JPH01246720A - Manufacture of oxide superconductor - Google Patents

Manufacture of oxide superconductor

Info

Publication number
JPH01246720A
JPH01246720A JP63073929A JP7392988A JPH01246720A JP H01246720 A JPH01246720 A JP H01246720A JP 63073929 A JP63073929 A JP 63073929A JP 7392988 A JP7392988 A JP 7392988A JP H01246720 A JPH01246720 A JP H01246720A
Authority
JP
Japan
Prior art keywords
powder
oxide superconductor
composite
oxide
molten metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63073929A
Other languages
Japanese (ja)
Inventor
Tsukasa Kono
河野 宰
Yoshimitsu Ikeno
池野 義光
Nobuyuki Sadakata
伸行 定方
Taichi Yamaguchi
太一 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP63073929A priority Critical patent/JPH01246720A/en
Priority to CA000579101A priority patent/CA1313031C/en
Priority to DE3880947T priority patent/DE3880947T3/en
Priority to DE19883882871 priority patent/DE3882871T2/en
Priority to EP88309195A priority patent/EP0311337B1/en
Priority to CN88107874A priority patent/CN1035220C/en
Priority to US07/251,847 priority patent/US5045527A/en
Priority to CA000579107A priority patent/CA1313032C/en
Priority to EP88309193A priority patent/EP0310453B2/en
Publication of JPH01246720A publication Critical patent/JPH01246720A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To increase the critical current density by forming a molten metal including elements to compose an oxide superconductor in a specific composition ratio, solidifying the molten metal into a solid, filling the solid or only the surface separated from the solid in a metal tube, and then processing it. CONSTITUTION:Elements to compose an oxide superconductor are mixed to make a specific composition ratio. Then the mixture powder is baked temporarily and powdered, and the resultant powder is sintered intermediately to obtain an oxide superconductive powder. After that, the oxide superconductive powder is poured in a crucible, heated, and fused to obtain a molten metal. Then, the molten metal is cooled suddenly to solidify, and the resultant solid is cooled up to the room temperature. Then, only the surface part of the solid is scraped to get a powder. The powder is pressured to make a rod-form body 1, which is inserted to a metallic tube body 2 to form a composite 3. Then, the composite 3 is cold-forged to reduce the diameter, and to the resultant composite consolidated body 13, a sheath removal process and the final sintering process are applied to make an oxide superconductor. Furthermore, the powder of the purer composition ratio is picked up from the surface of the solidified body, and a superconductor is manufactured from the powder.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、超電導マグネットの巻線用、あるいは、電力
輸送線用などとして開発が進められている酸化物超電導
導体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a method for manufacturing oxide superconducting conductors, which are being developed for use in windings of superconducting magnets, power transmission lines, and the like.

「従来の技術」 最近に至り、常電導状態から超電導状態に遷移する臨界
温度が液体窒素温度を超える値を示す酸化物系の超電導
体が種々発見されている。この種の酸化物超電導体はY
 −B a−Cu−0系あるいはB1−5 r−Ca−
Cu−0系などで代表される酸化物であり、これらの酸
化物超電導体を具備する□超電導線を製造するための技
術開発が進められている。
"Prior Art" Recently, various oxide-based superconductors have been discovered whose critical temperature for transitioning from a normal conducting state to a superconducting state exceeds the temperature of liquid nitrogen. This kind of oxide superconductor is Y
-B a-Cu-0 series or B1-5 r-Ca-
These oxides are typified by Cu-0-based superconductors, and technological development is underway to manufacture □ superconducting wires comprising these oxide superconductors.

従来、この種の酸化物超電導線を製造する方法の−例と
して、酸化物超電導体を構成する元素を含有する複数の
原料粉末を調製し、この混合粉末を仮焼して不要成分を
除去するとともに、仮焼粉末を金属管に充填して縮径加
工を施し、縮径加工後に酸素存在雰囲気中において熱処
理を行い、内部の圧粉体に固相反応を生じさせて酸化物
超電導体を生成させる方法が知られている。
Conventionally, as an example of a method for manufacturing this type of oxide superconducting wire, a plurality of raw material powders containing elements constituting the oxide superconductor are prepared, and this mixed powder is calcined to remove unnecessary components. At the same time, the calcined powder is filled into a metal tube and subjected to diameter reduction processing, and after the diameter reduction processing, heat treatment is performed in an oxygen-present atmosphere to cause a solid phase reaction in the compacted powder inside to produce an oxide superconductor. There are known ways to do this.

「発明が解決しようとする課題」 しかしながら前述の従来方法で製造された酸化物超電導
線にあっては、混合粉末を作製した段階で酸化物超電導
体を構成する各元素が完全にq−に混合されていないた
めに、所望の組成の酸化物超電導体を均一に生成できな
い問題がある。また、前述のように均一性に欠ける混合
粉末を圧密して得られた成形体に固相反応を生じさせて
酸化物超電導体が生成されているので、生成された酸化
物超電導体の粒界には微細な空孔や欠陥が存在している
欠点がある。即ちこのような酸化物超電導体は、空孔や
欠陥を含む粉末粒子の粒界部分を介して電流が流れる構
造のために、臨界電流密度を高めることかできない問題
があった。
"Problems to be Solved by the Invention" However, in the oxide superconducting wire manufactured by the conventional method described above, each element constituting the oxide superconductor is completely mixed in q- at the stage of producing the mixed powder. Therefore, there is a problem that an oxide superconductor having a desired composition cannot be uniformly produced. In addition, as mentioned above, since the oxide superconductor is produced by causing a solid phase reaction in the compact obtained by compacting the mixed powder that lacks uniformity, the grain boundaries of the produced oxide superconductor has the disadvantage of having minute pores and defects. That is, such oxide superconductors have a problem in that the critical current density cannot be increased because of the structure in which current flows through grain boundaries of powder particles containing vacancies and defects.

