JPH01122519A - Manufacture of oxide superconducting wire - Google Patents

Manufacture of oxide superconducting wire

Info

Publication number
JPH01122519A
JPH01122519A JP62280451A JP28045187A JPH01122519A JP H01122519 A JPH01122519 A JP H01122519A JP 62280451 A JP62280451 A JP 62280451A JP 28045187 A JP28045187 A JP 28045187A JP H01122519 A JPH01122519 A JP H01122519A
Authority
JP
Japan
Prior art keywords
wire
powder
oxide
density
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62280451A
Other languages
Japanese (ja)
Inventor
Yoshimitsu Ikeno
池野 義光
Tsukasa Kono
河野 宰
Nobuyuki Sadakata
伸行 定方
Masaru Sugimoto
優 杉本
Mikio Nakagawa
中川 三紀夫
Shinya Aoki
青木 伸哉
Toshio Usui
俊雄 臼井
Kenji Goto
謙次 後藤
Atsushi Kume
篤 久米
Taichi Yamaguchi
太一 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP62280451A priority Critical patent/JPH01122519A/en
Priority to CA000579101A priority patent/CA1313031C/en
Priority to DE3880947T priority patent/DE3880947T3/en
Priority to DE19883882871 priority patent/DE3882871T2/en
Priority to EP88309195A priority patent/EP0311337B1/en
Priority to CN88107874A priority patent/CN1035220C/en
Priority to US07/251,847 priority patent/US5045527A/en
Priority to CA000579107A priority patent/CA1313032C/en
Priority to EP88309193A priority patent/EP0310453B2/en
Publication of JPH01122519A publication Critical patent/JPH01122519A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To obtain an oxide superconducting wire by applying the shrink processing with the face reducing factor of specific % in one time to a composite body formed with the oxide superconducting powder and the precursor powder of the oxide superconductor to form a wire and setting the compression density of the core in the wire to the preset ratio of the theoretical density. CONSTITUTION:The compressed powder molding processing is applied to a material containing at least one of the oxide superconductor powder and the precursor powder of the oxide superconductor to form a compressed powder molding, then this molding is inserted into a metal sheath 2 to form a composite body 3. The manufacturing processing with the face reducing factor of 10-40% in one time is performed at least once with a rotary swaging device A, thus the compressed powder molding in the composite body 3 is thoroughly compressed, and a wire 13 having a core with the compression density of 75% or above against the theoretical density is obtained. After the metal sheath is removed, the wire 13 is heat-treated, thus the diffusion of elements in the core is smoothly performed at the time of the solid phase reaction of the elements, and an oxide superconducting wire with low porosity, high mechanical strength such as bending strength, and the uniform and good superconductivity in the longitudinal direction can be manufactured.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、例えば超電導マグネットコイルや電力輸送用
等に使用可能な酸化物系超電導線の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a method for manufacturing an oxide-based superconducting wire that can be used, for example, for superconducting magnet coils, power transportation, and the like.

「従来の技術」 最近に至り、常電導状態から超電導状態へ遷移する臨界
温度(T c)が液体窒素温度以上の値を示す酸化物系
の超電導材料が種々発見されている。
"Prior Art" Recently, various oxide-based superconducting materials have been discovered whose critical temperature (T c ) for transitioning from a normal conducting state to a superconducting state is higher than the temperature of liquid nitrogen.

この種の酸化物超電導材料には、例えば一般式A−B 
−Cu−0(ただし、AはLa、Ce、Yb、Sc、E
r等の周期律表ITa族元素の1種以上を示し、BはB
a。
This type of oxide superconducting material has, for example, the general formula A-B
-Cu-0 (A is La, Ce, Yb, Sc, E
represents one or more elements of the ITa group of the periodic table such as r, B is B
a.

Sr等の周期律表Ha族元素の1挿具」二を示す)で示
されるものがある。そして、この種の酸化物超電導体を
製造するには、前記111a族元素を含む粉末とIla
族元素を含む粉末と酸化銅粉末を混合して混合粉末を調
製し、この混合粉末を所定の形状に成形した後に、得ら
れた成形体に熱処理を施し、各元素を固相反応させて超
電導物質を生成させることにより製造するようにしてい
る。
There are some elements of the Ha group of the periodic table, such as Sr, which are shown in the numerals 1 and 2). In order to manufacture this type of oxide superconductor, powder containing the 111a group element and Ila
A mixed powder is prepared by mixing a powder containing group elements and a copper oxide powder, and after molding this mixed powder into a predetermined shape, the resulting molded body is heat-treated to cause a solid phase reaction between each element to create superconductivity. It is manufactured by producing substances.

また、前記Δ−B−Cu−0系の超電導体を具備する超
電導線を製造する方法として従来、前記混合粉末を金属
管に充填するか、あるいは混合粉末に熱処理を施して得
た超電導粉末を金属管に充填し、充填後にダイス孔を有
するダイスなどを用いて金属管を引抜加工して所望の直
径の線材を得、この線材に熱処理を施して内部の圧粉成
形体の元素を固相反応させ、金属管の内部に超電導物質
を生成させることにより超電導線を得る方法が知られて
いる。
In addition, conventional methods for producing a superconducting wire comprising the Δ-B-Cu-0 system superconductor include filling a metal tube with the mixed powder, or using superconducting powder obtained by heat-treating the mixed powder. The metal tube is filled, and after filling, the metal tube is drawn using a die with a die hole to obtain a wire rod of the desired diameter, and this wire rod is heat-treated to remove the elements of the compacted powder inside into a solid phase. A method of obtaining a superconducting wire by causing a reaction to produce a superconducting substance inside a metal tube is known.

