こすとともに、成形体の表面が露出せしめられている
ことから、成形体の表面全体からその内部に酸素元素が
効率よく拡散される。したがって、上記成形体には、そ
の全線に亙って均一な超電導特性を示すA−B −Cu
−0系の酸化物超電導体が生成され、これにより良好な
超電導特性を示す酸化物系超電導線が得られる。
Next, the thus exposed molded body is subjected to heat treatment. This heat treatment is preferably carried out by heating to 800 to 1100° C. for about 1 to 100 hours in an oxidizing atmosphere and then slowly cooling. Through this heat treatment, the constituent elements in the molded body undergo a sufficient solid phase reaction with each other, and since the surface of the molded body is exposed, oxygen elements are efficiently transferred from the entire surface of the molded body to the inside. Well spread. Therefore, the above-mentioned molded body has A-B-Cu which exhibits uniform superconducting properties over its entire line.
A -0-based oxide superconductor is produced, and thereby an oxide-based superconducting wire exhibiting good superconducting properties is obtained.

そして、このような酸化物系超電導線には必要に応じて
コーティング処理を施して、保護コート層を形成するこ
とができる。この保護コート層の形成材料としては、例
えば錫、鉛等の低融点金属、あるいは半田等の合金など
が好適に用いられろ。
Then, such an oxide-based superconducting wire can be coated as necessary to form a protective coat layer. As the material for forming this protective coat layer, for example, low melting point metals such as tin and lead, alloys such as solder, etc. may be suitably used.

そして、この保護コート層の形成方法としては、例えば
電気メツキ、溶融メツキ、半田メツキなどの方法が好適
に用いられる。また、他の方法として、上記低融点金属
の粉末あるいは上記合金粉末を酸化物系超電導線の表面
に所定の厚さで付着させたのち上記粉末を焼結させる方
法も用いることができる。このようにして保護コート層
を形成すれば、酸化物系超電導線の良好な超電導特性を
長期間に亙って安定化させることが可能となる。
As a method for forming this protective coat layer, methods such as electroplating, melt plating, and solder plating are suitably used. Alternatively, a method may be used in which the powder of the low melting point metal or the alloy powder is applied to the surface of the oxide superconducting wire to a predetermined thickness and then the powder is sintered. By forming the protective coat layer in this manner, it becomes possible to stabilize the good superconducting properties of the oxide-based superconducting wire over a long period of time.

ところで前記の如く製造された超電導線にあっては、内
部の粉末成形体がロータリースウェーンング装置によっ
て少なくと61回の鍛造をしつつ縮径されたものであり
、十分に圧密されて粉末成形体が成形されているために
、熱処理により各元素が固相反応する際に元素の拡散が
円滑になされる。このため生成された超電導体は気孔率
が低く、機械強度も高いものが得られる。このため前記
超電導線は超電導マグネット用の巻線とした場合でもク
ラックを生じることなく巻回することができる。
By the way, in the superconducting wire manufactured as described above, the internal powder compact is reduced in diameter by forging at least 61 times using a rotary swaging device, and is sufficiently compacted and powder compacted. Since the body is shaped, the elements can be diffused smoothly when they undergo a solid phase reaction through heat treatment. Therefore, the produced superconductor has low porosity and high mechanical strength. Therefore, the superconducting wire can be wound without cracking even when used as a winding wire for a superconducting magnet.

「実施例」 Y、03粉末とBaCO3粉末とCuO粉末を Y;B
a:Cu= I :2 :3となるように混合して混合
粉末を得るとともに、この混合粉末を大気雰囲気中、7
00℃で24時間加熱する仮焼処理を行った。
"Example" Y, 03 powder, BaCO3 powder and CuO powder Y;B
A:Cu=I:2:3 was obtained by mixing to obtain a mixed powder, and this mixed powder was heated in the air for 70 minutes.
Calcination treatment was performed by heating at 00°C for 24 hours.

次に、この仮焼粉末を外径10mm、内径7mmの銀製
の管体に充填して複合体を得た。次に第1図に示すダイ
スと同等の構成のダイスを備えたロータリースウエージ
ング装置を用い、前記複合体を直径1.4mmまで冷間
で鍛造しつつ段階的に縮径加工した。なお、複合体を段
階的に縮径するには、ダイス間の空隙が異なるダイスを
複数用意し、■パスの断面減少率を約20%に設定し、
複数回鍛造操作を行って縮径するものとし、加工速度は
1m/分とした。
Next, this calcined powder was filled into a silver tube having an outer diameter of 10 mm and an inner diameter of 7 mm to obtain a composite. Next, using a rotary swaging device equipped with a die having the same configuration as the die shown in FIG. 1, the composite was cold forged to a diameter of 1.4 mm and reduced in diameter in stages. In addition, in order to reduce the diameter of the composite in stages, prepare multiple dies with different gaps between the dies, and set the cross-sectional reduction rate of the pass to approximately 20%.
The forging operation was performed multiple times to reduce the diameter, and the processing speed was 1 m/min.