本発明は、前記課題を解決するためになされたもので、
臨界電流密度が高い酸化物超電導導体を製造する方法を
提供することを目的とする。
The present invention has been made to solve the above problems,
It is an object of the present invention to provide a method for manufacturing an oxide superconductor having a high critical current density.

「課題を解決するた、めの手段」 本発明は、多元素系の酸化物超電導体を具備してなる酸
化物超電導導体の製造方法において、酸化物超電導体を
構成する各元素を所定の成分比となるように含有させた
溶湯を形成し、この溶湯を凝固させて得た凝固体を金属
管に充填して複合体を得ると、ともに、複合体に縮径加
工を施して圧密体と金属シースとからなる複合圧密体を
形成し、次いでこの複合圧密体の金属シースを除去した
後に、圧密体を酸素存在雰囲気で熱処理することを課題
解決の手段とした。
"Means for Solving the Problems" The present invention provides a method for manufacturing an oxide superconductor comprising a multi-element oxide superconductor, in which each element constituting the oxide superconductor is mixed with a predetermined component. A composite is obtained by forming a molten metal containing the same ratio, solidifying the molten metal, and filling a metal tube with the solidified material. The method of solving the problem was to form a composite consolidated body consisting of a metal sheath, then remove the metal sheath from the composite consolidated body, and then heat treat the consolidated body in an oxygen-containing atmosphere.

また、得られた凝固体の表面部分のみを分離し、金属管
に充填して縮径し、熱処理を行って酸化物超電導導体を
製造することを課題解決の手段とした。
In addition, a method for solving the problem was to separate only the surface portion of the obtained solidified body, fill it in a metal tube to reduce its diameter, and perform heat treatment to produce an oxide superconducting conductor.

「作用」 所定の成分比の溶湯から作成した凝固体には溶融拡散反
応によって特性の優れた酸化物超電導体が生成されてお
り、この凝固体を金属管に充填して熱処理を行い、高特
性の酸化物超電導導体を得る。また、前記溶湯から得た
凝固体の表面部分は十分な量の酸素が補給されて酸化物
超電導体が生成されているので、この表面部分のみを取
り出して分離することにより、所望の組成比の純粋な酸
化物超電導体の分離物を得、これを基に高特性の酸化物
超電導導体を製造する。
"Operation" An oxide superconductor with excellent properties is produced by a melt-diffusion reaction in a solidified body made from a molten metal with a predetermined component ratio, and this solidified body is filled into a metal tube and heat-treated to create a superconductor with high properties. Obtain an oxide superconducting conductor. In addition, since the surface portion of the solidified body obtained from the molten metal is supplemented with a sufficient amount of oxygen and an oxide superconductor is generated, by extracting and separating only this surface portion, the desired composition ratio can be achieved. A pure oxide superconductor isolate is obtained, and based on this, oxide superconductor conductors with high properties are manufactured.

以下に本発明を更に詳細に説明する。The present invention will be explained in more detail below.

本発明を実施して酸化物超電導導体を製造するには、ま
ず、出発物を調製する。この出発物としては、酸化物超
電導体の粉末、酸化物超電導体を構成する元素を含む材
料あるいはこれらの混合物が用いられ、各元素が所定の
組成比になるように秤量されて混合される。
To practice the present invention and produce oxide superconducting conductors, starting materials are first prepared. As the starting material, a powder of an oxide superconductor, a material containing elements constituting the oxide superconductor, or a mixture thereof is used, and each element is weighed and mixed so as to have a predetermined composition ratio.

前記酸化物超電導体としては、A −B −Cu−0系
(ただしAは、Y、Sc、La、Ce、Pr、Nd、P
s+、5LIl。
The oxide superconductor may be A-B-Cu-0 (where A is Y, Sc, La, Ce, Pr, Nd, P
s+, 5LIl.

Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、L
uなどの周期律表ma族元素またはBiなどの周期律表
vb族元素またはT I、A Iなどの周期律表mb族
元素の内、1種以上を示し、Bは、S r、Ba、Ca
、Be、Raなどの周期律表Ua族元素の内、1種以上
を示す。)のものが用いられる。
Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, L
Represents one or more of the elements of group MA of the periodic table such as u, group VB of the periodic table such as Bi, or elements of group MB of the periodic table such as T I, A I, and B is S r, Ba, Ca
, Be, Ra, and other elements of the Ua group of the periodic table. ) are used.

また、酸化物超電導体を構成する元素を含む材料として
は、周期律表Ua族元素を含む粉末と、周期律表Ua族
元素または周期律表vb族元素または周期律表1[1b
族元素を含む粉末と、酸化銅粉末などからなる混合粉末
あるいはこの混合粉末を仮焼した粉末、または、前記混
合粉末と仮焼粉末の混合粉末などが用いられる。ここで
用いられる周期律表Ua族元素を含む粉末としては、C
a、 S r。
In addition, materials containing elements constituting the oxide superconductor include powders containing elements of group Ua of the periodic table, elements of group Ua of the periodic table, elements of group Vb of the periodic table, or elements of group 1 [1b of the periodic table].
A mixed powder consisting of a powder containing a group element and a copper oxide powder, a powder obtained by calcining this mixed powder, a mixed powder of the above mixed powder and calcined powder, etc. are used. The powder containing the Ua group element of the periodic table used here is C
a, Sr.