「発明が解決、しようとする問題点」 前記従来方法においては、ダイス孔を有するダイスを用
いた引抜加工によって金属管を縮径して混合粉末を圧粉
する関係から、引抜加工時に断線しない程度に加工する
必要があって、加工率に限界を生じるために、粉末の圧
密度を十分に高めることができない問題がある。ちなみ
に、本発明者らが前記従来方法を用いて引抜加工後にお
(:lろ粉末の圧密度を測定した結果、その圧密度は理
論密度(気孔率が0%の状態)の70〜75%程度であ
った。従って、圧密度が十分ではない圧粉成形体に熱処
理を施して焼結することになるために、得られた超電導
線にあっては、各元素の固相反応か十分にはなされてい
ない傾向があり、優れた超電導特性が得られない問題が
ある。また、前述のように圧密度が十分ではない圧粉成
形体を焼結して超電導線を製造した場合、超電導体内部
の気孔率が比較的大きいために、臨界電流もそれほど大
きくならず、超電導線の曲げ強度が不足するなど強度面
での不満が大きい問題もある。このため、超電導マグネ
ットの巻線用などとして超電導線を巻胴に巻回しようと
する場合に、超電導体にクラ・ツクが入り易いおそれが
あり、超電導特性が著しく低下するおそれがある。
"Problems to be Solved by the Invention" In the conventional method, since the metal tube is reduced in diameter and the mixed powder is compacted by drawing using a die having a die hole, it is necessary to reduce the diameter of the metal tube to the extent that the wire does not break during the drawing process. There is a problem in that it is not possible to sufficiently increase the compaction density of the powder because it is necessary to process the powder into powders, which limits the processing rate. By the way, as a result of the present inventors measuring the compaction density of the O(:l filtered powder) after drawing using the conventional method, the compaction density was 70 to 75% of the theoretical density (state of 0% porosity). Therefore, since the powder compact, which is not sufficiently consolidated, is heat-treated and sintered, the obtained superconducting wire has a sufficient degree of solid-phase reaction of each element. There is a problem that excellent superconducting properties cannot be obtained because there is a tendency for the superconducting wire to be Because the internal porosity is relatively large, the critical current is not very large, and there are problems in terms of strength, such as insufficient bending strength of the superconducting wire.For this reason, it is used for winding wires of superconducting magnets, etc. When winding a superconducting wire around a winding drum, cracks may easily occur in the superconductor, and the superconducting properties may deteriorate significantly.

本発明は前記問題に鑑みてなされたもので、圧粉成形体
の圧密度を十分に高くすることができ、優れた超電導特
性を発揮するとともに、機械強度も高い酸化物系超電導
線の製造技術を提供することを目的とする。
The present invention was made in view of the above-mentioned problems, and is a manufacturing technology for an oxide-based superconducting wire that can sufficiently increase the compaction density of a powder compact, exhibit excellent superconducting properties, and have high mechanical strength. The purpose is to provide

「問題点を解決するための手段」 本発明では、酸化物超電導体粉末と酸化物系電導線末の
前駆体粉末のうち少なくとも一方を含む出発物に圧粉成
形処理を施して圧粉成形体とし、次いで該圧粉成形体を
金属シース内に充填して複合体を形成し、次いで該複合
体に対し、1回の減面率が10〜40%である縮径加工
を1回以上施して該複合体を線材とするとともに該線材
内の芯線の圧密度を理論密度の75%以上としたうえで
、熱処理することをその解決手段とした。
"Means for Solving the Problems" In the present invention, a powder compact is obtained by subjecting a starting material containing at least one of an oxide superconductor powder and a precursor powder of an oxide-based conductive wire powder to a powder compacting treatment. Then, the compacted compact is filled into a metal sheath to form a composite, and then the composite is subjected to diameter reduction processing with an area reduction rate of 10 to 40% at least once. The solution was to make the composite into a wire, increase the compaction density of the core wire within the wire to 75% or more of the theoretical density, and then heat treat it.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明では、まず出発物を調製する。この出発物として
は、酸化物超電導体粉末あるいは酸化物超電導体の前駆
体粉末が用いられる。
In the present invention, starting materials are first prepared. As this starting material, oxide superconductor powder or oxide superconductor precursor powder is used.

」二記の酸化物超電導体粉末としては、A −B −C
−り系(ただしAは、Y、Sc、La、Ce、Pr、N
d、Pm。
The oxide superconductor powders listed in ``2'' are A-B-C.
-ri system (A is Y, Sc, La, Ce, Pr, N
d, Pm.

Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Y
b、Luなどの周期律表■a族元素のうち1種あるいは
2種以」−を示し、BはS r、Ba、Ca、Be、M
g、Raなどの周期律表IIa族元素のうち1種あるい
は2種以」−を示し、CはCu、Ag、Auの周期律表
Ib族元素とNbのうちCuあるいはCuを含む2種以
上を示し、Dは0.S、Se、Te、Poなどの周期律
表vrb族元素およびF、CI、Br等の周期律表■b
族元索のうちOあるいはOを含む2種以」二を示す)の
酸化物超電導体の粉末が用いられる。
Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Y
B represents one or more of the group A elements of the periodic table such as Lu, B represents S r, Ba, Ca, Be, M
C represents one or more elements of group IIa of the periodic table such as g, Ra, etc., and C represents elements of group Ib of the periodic table such as Cu, Ag, and Au and two or more of Nb including Cu or , and D is 0. Periodic table elements such as S, Se, Te, Po, etc. and periodic table elements such as F, CI, Br ■b
Powder of an oxide superconductor of O or two or more types containing O among the family members is used.

また、酸化物超電導体の前駆体粉末としては、酸化物超
電導体を構成する元素を含む材料混合粉末あるいはこの
材料混合粉末と」1記酸化物超電導体粉末との混合粉末
が用いられる。上記の材料混合粉末には、周期律表Tl
a族元素を含む粉末と周期律表ll1a族元素を含む粉
末と酸化銅粉末等からなる混合粉末あるいはこの混合粉
末を仮焼した粉末、またはこの仮焼粉末と上記混合粉末
とからなる混合粉末などが用いられる。そして、ここで
用いられる周期律表Ha族元素粉末としては、Be。
Further, as the precursor powder of the oxide superconductor, a mixed powder of a material containing elements constituting the oxide superconductor or a mixed powder of this mixed powder and the oxide superconductor powder described in 1. is used. The above material mixed powder has Tl of the periodic table.
A mixed powder consisting of a powder containing a group A element, a powder containing a group 11a element of the periodic table, copper oxide powder, etc., a powder obtained by calcining this mixed powder, or a mixed powder consisting of this calcined powder and the above mixed powder, etc. is used. The Ha group element powder of the periodic table used here is Be.

Sr、Mg、B6.Raの各元素の炭酸塩粉末、酸化物
粉末、塩化物粉末、硫化物粉末、フ・ソ化物粉末等の化
合物粉末あるいは合金粉末などである。また、周期律表
InaHa族元素粉末ては、Sc、Y 、La、Ce。
Sr, Mg, B6. These include compound powders or alloy powders such as carbonate powders, oxide powders, chloride powders, sulfide powders, and fluoride powders of each element of Ra. Further, powders of elements of the InaHa group of the periodic table include Sc, Y, La, and Ce.

P r、Nd、Pm、Sm、Eu、Gd、Tb、Dy、
T−To、Er、Tm。
P r, Nd, Pm, Sm, Eu, Gd, Tb, Dy,
T-To, Er, Tm.