以上の加工においては最終線径まで断線などのトラブル
を生じることなく加工することができた萌述のように製
造された線材においては、粉末の圧密度がダイスを用い
た線引加工により縮径された線材に比較して向上してい
た。
In the above-mentioned processing, it was possible to process the wire up to the final wire diameter without any problems such as wire breakage.In wire rods manufactured by Moeji, the compaction of the powder was reduced by the wire drawing process using dies. This was an improvement compared to the wire rod.

次いで、この線材を硝酸中に含浸させて銀製のソースを
溶解除去して芯線を露出させた。
Next, this wire was immersed in nitric acid to dissolve and remove the silver source, exposing the core wire.

次に、この芯線に対して酸素雰囲気中で850〜950
°C1:24時間加熱し、コノ後、−100℃/時間で
室温まで徐冷する熱処理を行なって、芯線の全線に亙っ
て酸化物系超電導体を生成さ什、超電導芯線を得た。次
いで、この超電導芯線の表面に半田メツキして厚さ1m
Mの保護コート層を形成して酸化物系超電導線を製造し
た。
Next, this core wire is heated to 850 to 950 in an oxygen atmosphere.
C1: Heated for 24 hours, and then subjected to a heat treatment of slow cooling to room temperature at -100° C./hour to generate an oxide superconductor over the entire core wire, thereby obtaining a superconducting core wire. Next, the surface of this superconducting core wire is soldered to a thickness of 1 m.
An oxide-based superconducting wire was manufactured by forming a protective coat layer of M.

前記のように製造された超電導線は、 臨界温度      91に 臨界電流密度  約10000  A/am’(77K
において) を示した。
The superconducting wire manufactured as described above has a critical temperature of 91 and a critical current density of about 10,000 A/am' (77K
) was shown.

また、この超電導線を巻胴に巻回してみたところ、クラ
ックを生じることなく巻回することができ、機械強度も
十分高いことが明らかとなった。
Furthermore, when this superconducting wire was wound around a winding drum, it was found that the wire could be wound without cracking, and that its mechanical strength was sufficiently high.

以上のことから本発明を実施して製造された超電導線は
機械強度が高く超電導特性も優れていることが明らかと
なった。
From the above, it has become clear that the superconducting wire manufactured by implementing the present invention has high mechanical strength and excellent superconducting properties.

「発明の効果」 以上説明したように本発明は、金属管に酸化物超電導体
とその前駆体の内、少なくとも一方を充填した複合体を
ダイスによって鍛造しつつ縮径するために、ダイス孔を
有するダイスを用いた引抜加工による場合よりも高い割
合で粉末を圧密することができる。従って熱処理を施し
て超電導体を生成させた場合に粉末成形体内部で元素拡
散が容易になされるために、機械強度と超電導特性の優
れた超電導線を製造できる効果がある。また、本発明の
方法により製造された超電導線は超電導マグネット用の
巻線にするために巻胴に巻回した場合、クラックを生じ
ることなく巻回することができる。
"Effects of the Invention" As explained above, the present invention provides a die hole for reducing the diameter of a metal tube filled with at least one of an oxide superconductor and its precursor while forging it with a die. It is possible to compact the powder to a higher degree than by drawing with a die having the following properties. Therefore, when a superconductor is produced by heat treatment, elements are easily diffused inside the powder compact, which has the effect of producing a superconducting wire with excellent mechanical strength and superconducting properties. Further, when the superconducting wire manufactured by the method of the present invention is wound around a winding drum to be used as a winding wire for a superconducting magnet, it can be wound without causing any cracks.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を説明するためのもので、縮
径加工を説明するための断面図である。 1・・・粉末、2・・・管体(金属管)、3・・・複合
体、6・・・ダイス、A・・・ロータリースウェージン
グ 。 装置。
FIG. 1 is a cross-sectional view for explaining an embodiment of the present invention, and for explaining diameter reduction processing. 1...Powder, 2...Tube (metal tube), 3...Composite, 6...Dice, A...Rotary swaging. Device.