Ba、Raなどの炭酸塩粉末、酸化物粉末、塩化物粉末
、硫化物粉末、フッ化物粉末などの化合物粉末あるいは
合金粉末などである。また、周期律表ma族元素を含む
粉末としては、Sc、Y、La、Ce。
These include carbonate powders such as Ba and Ra, compound powders such as oxide powders, chloride powders, sulfide powders, and fluoride powders, and alloy powders. Further, examples of powders containing elements of Group Ma of the periodic table include Sc, Y, La, and Ce.

Pr、Nd、Pm、S+++、Eu、Gd、Tb、Dy
、Ho、Er、Tm。
Pr, Nd, Pm, S+++, Eu, Gd, Tb, Dy
, Ho, Er, Tm.

Yb、Luの各元素の酸化物粉末、炭酸塩粉末、塩化物
粉末、硫化物粉末、フッ化物粉末などの化合物粉末ある
いは合金粉末などが用いられ、周期律表vb族元素を含
む粉末として、Biなどの元素の化合物粉末あるいは合
金粉末、周期律表I[[b族元素を含む粉末として、T
 I、A 1などの元素の化合物粉末あるいは合金粉末
が用いられる。更に、前記酸化銅粉末としては、Cuo
 、 Cufo 、 Cuto t。
Compound powders or alloy powders such as oxide powders, carbonate powders, chloride powders, sulfide powders, fluoride powders, etc. of each element of Yb and Lu are used, and Bi Compound powder or alloy powder of elements such as T
Compound powders or alloy powders of elements such as I and A1 are used. Furthermore, as the copper oxide powder, Cuo
, Cufo, Cuto t.

Cu2O3などの粉末が用いられる。A powder such as Cu2O3 is used.

ところで前記混合粉末を調製するには、通常、前述の粉
末法が用いられるが、この粉末法に限定されるものでは
なく、各元素を塩として共沈させ、その沈澱物を乾燥さ
せて混合粉末を得る共沈法を適用することも自由である
。また、前記必要な元素の化合物を所定の比率で混合し
て混合液とし、この混合液に酸を加えてゾル状にすると
ともに、このゾル状の物質を加熱してゲル化し、このゲ
ルを更に加熱して固相とした上で粉砕して混合粉末を得
るゾルゲル法を適用しても良い。
By the way, to prepare the mixed powder, the above-mentioned powder method is usually used, but it is not limited to this powder method.Each element is co-precipitated as a salt, and the precipitate is dried to prepare the mixed powder. It is also free to apply the coprecipitation method to obtain . In addition, compounds of the necessary elements are mixed in a predetermined ratio to form a mixed solution, acid is added to this mixed solution to form a sol, this sol-like substance is heated to gel, and this gel is further A sol-gel method may be applied in which the mixture is heated to form a solid phase and then pulverized to obtain a mixed powder.

次に前記混合粉末を750〜950℃で、3〜50時間
、加熱して仮焼する。仮焼処理が終了したならば、仮焼
物を更に粉砕して粒径を揃える。
Next, the mixed powder is heated and calcined at 750 to 950°C for 3 to 50 hours. When the calcining process is completed, the calcined product is further crushed to make the particle size uniform.

次いで前記仮焼粉末を酸素ガス雰囲気中において800
〜950℃で3〜50時間加熱するとともに、加熱後に
冷却する中間焼結処理を行って、所望の組成比(例えば
、Y IB arc Li2O7−i (0≦i≦0.
5)、B f’s r、Catc Ll!OX、 T 
1tCatB atCL+305[なる組成)の酸化物
超電導粉末を得る。なお、この中間焼結処理において、
Y −B a−Cu−0系の酸化物超電導体を製造する
場合には、加熱後に徐冷することが好ましく、B i−
S r−Ca−Cu−0系の酸化物超電導体を製造する
場合には890℃で20分間加熱した後に、880℃で
9時間加熱し、加熱後は急冷するなどの処理を行うこと
が好ましい。
Next, the calcined powder was heated for 800 min in an oxygen gas atmosphere.
An intermediate sintering process of heating at ~950°C for 3 to 50 hours and cooling after heating is performed to obtain a desired composition ratio (for example, Y IB arc Li2O7-i (0≦i≦0.
5), B f's r, Catc Ll! OX, T
An oxide superconducting powder having a composition of 1tCatB atCL+305 is obtained. In addition, in this intermediate sintering process,
When producing a Y-B a-Cu-0-based oxide superconductor, it is preferable to slowly cool it after heating.
When producing an S r-Ca-Cu-0-based oxide superconductor, it is preferable to heat it at 890°C for 20 minutes, then heat it at 880°C for 9 hours, and then rapidly cool it after heating. .

このように得られた酸化物超電導粉末を白金製あるいは
CaO製などのルツボに投入し、酸素存在雰囲気で13
00℃程度に加熱して溶解し、溶湯を得る。
The oxide superconducting powder thus obtained was placed in a crucible made of platinum or CaO, and heated for 13 hours in an oxygen atmosphere.
It is heated to about 00°C to melt and obtain a molten metal.