Yb、Luの各元素の酸化物粉末、炭酸塩粉末、塩化物
粉末、硫化物粉末、フッ化物粉末等の化合物粉末あるい
は合金粉末などが用いられる。さらに、酸化銅粉末には
、CuO,Cu、09Cu302.Cu40aなどが用
いられる。
Compound powders or alloy powders such as oxide powders, carbonate powders, chloride powders, sulfide powders, and fluoride powders of the elements Yb and Lu are used. Furthermore, copper oxide powder includes CuO, Cu, 09Cu302. Cu40a or the like is used.

ところで、本発明で用いられる種々の混合粉末を調製す
るには、いずれも通常、粉末法が用いられるが、この方
法に限定されるものではなく、各構成元素をンユウ酸塩
として共沈させ、その沈澱物を乾燥させて混合粉末とし
て得る共沈法を適用させることも自由である。また、前
記必要な元素のアルコキンド化合物、オキンケトン化合
物、シクロペンタジェニル化合物、アセチルアセトン化
合物などを所定の比率で混合して混合液とし、この混合
液に水を加えて加水分解などしてゾル状にするとともに
、このゾル状の物質を加熱してゲル化し、このゲルを更
に加熱して固相としたうえて粉砕して混合粉末を得るゾ
ルゲル法を適用してもよい。
Incidentally, in order to prepare the various mixed powders used in the present invention, a powder method is usually used, but the method is not limited to this method. It is also possible to apply a coprecipitation method in which the precipitate is dried to obtain a mixed powder. In addition, the necessary elements such as alcokind compounds, oxine ketone compounds, cyclopentadienyl compounds, acetylacetone compounds, etc. are mixed in a predetermined ratio to form a mixed solution, and water is added to this mixed solution to hydrolyze it to form a sol. At the same time, a sol-gel method may be applied in which this sol-like substance is heated to form a gel, and the gel is further heated to form a solid phase, which is then pulverized to obtain a mixed powder.

次に、このように調製された出発物に圧粉成形処理を施
して圧粉成形体を作製する。ここでの圧粉成形処理には
、例えば冷間静水圧プレス、熱間静水圧プレス(HIP
)などの方法が好適に用いられるが、これらの方法に限
定されることなく、上記出発物を所望の圧密度の圧粉成
形体に加圧成形できる方法であれば、いかなる方法も使
用可能である。例えば、上記出発物を充填した金属管に
、ダイスによる引抜加工、ロータリースウェージング加
工、圧延加工、押出しなどの加工方法を1種あるいは2
種以上組合わせて施して金属管を縮径し、」1記出発物
を所望の圧密度の圧粉成形体とする方法などを用いても
よい。そして、この上うな圧粉成形処理での成形圧力は
、出発物の種類、達成すべき圧粉成形体の圧密度などに
応じて決められ、通常1 、5〜10 ton/ C7
!’程度の範囲で定められる。
Next, the starting material thus prepared is subjected to a powder compacting treatment to produce a powder compact. The compacting process here includes, for example, cold isostatic pressing, hot isostatic pressing (HIP),
) are preferably used, but the method is not limited to these methods, and any method can be used as long as the above-mentioned starting material can be pressure-molded into a powder compact with a desired degree of compaction. be. For example, a metal tube filled with the above starting material is subjected to one or two processing methods such as drawing with a die, rotary swaging, rolling, and extrusion.
It is also possible to use a method such as applying a combination of two or more types to reduce the diameter of the metal tube and forming the starting material described in 1 above into a powder compact having a desired degree of compaction. Further, the compacting pressure in the powder compacting process is determined depending on the type of starting material, the compaction degree of the powder compact to be achieved, etc., and is usually 1.5 to 10 tons/C7.
! 'It is determined within a range of degrees.

なお、このような圧粉成形処理の前処理として、出発物
に対して仮焼処理、粉砕処理などからなる一連の処理を
1同辺」二繰り返し施すことができる。
In addition, as a pretreatment for such a powder compacting treatment, a series of treatments including calcination treatment, pulverization treatment, etc. can be repeatedly applied to the starting material twice on the same side.

ここで、上記の仮焼処理は、酸素ガスを含む雰囲気中で
、例えば500〜1000℃、1〜数十時間の条件で行
なわれるのが望ましい。この仮焼処理は、上記出発物中
に炭酸塩が含まれる場合に、後工程の熱処理で発生しか
つ超電導体の超電導特性を低下させる炭酸ガスを予め除
去しておく目的で行なわれる。また、粉砕処理は、粉砕
物の細粒化や粒径の均一化などを目的として行なイっれ
るが、圧粉成形処理で得られる圧粉成形体の圧密度を考
慮すれば、」1記粉砕処理で可能な限り粉砕物の粒径を
小さくしておくのが望ましい。
Here, the above-mentioned calcination treatment is desirably performed in an atmosphere containing oxygen gas at, for example, 500 to 1000° C. for 1 to several tens of hours. This calcination treatment is performed for the purpose of removing in advance carbon dioxide gas, which is generated in the heat treatment in the subsequent step and degrades the superconducting properties of the superconductor, when carbonate is contained in the starting material. In addition, the pulverization process is performed for the purpose of making the pulverized product finer and uniform in particle size, but considering the compaction density of the compacted product obtained by the compaction process, It is desirable to keep the particle size of the pulverized product as small as possible during the pulverization process.

さらに、圧粉成形処理後に、酸素雰囲気中で800〜1
100℃に1−100時間程度加熱した後に徐冷する熱
処理を行なってもよい。このような熱処理を行なえば、
処理後の圧粉成形体の焼結密度を向」ニさせることがで
きるとともに、圧粉成形体中の各構成元素どうしが互い
に十分に固相反応を起こし、これにより圧粉成形体に超
電導体を生成させることができる。
Furthermore, after powder compaction treatment, 800 to 1
A heat treatment may be performed in which the material is heated to 100° C. for about 1 to 100 hours and then slowly cooled. If such heat treatment is performed,
It is possible to improve the sintered density of the powder compact after treatment, and the constituent elements in the powder compact undergo a sufficient solid phase reaction with each other, thereby forming a superconductor in the powder compact. can be generated.

またさらに、前述の出発物に、上記仮焼処理、〜8− 粉砕処理、圧粉成形処理、熱処理からなる一連の処理を
1回以上繰り返し施してもよい。このような一連の処理
を行なうことにより、圧粉成形体中から例えば炭酸ガス
等の不純物を完全に除去でき、かつ圧粉成形体の焼結密
度を一層向上させることができるので、良好な超電導特
性を示す酸化物超電導体を効率よく生成させることがで
きる。
Furthermore, the above-mentioned starting material may be repeatedly subjected to a series of treatments consisting of the above-mentioned calcination treatment, pulverization treatment, compaction treatment, and heat treatment one or more times. By performing such a series of treatments, impurities such as carbon dioxide gas can be completely removed from the powder compact, and the sintered density of the compact can be further improved, resulting in good superconductivity. Oxide superconductors exhibiting these characteristics can be efficiently produced.