Claims (1)

【特許請求の範囲】[Claims] 酸化物系超電導体からなる超電導導体を具備してなる酸
化物系超電導線の製造方法であって、酸化物超電導体と
酸化物超電導体の前駆体の内、少なくとも一方を金属シ
ース内に充填して複合体を形成し、次いでこの複合体を
その長さ方向に移動させつつ縮径するに際し、複合体の
移動空間の周囲に、移動空間を囲んで設けられて複合体
の移動空間に交差する方向に移動自在に設けられた複数
のダイスにより複合体を外周面側から押圧して複合体を
鍛造しつつ縮径するとともに、縮径加工後に熱処理を行
うことを特徴とする酸化物系超電導線の製造方法。
A method for producing an oxide superconducting wire comprising a superconducting conductor made of an oxide superconductor, the method comprising filling a metal sheath with at least one of the oxide superconductor and a precursor of the oxide superconductor. to form a composite body, and then when this composite body is moved in its length direction and reduced in diameter, a spacer is provided around the movement space of the complex body and intersects with the movement space of the complex body. An oxide-based superconducting wire characterized in that the diameter of the composite is reduced while being forged by pressing the composite from the outer peripheral surface side using a plurality of dies provided movably in the direction, and the wire is heat treated after the diameter reduction process. manufacturing method.
JP62249526A 1987-10-02 1987-10-02 Manufacture of oxide type superconductive wire Pending JPH0193010A (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP62249526A JPH0193010A (en) 1987-10-02 1987-10-02 Manufacture of oxide type superconductive wire
DE3880947T DE3880947T3 (en) 1987-10-02 1988-10-03 Process for the preparation of an oxide superconductor without sheathing and an oxide superconductor produced by this process.
CN88107874A CN1035220C (en) 1987-10-02 1988-10-03 Method of producing a superconductive oxide conductor and a superconductive oxide conductor produced by the method
EP88309193A EP0310453B2 (en) 1987-10-02 1988-10-03 Method of producing an oxide superconductor without a sheath and an oxide superconductor produced by the method
CA000579101A CA1313031C (en) 1987-10-02 1988-10-03 Method of producing a superconductive oxide conductor and an oxide superconductor produced by the method
US07/251,847 US5045527A (en) 1987-10-02 1988-10-03 Method of producing a superconductive oxide conductor
DE88309195T DE3882871T2 (en) 1987-10-02 1988-10-03 A method for producing an oxide superconducting conductor and an oxide superconducting conductor produced by this method.
CA000579107A CA1313032C (en) 1987-10-02 1988-10-03 Method of producing an oxide superconductor without sheath and an oxide superconductor produced by the method
EP88309195A EP0311337B1 (en) 1987-10-02 1988-10-03 Method of producing a superconductive oxide conductor and a superconductive oxide conductor produced by the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62249526A JPH0193010A (en) 1987-10-02 1987-10-02 Manufacture of oxide type superconductive wire

Publications (1)

Publication Number Publication Date
JPH0193010A true JPH0193010A (en) 1989-04-12

Family

ID=17194294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62249526A Pending JPH0193010A (en) 1987-10-02 1987-10-02 Manufacture of oxide type superconductive wire

Country Status (1)

Country Link
JP (1) JPH0193010A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7216064B1 (en) 1993-09-21 2007-05-08 Intel Corporation Method and apparatus for programmable thermal sensor for an integrated circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7216064B1 (en) 1993-09-21 2007-05-08 Intel Corporation Method and apparatus for programmable thermal sensor for an integrated circuit

Similar Documents

Publication Publication Date Title
JPH0193010A (en) Manufacture of oxide type superconductive wire
JP2612009B2 (en) Method for producing oxide-based superconducting wire
JPH0193009A (en) Manufacture of oxide type superconductive wire
JP2642644B2 (en) Method for producing oxide-based superconducting wire
JPH01183012A (en) Manufacture of oxide superconductive wire
JPH01122519A (en) Manufacture of oxide superconducting wire
JPH01115858A (en) Oxide superconductor and its production
JPH01105414A (en) Manufacture of oxide superconducting wire
JPH01122520A (en) Manufacture of oxide superconducting wire
JPH01115012A (en) Manufacture of oxide superconducting wire
JPH01175126A (en) Manufacture of multi-core oxide superconducting wire
JPH01151108A (en) Manufacture of oxide system superconductive wire
JPH01151109A (en) Manufacture of oxide system superconductive wire
JPH01134822A (en) Manufacture of oxide superconductive wire
JPH01151107A (en) Manufacture of oxide system superconductive wire
JP2595309B2 (en) Manufacturing method of oxide superconducting wire
JPH01194212A (en) Manufacture of oxide superconductive wire
JP2549706B2 (en) Method for producing T1-based oxide superconducting wire
JPH01175125A (en) Manufacture of multi-core oxide superconducting wire
JP2583575B2 (en) Manufacturing method of oxide superconducting wire
JPH01122402A (en) Manufacture of oxide superconductive bulk material
JPH01110710A (en) Manufacture of oxide superconducting coil
JPH01227311A (en) Manufacture of oxide superconductor wire
JPH01246719A (en) Manufacture of oxide superconductor
JPH01175124A (en) Manufacture of oxide superconducting wire