次いでこの溶湯を800〜950℃の温度範囲まで急冷
して凝固させ、続いてこの凝固体を800〜950℃に
数時間〜数十時間保持した後に室温まで冷却する。前記
溶湯を急冷する処理は、加熱炉や加熱装置からるつぼを
空気中に引き出して急冷する方法、あるいは、冷媒を用
いて急冷する方法などにより実施できる。このように溶
湯から凝固させで得られた凝固体においては、固相反応
に比較して拡散速度の速い溶融拡散反応によって均一で
高品質の酸化物超電導体が生成されている。
Next, this molten metal is rapidly cooled to a temperature range of 800 to 950°C to solidify it, and then this solidified body is maintained at 800 to 950°C for several hours to several tens of hours, and then cooled to room temperature. The process of rapidly cooling the molten metal can be carried out by a method in which the crucible is pulled out into the air from a heating furnace or a heating device, or by a method in which the crucible is rapidly cooled using a refrigerant. In the solidified body obtained by solidifying the molten metal in this manner, a uniform and high-quality oxide superconductor is produced by the melt-diffusion reaction, which has a faster diffusion rate than the solid-phase reaction.

なお、前記溶湯から得た凝固体を室温まで冷却する場合
、Y−Ba−Cu−0系のものは徐冷することか好まし
いがB i−8r−Ca−Cu−0系のものは急冷して
も差し支えない。
In addition, when cooling the solidified body obtained from the molten metal to room temperature, it is preferable to slowly cool the solidified body for Y-Ba-Cu-0 type, but rapid cooling for B i-8r-Ca-Cu-0 type. There is no problem.

次にこのように得られた凝固体の表面部分をlam以下
、好ましくは数μ〜数百μの厚さにわたり削り取り、削
り取った部分を粉砕機により粉砕して粉末(分離物)を
得る。凝固体の表面部分を削り取るには機械切削などを
行えば良いが、研削加工などを行って削り取りと同時に
粉末化することも可能である。なお、表面部分が削り取
られた後の凝固体は再び溶融した後に凝固され、更に表
面を削り取る処理を繰り返し行って粉末を得るために再
利用する。また、溶湯をキャリアガスとともに800〜
950℃の温度の空間に噴出させて粉末化する方法を用
いることによって前述の削り取る工程と粉砕する工程を
省略しても良い。
Next, the surface portion of the coagulated body thus obtained is scraped off to a thickness of lam or less, preferably several microns to several hundred microns, and the scraped portion is ground by a grinder to obtain a powder (separated material). Mechanical cutting or the like may be used to scrape off the surface portion of the coagulated body, but it is also possible to perform grinding or the like to simultaneously scrape off and powderize. The solidified material after the surface portion has been scraped off is melted again and then solidified, and the surface is further scraped off repeatedly to be reused to obtain powder. In addition, the molten metal can be heated to 800~
By using a method of ejecting into a space at a temperature of 950° C. and pulverizing, the above-mentioned scraping step and pulverizing step may be omitted.

このような処理を繰り返し行って粉末を収集する。この
ように凝固体の表面部分のみを集める理由は、溶湯を凝
固させた場合に、表面部分に主に酸素が十分に供給され
、表面部分に純度の高い均一な酸化物超電導体が生成さ
れるのでこのような純度の高い均一な酸化物超電導体を
集めるためである。また、キャリアガスを用いて溶湯か
ら直接粉末を製造した場合に、粉末の粒径が数百μm以
下になっているならばこの粉末をそのまま補集する。
This process is repeated to collect powder. The reason why only the surface portion of the solidified material is collected is that when the molten metal is solidified, sufficient oxygen is mainly supplied to the surface portion, and a highly pure and uniform oxide superconductor is generated at the surface portion. The purpose is to collect such highly pure and uniform oxide superconductors. Further, when powder is produced directly from molten metal using a carrier gas, if the particle size of the powder is several hundred μm or less, this powder is collected as is.

次いで前記の粉末をラバープレスで静水圧をかけるなど
の加圧手段を行って棒状体を得る。なお、この棒状体に
対し、必要に応じて酸素ガス雰囲気中において800〜
950℃で6〜50時間加熱する熱処理を施し、棒状体
の内部における酸化物超電導体の生成率を更に向上させ
るようにしても良い。
Next, the powder is subjected to pressing means such as applying hydrostatic pressure with a rubber press to obtain a rod-shaped body. Note that this rod-shaped body may be heated to 800 to
A heat treatment of heating at 950° C. for 6 to 50 hours may be performed to further improve the production rate of the oxide superconductor inside the rod-shaped body.

次に前述の棒状体1を第1図に示す金属製の管体2に挿
入して複合体3を作成する。前記管体2は、Cu、Ag
s Alあるいはこれらの合金、またはステンレスなど
の金属材料から形成されている。
Next, the rod-shaped body 1 described above is inserted into a metal tube 2 shown in FIG. 1 to create a composite body 3. The tube body 2 is made of Cu, Ag
s It is formed from a metal material such as Al, an alloy thereof, or stainless steel.

なお、管体の構成材料は棒状体から酸素を奪わないよう
な非酸化性の材料で、好ましくは酸素を良好に透過さけ
る材料を選択する必要がある。従って貴金属あるいは貴
金属を含有する合金などを用いることが好ましいが、管
体の内周面に非酸化性の材料からなる被覆層を形成した
ものでも差し支えない。
The material for forming the tube must be a non-oxidizing material that does not take away oxygen from the rod-shaped body, preferably a material that allows oxygen to pass through well. Therefore, it is preferable to use a noble metal or an alloy containing a noble metal, but a coating layer made of a non-oxidizing material may be formed on the inner peripheral surface of the tube.

次に第1図に示すロータリースウェージング装置などの
鍛造装置によって前記複合体3に冷間鍛造加工を施して
所望の線径まで縮径する。
Next, the composite body 3 is subjected to cold forging using a forging device such as a rotary swaging device shown in FIG. 1 to reduce the wire diameter to a desired wire diameter.