次に、第1図に示すように、前工程までに得られた例え
ば棒状の圧粉成形体1を金属製の管体2内に収容して複
合体3を作製する。ここで用いられる管体2には、Cu
、Ag、AIあるいはこれらの合金、またはステンレス
などの金属材料から形成されたものが用いられる。なお
、管体2の形成材料としては、塑性加工可能なものであ
れば金属材料に限らないが、熱処理時に圧粉成形体1か
ら酸素を奪わないような非酸化性の材料を選択する必要
がある。したがって、貴金属あるいは貴金属を含有する
合金などを用いることが好ましいが、管体2の内周面に
非酸化性の材料からなる被覆層を形成したものでも差し
支えない。また、管体2の内径寸法は圧粉成形体1の外
径寸法より若干大きい程度に設定され、両者の寸法公差
はより小さく、両者間に間隙が少ない方が好ましい。こ
れは、後工程の縮径加工の際に、圧粉成形体1と管体2
との間に大きな間隙が存在すると、成形圧力が圧粉成形
体1に伝わりに<<、十分に縮径できないという不都合
が生じ易いからである。
Next, as shown in FIG. 1, for example, the rod-shaped powder compact 1 obtained in the previous step is housed in a metal tube 2 to produce a composite 3. The tube body 2 used here includes Cu
, Ag, AI, an alloy thereof, or a metal material such as stainless steel. Note that the material for forming the tube body 2 is not limited to metal materials as long as they can be plastically worked, but it is necessary to select a non-oxidizing material that does not take away oxygen from the compacted compact 1 during heat treatment. be. Therefore, it is preferable to use a noble metal or an alloy containing a noble metal, but a coating layer made of a non-oxidizing material may be formed on the inner peripheral surface of the tube 2. Further, it is preferable that the inner diameter of the tubular body 2 is set to be slightly larger than the outer diameter of the powder compact 1, that the dimensional tolerance between the two is smaller, and that there is less gap between the two. This is because the powder compact 1 and the tube body 2 are
This is because if a large gap exists between the powder compact 1 and the powder compact 1, the compacting pressure is transmitted to the powder compact 1 and the compacted body 1 is likely to be inconvenient in that the diameter cannot be sufficiently reduced.

次に、この例では、第1図に示すようなロータリースウ
エージング装置Aにより前記複合体3に縮径加工を施す
。このロータリースウェーンング装置Aは、図示略の駆
動装置によって移動自在に設けられた複数のダイス6・
・を備えてなるものである。これらダイス6・・は、棒
状の複合体3をその長さ方向に移動させる際の移動空間
の周囲に、この移動空間を囲むように設けられたもので
、前記移動空間と直角な方向(第1図に示す矢印a方向
)に移動自在に、かつ移動空間の周回り(第1図に示す
矢印す方向)に回転自在に保持されている。
Next, in this example, the composite body 3 is subjected to a diameter reduction process using a rotary swaging device A as shown in FIG. This rotary swaging device A includes a plurality of dice 6, which are movably provided by a drive device (not shown).
・It is equipped with the following. These dice 6... are provided around a movement space when the rod-shaped composite body 3 is moved in its length direction, so as to surround this movement space, and are arranged in a direction perpendicular to the movement space (in the direction perpendicular to the movement space). It is held movably in the direction of arrow a shown in FIG. 1) and rotatably around the movement space (in the direction of arrow a shown in FIG. 1).

また、各ダイス6・・・の内面には、それぞれ前記複合
体3に縮径加工を施すためのテーパ面6aが形成されて
いて、各ダイス6・・のテーパ面6aで囲む間隙が先窄
まり状となるようになっている。
Further, a tapered surface 6a for performing diameter reduction processing on the composite body 3 is formed on the inner surface of each die 6, and the gap surrounded by the tapered surface 6a of each die 6 is tapered. It is shaped like a ball.

前記複合体3を縮径するには、前記ロータリースウェー
ジング装置Aを作動させるとともに、第1図に示すよう
に複合体3の一端をダイス6・・の間の間隙に押し込む
。ここで、前記ダイス6 ・が第1図の上下方向に所定
間隔往復移動しつつ回転しているために、複合体3は一
端側から順次鍛造されて第1図の2点鎖線で示ず線径ま
で縮径され、線材I3となる。この縮径加工においては
、回転しつつ往復運動する複数のダイス6によって複合
体3を鍛造しつつ縮径するために、縮径加工中の複合体
3に断線を起こすことなく大きな加工率で縮径加工する
ことができる。
To reduce the diameter of the composite 3, the rotary swaging device A is operated and one end of the composite 3 is pushed into the gap between the dies 6, as shown in FIG. Here, since the die 6 is rotating while reciprocating at a predetermined interval in the vertical direction in FIG. The wire rod is reduced in diameter to the wire rod I3. In this diameter reduction process, the composite body 3 is reduced in diameter while being forged by a plurality of dies 6 that reciprocate while rotating, so that the composite body 3 is reduced in diameter at a large processing rate without causing wire breakage. Diameter processing is possible.

このような縮径加工では、1回の加工に46ける減面率
((S、−8,)X ] 00/S、、sl:複合体3
の断面積、S2:線+、l’ + 3の断面積。〕が1
0〜40%の範囲で決められる。減面率が10%未満て
は、1回の加工で複合体3内の圧粉成形体にがかる成形
圧力が小さ過ぎて線材13内の圧粉成形体(以下、芯線
と言う。)の圧密度を十分に高めることができないため
に、縮径加工の施工回数を増やさなければならず、極め
て不経済となる。また、減面率が40%を越えると、1
回の加工での成形圧力が大き過ぎて1回の加工に要する
製造時間が長くなるために、製造効率が悪いなどの不都
合が生じる。そして、このような減面率で行なわれる縮
径加工における加工速度は、例えば前記ロータリースウ
エージング装置Aを用いた場合、0.1〜10m/分の
範囲とされる。加工速度がO,Ii/分未満では、遅過
ぎて製造効率が悪く、IOx/分を越えると、速過ぎて
線材13内の芯線の圧密度を十分に高めることができな
いなどの不都合が生じる。
In such diameter reduction processing, the area reduction rate of 46 ((S, -8,)X ] 00/S,, sl: composite 3
S2: Cross-sectional area of line +, l' + 3. ] is 1
It can be determined in the range of 0 to 40%. If the area reduction rate is less than 10%, the compacting pressure applied to the compact in the composite body 3 during one processing is too small, and the pressure of the compact in the wire 13 (hereinafter referred to as core wire) is reduced. Since the density cannot be increased sufficiently, the number of diameter reduction processes must be increased, which is extremely uneconomical. In addition, if the area reduction rate exceeds 40%, 1
The molding pressure in each processing step is too high and the manufacturing time required for one processing step becomes long, resulting in inconveniences such as poor manufacturing efficiency. The processing speed in diameter reduction processing performed at such an area reduction rate is, for example, in the range of 0.1 to 10 m/min when the rotary swaging device A is used. If the processing speed is less than 0.Ii/min, it will be too slow and the manufacturing efficiency will be poor, and if it exceeds IOx/min, it will be too fast and there will be problems such as not being able to sufficiently increase the density of the core wire within the wire 13.