第1図に示すロータリースウエージング装置Aは、図示
路の駆動装置によって移動自在に設けられた複数のダイ
ス6を備えてなるものである。これらダイス6は、棒状
の複合体3をその長さ方向に移動させる際の移動空間の
周囲に、この移動空間を囲むように設けられたもので、
前記移動空間と直角な方向(第1図に示す矢印a方向)
に移動自在に、かつ、移動空間の周回り(第1図に示す
矢印す方向)に回転自在に保持されている。また、各ダ
イス6の内面には、前記複合体3を縮径加工するための
テーパ面6aが形成されていて、各ダイス6のテーパ面
6aで囲む間隙が先窄まり状となるようになっている。
The rotary swaging device A shown in FIG. 1 includes a plurality of dies 6 that are movably provided by a drive device along the illustrated path. These dice 6 are provided around the movement space when the rod-shaped composite body 3 is moved in its length direction, so as to surround this movement space.
A direction perpendicular to the movement space (direction of arrow a shown in FIG. 1)
It is held so as to be freely movable and rotatable around the movement space (in the direction of the arrow shown in FIG. 1). Further, a tapered surface 6a for reducing the diameter of the composite body 3 is formed on the inner surface of each die 6, so that the gap surrounded by the tapered surface 6a of each die 6 becomes tapered. ing.

前記複合体3を縮径するには、萌記ロータリースウェー
ジング装置Aを作動させるとともに、第1図に示すよう
に複合体3の一端をダイス6・・・の間の間隙に押し込
む。ここで前記ダイス6・・・は第1図の矢印a方向に
所定間隔往復移動しつつ回転しているために、複合体3
は一端側から順次鍛造しつつ縮径されて第1図に2点鎖
線で示す線径まで縮径され、複合圧密体13が得られる
。この縮径加工においては、回転しつつ往復運動する複
数のダイス6によって複合体3を鍛造しつつ縮径するた
めに、縮径加工中の複合体3に断線を起こすことなく大
きな加工率で縮径加工することができる。
To reduce the diameter of the composite 3, the Moeki rotary swaging device A is operated and one end of the composite 3 is pushed into the gap between the dies 6, as shown in FIG. Here, since the dice 6 are rotating while reciprocating at a predetermined interval in the direction of the arrow a in FIG.
is sequentially forged from one end side and is reduced in diameter to the wire diameter shown by the two-dot chain line in FIG. 1 to obtain a composite consolidated body 13. In this diameter reduction process, the composite body 3 is reduced in diameter while being forged by a plurality of dies 6 that reciprocate while rotating, so that the composite body 3 is reduced in diameter at a large processing rate without causing wire breakage. Diameter processing is possible.

なお、この例では複合体3の縮径加工にロータリースウ
ェージング装置Aを用いたが、縮径加工を行う場合、第
1図に示すロータリースウエージング装置Aを用いるこ
となく、その他の公知の鍛造装置、縮径装置などを用い
ても差し支えない。
In this example, the rotary swaging device A was used to reduce the diameter of the composite 3, but when performing the diameter reduction, other known forging methods could be used instead of using the rotary swaging device A shown in FIG. There is no problem in using a device, diameter reduction device, etc.

第1図に示すロータリースウェージング装置Aにより縮
径加工を行って複合体3を所望の線径まで縮径したなら
ば、縮径後の複合圧密体13に以下に説明するシースの
除去処理と最終焼結処理を施して酸化物超電導導体を製
造する。
After reducing the diameter of the composite body 3 to a desired wire diameter by performing the diameter reduction process using the rotary swaging device A shown in FIG. A final sintering process is performed to produce an oxide superconducting conductor.

即ち、前記複合圧密体I3から外側の金属シースとなっ
ている管体部分を除去し、これにより内部の圧密体を露
出させる。ここでの金属シースの除去には、例えば硝酸
などの酸、あるいは、苛性ソーダなどのアルカリの水溶
液などの処理液中に複合圧密体を浸漬させ、金属シース
のみを上記処理液中に溶解させる化学的な方法などが用
いられる。 なお、前記金属シースを除去する方法とし
て、機械切削加工あるいは線材全体を高周波誘導加熱炉
に通し、金属シースのみを選択的に加熱溶融させて除去
する手段などを用いることも可能である。 次いで、こ
のようにして露出せしめられた圧密体に対して熱処理を
施して焼結体を得る。
That is, the tubular portion serving as the outer metal sheath is removed from the composite compacted body I3, thereby exposing the internal compacted body. To remove the metal sheath, the composite compacted body is immersed in a treatment solution such as an acid such as nitric acid or an alkaline solution such as caustic soda, and only the metal sheath is dissolved in the treatment solution. Various methods are used. Note that as a method for removing the metal sheath, it is also possible to use mechanical cutting or passing the entire wire through a high-frequency induction heating furnace to selectively heat and melt only the metal sheath to remove it. Next, the thus exposed compacted body is subjected to heat treatment to obtain a sintered body.

この熱処理は酸素ガス雰囲気中において800〜950
℃で、6〜50時間程時間熱した後に、冷却することに
よって行う。なお、Y−Ba−Cu−0系の酸化物超電
導体を製造する場合は、加熱後に徐冷することか好まし
く、B i−S r−Ca−Cu−0系、あるいはT 
I−c a−B a−Cu−0系の酸化物超電導体を製
造する場合は急冷しても差し支えない。
This heat treatment is performed in an oxygen gas atmosphere at a temperature of 800 to 950
C. for about 6 to 50 hours, and then cooled. In addition, when manufacturing a Y-Ba-Cu-0-based oxide superconductor, it is preferable to slowly cool it after heating.
When producing an I-ca-B a-Cu-0-based oxide superconductor, rapid cooling may be used.