このような縮径加工は、線vI’ 13の線径が所望の
線径に達し、かつ線材13内の芯線の圧密度が理論密度
の75%以上、好ましくは77%以上となるまで繰り返
し行なわれる。芯線の圧密度が理論密度の75%未満で
は、圧密度が小さ過ぎて、この芯線に対して後工程の熱
処理を行なっても焼結密度に限界があり、この場合得ら
れた超電導線の超電導特性が極めて低いものとなってし
まう不都合が生じる。なお、先のロータリースウエージ
ング装置Aによる加工で線径と圧密度の目的が達せられ
ない場合には、この装置Aのダイス6の成形空隙より小
さく形成された成形空隙を有するダイスを備えたロータ
リースウェージング装置などを用いて繰り返し縮径加工
を行う必要がある。
Such diameter reduction processing is repeated until the wire diameter of the wire vI' 13 reaches a desired wire diameter and the density of the core wire within the wire rod 13 becomes 75% or more, preferably 77% or more of the theoretical density. It will be done. If the compaction density of the core wire is less than 75% of the theoretical density, the compaction density is too small and there is a limit to the sintered density even if the core wire is subjected to post-process heat treatment. This causes the inconvenience that the characteristics become extremely poor. If the desired wire diameter and consolidation density cannot be achieved by processing using the rotary swaging device A, a rotary swaging device equipped with a die having a forming gap smaller than the forming gap of the die 6 of this device A may be used. It is necessary to repeatedly reduce the diameter using a swaging device or the like.

このようにして得られた線材13に対し以下に説明する
処理を施して酸化物系超電導線を製造する。
The wire rod 13 thus obtained is subjected to the treatment described below to produce an oxide-based superconducting wire.

即ち、前記線材13から外側の金属ソースとなっている
管体部分を除去し、これにより芯線部分を露出させる。
That is, the tube portion serving as the outer metal source is removed from the wire 13, thereby exposing the core wire portion.

ここでの金属シースの除去には、例えば酸あるいはアル
カリの水溶液などの処理液中に複合体を浸漬させ、金属
シースのみを上記処理液中に溶解させる化学的な方法な
どが用いられる。
To remove the metal sheath here, a chemical method is used in which, for example, the composite is immersed in a treatment liquid such as an aqueous acid or alkali solution, and only the metal sheath is dissolved in the treatment liquid.

この方法には、金属シースに銅、銀あるいはこれらの合
金を用いた場合、処理液として希硝酸などが用いられ、
金属シースにアルミニウムを用いた場合、処理液として
苛性ソーダなどが用いられ、金属シースにステンレスを
用いた場合、処理液として王水などが用いられるが、シ
ース材料と処理液との組み合わせはこれらに限定される
ものではない。そして、このような除去操作の後には、
速やかに芯線の表面に水洗処理あるいは中和処理を行な
って処理液の芯線などへの影響を排除ずろことが望まし
い。なお、上記金属ソースの除去に(J1他に切削加工
を用いる方法も考えられるが、この切削加工を用いると
、芯線が細径の場合、除去操作時に折れ曲がってしまう
などの不都合が生じることがある。このため、この例で
は、芯線に上記の不都合が生じにくい上記の化学的な方
法を採用したが、折曲のおそれが少ない場合は切削加工
を行なって金属シースを除去する方法と金属シースを化
学的に除去する方法とを併用してもよい。
In this method, when copper, silver, or an alloy of these is used for the metal sheath, dilute nitric acid or the like is used as the treatment liquid.
When aluminum is used for the metal sheath, caustic soda or the like is used as the treatment liquid; when stainless steel is used for the metal sheath, aqua regia is used as the treatment liquid, but the combinations of sheath material and treatment liquid are limited to these. It is not something that will be done. And after such a removal operation,
It is desirable to immediately wash or neutralize the surface of the core wire to eliminate the effects of the treatment liquid on the core wire. Note that cutting may be used to remove the metal source (J1), but using this cutting may cause problems such as bending during the removal operation if the core wire is small in diameter. Therefore, in this example, we adopted the chemical method described above, which is less likely to cause the above disadvantages to the core wire, but if there is little risk of bending, we recommend cutting the metal sheath to remove it or removing the metal sheath. A chemical removal method may also be used.

次いで、このようにして露出せしめられた芯線に対して
熱処理を施す。この熱処理は好ましく(」酸素雰囲気中
で800〜1100°Cに1〜100時間程度加熱した
後に徐冷することによって行なわれる。なお、ここで、
徐冷処理の途中に400〜600℃の温度範囲で所定時
間保持する処理を行なって酸化物超電導体の結晶構造が
正方晶から斜方晶に変態することを促進するようにして
もよい。上記の熱処理により、上記芯線中の各構成元素
どうしが互いに十分に固相反応を起こすとともに、芯線
の表面が露出せしめられていることから、芯線の表面全
体からその内部に酸素元素が効率よく拡散される。した
がって、上記芯線には、その全線に亙って均一な超電導
特性を示す例えばA−B −Cu−0系の酸化物超電導
体が生成され、これにより良好な超電導特性を示す酸化
物系超電導線が得られる。
Next, the core wire thus exposed is subjected to heat treatment. This heat treatment is preferably carried out by heating to 800 to 1100°C for about 1 to 100 hours in an oxygen atmosphere and then slowly cooling it.
During the slow cooling process, a process of holding the temperature in a temperature range of 400 to 600°C for a predetermined time may be performed to promote transformation of the crystal structure of the oxide superconductor from tetragonal to orthorhombic. Through the above heat treatment, each of the constituent elements in the core wire undergoes a sufficient solid-phase reaction with each other, and since the surface of the core wire is exposed, oxygen elements are efficiently diffused from the entire surface of the core wire into its interior. be done. Therefore, in the core wire, an oxide superconductor of the A-B-Cu-0 system, for example, which exhibits uniform superconducting properties over the entire wire is generated, and as a result, an oxide superconducting wire exhibiting good superconducting properties. is obtained.

そして、このような酸化物系超電導線には、必要に応じ
てコーティング処理を施して保護コート層を形成するこ
とができる。この保護コート層の形成材料としては、例
えば錫、鉛等の低融点金属、あるいは半田等の合金など
が好適に用いられる。
Then, such an oxide-based superconducting wire can be subjected to a coating treatment to form a protective coat layer, if necessary. As the material for forming this protective coat layer, for example, low melting point metals such as tin and lead, alloys such as solder, etc. are suitably used.

そして、この保護コート層の形成方法としては、例えば
電気メツキ、溶融メツキ、半田メツキなどの方法が好適
に用いられる。また、他の方法として、」−記低融点金
属の粉末あるいは」1記合金粉末を酸化物系超電導線の
表面に所定の厚さで付着させたのち」1記粉末を焼結さ
せる方法も用いろことができる。このようにして保護コ
ート層を形成すれば、酸化物系超電導線の良好な超電導
特性を長期間に亙って安定化させることが可能となる。
As a method for forming this protective coat layer, methods such as electroplating, melt plating, and solder plating are suitably used. In addition, as another method, a method can be used in which the powder of the low melting point metal described in "-" or the alloy powder described in "1" is adhered to the surface of the oxide superconducting wire to a predetermined thickness, and then the powder described in "1" is sintered. I can do all kinds of things. By forming the protective coat layer in this manner, it becomes possible to stabilize the good superconducting properties of the oxide-based superconducting wire over a long period of time.

この製造方法によれば、ロータリースウエージング装置
Aにより減面率10〜40%の鍛造加工を少なくとも1
回行なうことで複合体3内の圧粉成形体が十分に圧密さ
れ、圧密度が理論密度の75%以上である芯線を有する
線材13が得られ、次いでこの線材13に対する金属シ
ース除去後の熱処理により、芯線中の各元素が同相反応
する際に元素の拡散が円滑になされることから、気孔率
が低く、曲げ強度などの機械強度が高いうえ、長手方向
に均一で良好な超電導特性を示す酸化物系超電導線を製
造できる。したがって、このようにして得られた酸化物
系超電導線にあっては、曲げに強く5屈曲性を有するの
で、クラックを生じることなく巻回でき、超電導マグネ
ット用の巻線などに好適なものとなる。
According to this manufacturing method, the rotary swaging device A performs at least one forging process with an area reduction rate of 10 to 40%.
By repeating the rotation, the compacted body in the composite body 3 is sufficiently consolidated, and a wire rod 13 having a core wire with a consolidation density of 75% or more of the theoretical density is obtained, and then the wire rod 13 is heat-treated after the metal sheath is removed. This enables smooth diffusion of elements when each element in the core wire reacts in phase, resulting in low porosity, high mechanical strength such as bending strength, and uniform and good superconducting properties in the longitudinal direction. Oxide-based superconducting wires can be manufactured. Therefore, the oxide-based superconducting wire obtained in this way is resistant to bending and has good flexibility, so it can be wound without cracking and is suitable for winding wires for superconducting magnets. Become.

また、圧粉成形体1に熱処理を施してから複合体3を作
製すれば、その熱処理により圧粉成形体1の焼結密度を
格段に向上させることができるので、複合体3に対する
縮径加工により、極めて高い圧密度の芯線を有する線材
を得ることができる。
Moreover, if the composite body 3 is produced after heat-treating the compacted body 1, the sintered density of the compacted body 1 can be significantly improved by the heat treatment, so the diameter reduction process for the composite body 3 can be performed. As a result, a wire rod having a core wire with an extremely high degree of consolidation can be obtained.

したがって、この線材の管体部分を除去して芯線部分を
露出させた後に、酸素雰囲気中で熱処理することによっ
て良好な超電導特性を示す酸化物系超電導線を製造する
ことができる。
Therefore, an oxide-based superconducting wire exhibiting good superconducting properties can be manufactured by removing the tube portion of this wire to expose the core wire portion and then heat-treating the wire in an oxygen atmosphere.

なお、この例では、複合体3を縮径するのにロータリー
スウェージング加工を用いたが、これに限定されること
なく、圧延加工などの加工法も好適に用いることができ
る。
In this example, rotary swaging was used to reduce the diameter of the composite 3, but the present invention is not limited to this, and processing methods such as rolling may also be suitably used.

以下、実施例を示して本発明の作用効果を明確にする。Examples are shown below to clarify the effects of the present invention.

「実施例」 平均粒度を4μmとしたY2O3粉末と171iとした
B a CO3粉末と同じく1μnとしたCuO粉末を
Y:Ba:Cu= 1 +2・3七なるように混合して
混合粉末を得た。次いで、この混合粉末を酸素気流中で
、900℃、24時[用加熱する仮焼処理を行なってか
ら、ボールミルにより粉砕した後、成形圧力を2 、5
 ton/ am2としたラバープレスにより圧粉成形
処理を行なって棒状の圧粉成形体を得た。次に、この圧
粉成形体に酸素気流中で、900°C124時間加熱す
る熱処理を行なった。このような仮焼処理、粉砕処理、
圧粉成形処理、熱処理からなる一連の処理を繰り返し行
なって外径約6.9m屑の圧粉成形体を得た。ちなみに
、この圧粉成形体の圧密度は理論密度の78%であり、
その臨界電流密度は約40 A / 1Z71’であっ
た。
"Example" A mixed powder was obtained by mixing Y2O3 powder with an average particle size of 4 μm, Ba CO3 powder with 171i, and CuO powder with the same size of 1 μm so that Y:Ba:Cu = 1 + 2.37. . Next, this mixed powder was calcined in an oxygen stream at 900°C for 24 hours, pulverized in a ball mill, and the molding pressure was increased to 2.5°C.
A compacting process was carried out using a rubber press at a pressure of ton/am2 to obtain a rod-shaped powder compact. Next, this green compact was heat-treated at 900° C. for 124 hours in an oxygen stream. Such calcining treatment, crushing treatment,
A series of treatments consisting of powder compaction treatment and heat treatment was repeated to obtain a powder compact with an outer diameter of about 6.9 m. By the way, the compaction density of this powder compact is 78% of the theoretical density,
Its critical current density was about 40 A/1Z71'.