前述の熱処理により、上記圧密体中の各構成元素どうし
が互いに十分に固相反応を起こすとともに、圧密体の表
面が露出せしめられていることから、圧密体の表面全体
からその内部に酸素が効率よく拡散されて焼結され、酸
化物超電導導体か得られる。
Due to the heat treatment described above, each of the constituent elements in the compacted body undergoes a sufficient solid phase reaction with each other, and since the surface of the compacted body is exposed, oxygen is efficiently transferred from the entire surface of the compacted body to the inside. It is well diffused and sintered to obtain an oxide superconductor.

このように製造された酸化物超電導導体は、溶融凝固体
から形成した組成の均一な純粋な粉末を用いて形成され
ているので、極めて高い臨界電流密度を示すとともに、
この酸化物超電導導体は、高磁界中においても十分に高
い臨界電流密度を示す。また、ロータリースウェージン
グ装置Aによって十分に圧密された後に熱処理されてい
るので圧密体の内部で固相反応が十分になされ、臨界電
流密度の高い酸化物超電導体が生成される。更に、凝固
体の表面部分から、より均一で純粋な組成比の粉末を取
り出してこの粉末から超電導導体を製造すると、全体的
に不純物の少ない均一な組成の酸化物超電導体を生成さ
せることができ、高い臨界電流密度の酸化物超電導導体
が得られる。
Since the oxide superconductor manufactured in this way is formed using pure powder with a uniform composition formed from a molten solidified body, it exhibits an extremely high critical current density, and
This oxide superconductor exhibits a sufficiently high critical current density even in high magnetic fields. Further, since the compacted body is heat-treated after being sufficiently compacted by the rotary swaging device A, a solid phase reaction is sufficiently carried out inside the compacted body, and an oxide superconductor with a high critical current density is generated. Furthermore, if a powder with a more uniform and pure composition is extracted from the surface part of the solidified body and a superconducting conductor is produced from this powder, an oxide superconductor with a uniform composition with less impurities can be produced. , an oxide superconducting conductor with a high critical current density can be obtained.

なお、このように得られた酸化物超電導導体は、超電導
特性の劣化を防止し、安定化するために、あるいは、補
強のために、外面に保護コーティング層を形成しておく
ことが好ましい。この保護コーティング層を形成するに
は、溶融バスに錫や半田などの低融点金属の溶湯を満た
し、溶湯に超音波を付加した状態で酸化物超電導導体を
浸漬してコーティングする方法、あるいは、絶縁や補強
のためにエナメルやホルマールなどの有機物をコーティ
ングするなどの方法を採用することができる。
Note that it is preferable that a protective coating layer be formed on the outer surface of the oxide superconducting conductor obtained in this manner in order to prevent deterioration of superconducting properties and stabilize it, or for reinforcement. This protective coating layer can be formed by filling a molten bath with molten metal of a low melting point such as tin or solder, and coating the oxide superconducting conductor by immersing it in the molten metal while applying ultrasonic waves. Alternatively, methods such as coating with organic materials such as enamel or formal can be adopted for reinforcement.

なお、成膜法を利用してアモルイファスカーボンなどか
らなるコーティング層を形成しても良い。
Note that a coating layer made of amorphous carbon or the like may be formed using a film forming method.

このように保護コーティング層を形成しておくならば、
Y −B a−Cu−0系の超電導体などにおいては水
分による超電導特性の劣化現象を防止することができる
If a protective coating layer is formed in this way,
In Y-B a-Cu-0 type superconductors, deterioration of superconducting properties due to moisture can be prevented.

「実施例」 Y、03粉末とBaCO3粉末とCuO粉末をY;Ba
:Cu= 1 :2 :3の比率になるように混合して
混合粉末を得、この混合粉末を900℃で24時間加熱
して仮焼粉末を得た。次に仮焼粉末を粉砕し、更に酸素
ガス雰囲気中において890℃で14時間加熱する処理
を行ってY IB atc L1307−8なる組成の
酸化物超電導体を得た。
"Example" Y, 03 powder, BaCO3 powder and CuO powder Y;Ba
:Cu = 1:2:3 to obtain a mixed powder, and this mixed powder was heated at 900° C. for 24 hours to obtain a calcined powder. Next, the calcined powder was pulverized and further heated at 890° C. for 14 hours in an oxygen gas atmosphere to obtain an oxide superconductor having a composition of Y IB atc L1307-8.

次にこの酸化物超電導体を白金ルツボに投入し、酸素存
在雰囲気中で1300℃に加熱して酸化物超電導体を溶
解し、溶湯とした。
Next, this oxide superconductor was placed in a platinum crucible and heated to 1300° C. in an oxygen-existing atmosphere to melt the oxide superconductor and form a molten metal.

次にこの溶湯を酸素ガス雰囲気中において、900℃ま
で急冷し、900℃で10時間保持し、その後室温まで
200℃/時間の割合で徐冷して凝固体を得た。次いで
この凝固体の表面層のみを取り出して粉砕機にかけて粉
末を得た。
Next, this molten metal was rapidly cooled to 900°C in an oxygen gas atmosphere, held at 900°C for 10 hours, and then gradually cooled to room temperature at a rate of 200°C/hour to obtain a solidified body. Next, only the surface layer of this coagulated body was taken out and pulverized to obtain a powder.

このように得られた粉末を外径15mm、内径l0mm
の銀製の管体に充填し、ロータリースウェージング装置
や伸線機によって冷間加工を施して縮径し、酸化物コア
と銀ンースからなる直径1.0+++mの線材を得た。
The powder thus obtained was made into a powder with an outer diameter of 15 mm and an inner diameter of 10 mm.
The wire was filled into a silver tube and reduced in diameter by cold working using a rotary swaging device or a wire drawing machine to obtain a wire rod with a diameter of 1.0 +++ m consisting of an oxide core and a silver paste.

次いでこの線材の銀シースを希硝酸で溶解し、酸化物コ
アを露出させた。次にこの酸化物コアを酸素ガス雰囲気
中において890℃で3時間加熱する熱処理を施して酸
化物超電導導体を得た。
The silver sheath of this wire was then dissolved with dilute nitric acid to expose the oxide core. Next, this oxide core was heat-treated at 890° C. for 3 hours in an oxygen gas atmosphere to obtain an oxide superconducting conductor.

この酸化物超電導体は磁場を作用させない状態において
、 J c= 1.5 X 10 ’A/cm″を示し、5
Tの磁場中においても、 J c= 1 、OX 10 ’A/am”を示した。
This oxide superconductor exhibits J c = 1.5 x 10 'A/cm'' in the absence of a magnetic field, and 5
Even in a magnetic field of T, J c = 1 and OX 10 'A/am' were exhibited.

ところで、前記混合粉末と同等の組成の混合粉末を仮焼
して銀シースに充填し、これをロータリースウエージン
グ装置により縮径した後に銀シースを溶解除去し、更に
熱処理を施して得られた酸化物超電導導体のJcはI 
X l O’A/cm程度であり、その他に現在知られ
ている酸化物超電導導体のJcは大略0 、j 〜I 
X l O’A/cm’程度である。
Incidentally, a mixed powder having the same composition as the mixed powder described above is calcined and filled into a silver sheath, and the diameter of this is reduced using a rotary swaging device, and then the silver sheath is dissolved and removed. Jc of a superconducting conductor is I
X l O'A/cm, and the Jc of other currently known oxide superconductors is approximately 0, j ~ I
It is approximately X l O'A/cm'.

ところが、これら従来の酸化物超電導導体は、磁界中で
はITの磁場中であってもJcが0.1〜!X 10 
”A/cm”に低下することが知られている。
However, these conventional oxide superconducting conductors have a Jc of 0.1 to 0.1 even in an IT magnetic field! X 10
It is known that the value decreases to "A/cm".

従って本発明を実施することにより、強い磁場中におい
ても臨界電流密度の高い酸化物超電導導体を得ることが
できることが明らかとなった。
Therefore, it has been revealed that by carrying out the present invention, it is possible to obtain an oxide superconducting conductor with a high critical current density even in a strong magnetic field.

「発明の効果」 以上説明したように本発明によれば、固相反応に比較し
て拡散速度の大きな溶融拡散反応がなされる溶湯から凝
固させて凝固体を得、この凝固体から得た均一な組成の
粉末を用いて酸化物超電導導体を製造するので、臨界電
流密度の高い高品質の酸化物超電導導体を製造できる効
果がある。また、本発明を実施して得られた酸化物超電
導導体は、組成が整った均一な酸化物超電導体が生成さ
れているので高い磁場においても優れた臨界電流密度を
発揮する。
"Effects of the Invention" As explained above, according to the present invention, a solidified body is obtained by solidifying a molten metal that undergoes a melt-diffusion reaction with a higher diffusion rate than a solid phase reaction, and a uniform solidified body is obtained from this solidified body. Since the oxide superconducting conductor is manufactured using powder having a specific composition, it is possible to manufacture a high-quality oxide superconducting conductor with a high critical current density. In addition, the oxide superconductor obtained by carrying out the present invention exhibits an excellent critical current density even in a high magnetic field because a uniform oxide superconductor with a uniform composition is produced.

また、溶湯から得た凝固体の表面側には十分な酸素が補
給されて特性の優れた酸化物超電導体が生成されている
ので、この表面部分のみを集めて酸化物超電導導体を製
造すると臨界電流密度の高い優れた酸化物超電導導体を
製造できる効果がある。
In addition, sufficient oxygen is supplied to the surface side of the solidified material obtained from the molten metal, producing an oxide superconductor with excellent characteristics. Therefore, if only this surface portion is collected to produce an oxide superconductor, criticality will occur. This has the effect of producing excellent oxide superconducting conductors with high current density.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は複合体をロータリースウェージング装置で縮径
加工する状態を説明するための断面図である。 !・・・棒状体、 2・・・管体、 3・・・複合体、
6・・・ダイス、  I3・・・複合圧密体、I4・・
・圧密体、
FIG. 1 is a sectional view for explaining the state in which a composite body is reduced in diameter by a rotary swaging device. ! ...rod-shaped body, 2...tubular body, 3...complex,
6...Dice, I3...Composite consolidated body, I4...
・Consolidated body,

Claims (2)