次に、この圧粉成形体を外径Ions、内径71+zの
銀製の管体内に充填して複合体とした。次いで、第1図
に示すダイスと同様の構成のダイスを備えたロータリー
スウェージング装置を用い、前記複合体を直径]、51
1xの線材となるまで冷間で鍛造しつつ段階的に縮径加
工した。なお、複合体を段階的に鍛造しつつ縮径して線
材を得るには、ダイス間の空隙が異なるダイスを複数用
意し、1回の縮径加工における減面率を約20%に設定
し、複数回鍛造操作を行なって縮径するものとし、加工
速度をIn/分とした。
Next, this powder compact was filled into a silver tube having an outer diameter of Ions and an inner diameter of 71+z to form a composite. Next, using a rotary swaging device equipped with a die having a configuration similar to that shown in FIG.
The wire was cold forged and reduced in diameter in stages until it became a 1x wire rod. In addition, in order to obtain a wire rod by reducing the diameter while forging the composite in stages, prepare multiple dies with different gaps between the dies, and set the area reduction rate in one diameter reduction process to approximately 20%. The forging operation was performed multiple times to reduce the diameter, and the processing speed was set to In/min.

以上の加工においては、最終線径まで断線などのトラブ
ルを生じることなく加工することができた。そして、こ
のように製造された線材の内部の芯線の圧密度を測定し
たところ、理論密度の82%であり、ダイスを用いた線
引加工により縮径された線材に比べて格段に向上してい
た。
In the above processing, it was possible to process the wire up to the final wire diameter without any troubles such as wire breakage. When we measured the compaction density of the core wire inside the wire produced in this way, we found that it was 82% of the theoretical density, which was much improved compared to the wire that had been reduced in diameter by drawing with dies. Ta.

次いで、この線材を硝酸中に浸漬させて銀製のソースを
溶解除去して芯線を露出させた。
Next, this wire was immersed in nitric acid to dissolve and remove the silver source to expose the core wire.

次に、この芯線に対して酸素気流中で890℃に17時
間加熱し、この後、−100°C/時間で室温まで徐冷
する熱処理を行なって、芯線の全線に亙って酸化物系超
電導体を生成させ、超電導芯線を得た。この超電導芯線
の焼結密度を測定したところ、理論密度の915%とい
う結果が得られた。次いで、この超電導芯線の表面に半
田メツキして厚さlsxの保護コート層を形成して酸化
物系超電導線を製造した。
Next, this core wire is heated to 890°C in an oxygen stream for 17 hours, and then heat-treated to slowly cool it to room temperature at -100°C/hour to form an oxide-based material over the entire core wire. A superconductor was produced and a superconducting core wire was obtained. When the sintered density of this superconducting core wire was measured, it was found to be 915% of the theoretical density. Next, the surface of this superconducting core wire was solder-plated to form a protective coating layer having a thickness of lsx, thereby producing an oxide-based superconducting wire.

このように製造された酸化物系超電導線は、臨界温度 
     91に 臨界電流密度  約11000  A/cm2(77K
において) を示した。
The oxide superconducting wire produced in this way has a critical temperature
91 has a critical current density of approximately 11000 A/cm2 (77K
) was shown.

これに対し、圧密度を理論密度の65%、74%に設定
した(比較例1.2)圧粉成形体を作製した。これら比
較例1および2の圧粉成形体を上記実施例と同様にそれ
ぞれ複合体としたのち、これら複合体をロータリースウ
エージングにより鍛造しつつ直径1.5uまで縮径した
。次いで、縮径して得られた線材の金属シースを溶解除
去して芯線を露出させたのち、この芯線に実施例と同条
件で熱処理を施して超電導芯線を得た。これら2種類の
超電導芯線の焼結密度(理論密度に対する百分率)と臨
界電流密度(測定温度77K)とを測定し、その結果を
第1表に示した。
On the other hand, powder compacts were produced in which the compaction density was set to 65% and 74% of the theoretical density (Comparative Example 1.2). The compacted bodies of Comparative Examples 1 and 2 were made into composite bodies in the same manner as in the above examples, and then these composite bodies were forged by rotary swaging and reduced in diameter to 1.5u. Next, the metal sheath of the wire obtained by reducing the diameter was dissolved and removed to expose the core wire, and then the core wire was heat-treated under the same conditions as in the example to obtain a superconducting core wire. The sintered density (percentage of theoretical density) and critical current density (measurement temperature 77K) of these two types of superconducting core wires were measured, and the results are shown in Table 1.

(以下余白) =20= 第1表 以上のことから、本発明を実施して製造された酸化物系
超電導線は、従来の方法で製造された酸化物系超電導線
に比べて機械強度が高く超電導特性も優れていることが
明らかとなった。
(Space below) =20= From the above in Table 1, the oxide-based superconducting wire manufactured by implementing the present invention has higher mechanical strength than the oxide-based superconducting wire manufactured by the conventional method. It became clear that the superconducting properties were also excellent.

「発明の効果」 以上説明したように、本発明の製造方法によれば、酸化
物超電導体粉末とその前駆体粉末のうち少なくとも一方
を含む出発物に圧粉成形処理を施した圧粉成形体を金属
シース内に充填して得た複合体に対し、1回の減面率が
10〜40%である縮径加工を1回以上施して該複合体
を線材とするとともに該線材内の芯線の圧密度を理論密
度の75%以上としたうえで、熱処理するようにしたの
で、線材内の芯線の圧密度を、例えば従来の引抜加工に
よる場合よりも高くすることができろ。従って、熱処理
により高圧密度の芯線内部で構成元素の拡散が円滑にか
つ容易になされることから、機械強度と超電導特性に共
に優れた酸化物系超電導線を製造できろ。また、本発明
により製造された酸化物系超電導線は、超電導マグネッ
ト用の巻線にするために巻胴に巻回した場合、クランク
を生じることなく巻回することができる。
"Effects of the Invention" As explained above, according to the manufacturing method of the present invention, a compacted product is obtained by subjecting a starting material containing at least one of an oxide superconductor powder and its precursor powder to a compacting process. A composite obtained by filling a metal sheath is subjected to diameter reduction processing with an area reduction rate of 10 to 40% at least once to make the composite into a wire and to reduce the core wire within the wire. Since the heat treatment is performed after the consolidation density of the wire is set to 75% or more of the theoretical density, the consolidation density of the core wire within the wire can be made higher than, for example, by conventional drawing processing. Therefore, since the heat treatment allows the constituent elements to diffuse smoothly and easily inside the high-density core wire, it is possible to manufacture an oxide-based superconducting wire that has excellent mechanical strength and superconducting properties. Moreover, when the oxide-based superconducting wire manufactured according to the present invention is wound around a winding drum to be used as a winding wire for a superconducting magnet, it can be wound without producing a crank.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例を説明するためのもので、
縮径加工を説明するための断面図である。 1・・・圧粉成形体、2・・・管体(金属W)、3・・
・複合体、6・・・タイス、13・・・線側、A・・・
ロータリースウェージング装置。 出顎人 藤倉電線株式会社 第1図
FIG. 1 is for explaining one embodiment of the present invention.
It is a sectional view for explaining diameter reduction processing. 1... Powder compact, 2... Tube body (metal W), 3...
・Complex, 6... Tice, 13... Line side, A...
Rotary swaging device. Jaw person Fujikura Electric Cable Co., Ltd. Figure 1