【特許請求の範囲】[Claims] (1)多元素系の酸化物超電導体を具備してなる酸化物
超電導導体の製造方法において、酸化物超電導体を構成
する各元素を所定の成分比となるように含有させた溶湯
を形成し、この溶湯を凝固させて得た凝固体を金属管に
充填して複合体を得るとともに、複合体に縮径加工を施
して圧密体と金属シースとからなる複合圧密体を形成し
、次いでこの複合圧密体の金属シースを除去した後に、
圧密体を酸素存在雰囲気で熱処理することを特徴とする
酸化物超電導導体の製造方法。
(1) In a method for manufacturing an oxide superconductor comprising a multi-element oxide superconductor, a molten metal containing each element constituting the oxide superconductor in a predetermined component ratio is formed. The solidified body obtained by solidifying this molten metal is filled into a metal tube to obtain a composite body, and the composite body is subjected to diameter reduction processing to form a composite consolidated body consisting of a consolidated body and a metal sheath. After removing the metal sheath of the composite compact,
A method for producing an oxide superconducting conductor, which comprises heat-treating a compact in an oxygen-present atmosphere.
(2)多元素系の酸化物超電導体を具備してなる酸化物
超電導導体の製造方法において、酸化物超電導体を構成
する各元素を所定の成分比となるように含有させた溶湯
を形成し、この溶湯を凝固させて得た凝固体の表面部分
のみを分離して分離物を得、次いでこの分離物を金属管
に充填して複合体を得るとともに、複合体に縮径加工を
施して圧密体と金属シースからなる複合圧密体を形成し
、次いでこの複合圧密体の金属シースを除去した後に、
圧密体を酸素存在雰囲気で熱処理することを特徴とする
酸化物超電導導体の製造方法。
(2) In a method for manufacturing an oxide superconductor comprising a multi-element oxide superconductor, a molten metal containing each element constituting the oxide superconductor at a predetermined component ratio is formed. This molten metal is solidified and only the surface portion of the solidified body is separated to obtain a separated product, and then this separated product is filled into a metal tube to obtain a composite, and the composite is subjected to diameter reduction processing. After forming a composite consolidated body consisting of a consolidated body and a metal sheath, and then removing the metal sheath of this composite consolidated body,
A method for producing an oxide superconducting conductor, which comprises heat-treating a compact in an oxygen-present atmosphere.
JP63073929A 1987-10-02 1988-03-28 Manufacture of oxide superconductor Pending JPH01246720A (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP63073929A JPH01246720A (en) 1988-03-28 1988-03-28 Manufacture of oxide superconductor
CA000579101A CA1313031C (en) 1987-10-02 1988-10-03 Method of producing a superconductive oxide conductor and an oxide superconductor produced by the method
DE3880947T DE3880947T3 (en) 1987-10-02 1988-10-03 Process for the preparation of an oxide superconductor without sheathing and an oxide superconductor produced by this process.
DE19883882871 DE3882871T2 (en) 1987-10-02 1988-10-03 A method for producing an oxide superconducting conductor and an oxide superconducting conductor produced by this method.
EP88309195A EP0311337B1 (en) 1987-10-02 1988-10-03 Method of producing a superconductive oxide conductor and a superconductive oxide conductor produced by the method
CN88107874A CN1035220C (en) 1987-10-02 1988-10-03 Method of producing a superconductive oxide conductor and a superconductive oxide conductor produced by the method
US07/251,847 US5045527A (en) 1987-10-02 1988-10-03 Method of producing a superconductive oxide conductor
CA000579107A CA1313032C (en) 1987-10-02 1988-10-03 Method of producing an oxide superconductor without sheath and an oxide superconductor produced by the method
EP88309193A EP0310453B2 (en) 1987-10-02 1988-10-03 Method of producing an oxide superconductor without a sheath and an oxide superconductor produced by the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63073929A JPH01246720A (en) 1988-03-28 1988-03-28 Manufacture of oxide superconductor

Publications (1)

Publication Number Publication Date
JPH01246720A true JPH01246720A (en) 1989-10-02

Family

ID=13532315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63073929A Pending JPH01246720A (en) 1987-10-02 1988-03-28 Manufacture of oxide superconductor

Country Status (1)

Country Link
JP (1) JPH01246720A (en)

Similar Documents

Publication Publication Date Title
US5045527A (en) Method of producing a superconductive oxide conductor
EP0311337B1 (en) Method of producing a superconductive oxide conductor and a superconductive oxide conductor produced by the method
EP0397943B1 (en) Method of producing a superconductive oxide cable and wire
JPH01246719A (en) Manufacture of oxide superconductor
JPH01246720A (en) Manufacture of oxide superconductor
JPS63276819A (en) Manufacture of ceramic superconductive filament
JP2642644B2 (en) Method for producing oxide-based superconducting wire
JP2595309B2 (en) Manufacturing method of oxide superconducting wire
JP2583575B2 (en) Manufacturing method of oxide superconducting wire
JPH01115012A (en) Manufacture of oxide superconducting wire
JPH01246717A (en) Oxide superconductive wire and its manufacture
JP2612009B2 (en) Method for producing oxide-based superconducting wire
JPH01246716A (en) Oxide superconductive wire
JPH01194212A (en) Manufacture of oxide superconductive wire
JPH01122402A (en) Manufacture of oxide superconductive bulk material
JPH01175126A (en) Manufacture of multi-core oxide superconducting wire
JPH01175125A (en) Manufacture of multi-core oxide superconducting wire
JPH01122519A (en) Manufacture of oxide superconducting wire
JPH01151109A (en) Manufacture of oxide system superconductive wire
JPH01122520A (en) Manufacture of oxide superconducting wire
JPH0193010A (en) Manufacture of oxide type superconductive wire
JPH01175124A (en) Manufacture of oxide superconducting wire
JPH02263606A (en) Manufacture of oxide superconductor
JPH01145365A (en) Production of oxide-based superconductor
JPH01115858A (en) Oxide superconductor and its production