Claims (3)

【特許請求の範囲】[Claims] (1)酸化物超電導体粉末と酸化物超電導体の前駆体粉
末のうち少なくとも一方を含む出発物に圧粉成形処理を
施して圧粉成形体とし、次いで該圧粉成形体を金属シー
ス内に充填して複合体を形成したのち、該複合体に対し
、1回の減面率が10〜40%である縮径加工を1回以
上施して該複合体を線材とするとともに該線材内の芯線
の圧密度を理論密度の75%以上としたうえで、熱処理
することを特徴とする酸化物系超電導線の製造方法。
(1) A starting material containing at least one of an oxide superconductor powder and an oxide superconductor precursor powder is subjected to a powder compaction treatment to form a compact, and then the compact is placed in a metal sheath. After filling the composite to form a composite, the composite is subjected to diameter reduction processing at least once with an area reduction rate of 10 to 40% to make the composite into a wire rod, and the inside of the wire is reduced. A method for producing an oxide-based superconducting wire, which comprises heat-treating the core wire after the core wire has a compaction density of 75% or more of the theoretical density.
(2)前記前駆体粉末が、酸化物超電導体の構成元素を
含む材料の仮焼粉末であることを特徴とする特許請求の
範囲第1項記載の酸化物系超電導線の製造方法。
(2) The method for manufacturing an oxide superconducting wire according to claim 1, wherein the precursor powder is a calcined powder of a material containing constituent elements of an oxide superconductor.
(3)前記圧粉成形体が、少なくとも1回熱処理された
ものであることを特徴とする特許請求の範囲第1項記載
の酸化物系超電導線の製造方法。
(3) The method for producing an oxide-based superconducting wire according to claim 1, wherein the powder compact is heat-treated at least once.
JP62280451A 1987-10-02 1987-11-06 Manufacture of oxide superconducting wire Pending JPH01122519A (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP62280451A JPH01122519A (en) 1987-11-06 1987-11-06 Manufacture of oxide superconducting wire
CA000579101A CA1313031C (en) 1987-10-02 1988-10-03 Method of producing a superconductive oxide conductor and an oxide superconductor produced by the method
DE3880947T DE3880947T3 (en) 1987-10-02 1988-10-03 Process for the preparation of an oxide superconductor without sheathing and an oxide superconductor produced by this process.
DE19883882871 DE3882871T2 (en) 1987-10-02 1988-10-03 A method for producing an oxide superconducting conductor and an oxide superconducting conductor produced by this method.
EP88309195A EP0311337B1 (en) 1987-10-02 1988-10-03 Method of producing a superconductive oxide conductor and a superconductive oxide conductor produced by the method
CN88107874A CN1035220C (en) 1987-10-02 1988-10-03 Method of producing a superconductive oxide conductor and a superconductive oxide conductor produced by the method
US07/251,847 US5045527A (en) 1987-10-02 1988-10-03 Method of producing a superconductive oxide conductor
CA000579107A CA1313032C (en) 1987-10-02 1988-10-03 Method of producing an oxide superconductor without sheath and an oxide superconductor produced by the method
EP88309193A EP0310453B2 (en) 1987-10-02 1988-10-03 Method of producing an oxide superconductor without a sheath and an oxide superconductor produced by the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62280451A JPH01122519A (en) 1987-11-06 1987-11-06 Manufacture of oxide superconducting wire

Publications (1)

Publication Number Publication Date
JPH01122519A true JPH01122519A (en) 1989-05-15

Family

ID=17625244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62280451A Pending JPH01122519A (en) 1987-10-02 1987-11-06 Manufacture of oxide superconducting wire

Country Status (1)

Country Link
JP (1) JPH01122519A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11344980B2 (en) 2017-06-14 2022-05-31 Maschinenfabrik Alfing Kessler Gmbh Method and device for work-hardening a crankshaft

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11344980B2 (en) 2017-06-14 2022-05-31 Maschinenfabrik Alfing Kessler Gmbh Method and device for work-hardening a crankshaft

Similar Documents

Publication Publication Date Title
EP0397943B1 (en) Method of producing a superconductive oxide cable and wire
JPH01122519A (en) Manufacture of oxide superconducting wire
JP2612009B2 (en) Method for producing oxide-based superconducting wire
JPH01151107A (en) Manufacture of oxide system superconductive wire
JPH01151108A (en) Manufacture of oxide system superconductive wire
JPH01122518A (en) Manufacture of oxide semiconductor wire
JPH0193010A (en) Manufacture of oxide type superconductive wire
JPH01115858A (en) Oxide superconductor and its production
JPH01183012A (en) Manufacture of oxide superconductive wire
JPH01115012A (en) Manufacture of oxide superconducting wire
JPH01194212A (en) Manufacture of oxide superconductive wire
JPH01122402A (en) Manufacture of oxide superconductive bulk material
JP2583575B2 (en) Manufacturing method of oxide superconducting wire
JPH01151109A (en) Manufacture of oxide system superconductive wire
JP2595309B2 (en) Manufacturing method of oxide superconducting wire
JPH01246719A (en) Manufacture of oxide superconductor
JPH01122520A (en) Manufacture of oxide superconducting wire
JPH01134822A (en) Manufacture of oxide superconductive wire
JPH01175124A (en) Manufacture of oxide superconducting wire
JP2592872B2 (en) Manufacturing method of oxide superconducting wire
JPH01138167A (en) Production of oxide superconductor
JPH0193009A (en) Manufacture of oxide type superconductive wire
JPH01227311A (en) Manufacture of oxide superconductor wire
JP2549706B2 (en) Method for producing T1-based oxide superconducting wire
JPH01241713A (en) Manufacture of oxide superconductor wire