JPH09295873A - Production of oxide superconductive conductor and oxide superconductive conductor - Google Patents

Production of oxide superconductive conductor and oxide superconductive conductor

Info

Publication number
JPH09295873A
JPH09295873A JP8108304A JP10830496A JPH09295873A JP H09295873 A JPH09295873 A JP H09295873A JP 8108304 A JP8108304 A JP 8108304A JP 10830496 A JP10830496 A JP 10830496A JP H09295873 A JPH09295873 A JP H09295873A
Authority
JP
Japan
Prior art keywords
powder
raw material
rod
oxide
solidified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8108304A
Other languages
Japanese (ja)
Inventor
Shinichi Asakura
慎一 朝倉
Nobuyuki Sadakata
伸行 定方
Takashi Saito
隆 斉藤
Mikio Nakagawa
三紀夫 中川
Tsukasa Kono
宰 河野
Shigeo Nagaya
重夫 長屋
Takaaki Shimonosono
隆明 下之園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Chubu Electric Power Co Inc
Original Assignee
Fujikura Ltd
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd, Chubu Electric Power Co Inc filed Critical Fujikura Ltd
Priority to JP8108304A priority Critical patent/JPH09295873A/en
Publication of JPH09295873A publication Critical patent/JPH09295873A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing an oxide superconductive conductor enabling the normal continuous growth of a crystal of oxide superconductor and the growth of the crystal of oxide superconductor while keeping excellent crystal orientation and to obtain the oxide superconductive conductor excellent in mechanical strength and critical current density under magnetic field. SOLUTION: Raw material powder mainly consisting of powdery oxide superconductive material is shaped, sintering the resultant shaped material to produce a raw sintered rod 21, and melting and solidifying the obtained raw sintered rod 21 by melt-solidification to produce an oxide superconductive conductor. This production method includes at least a process adding 3-10wt.% of silver powder and 0.5-1wt.% of platinum powder to the raw material powder. The oxide superconductive conductor, which is produced by shaping and sintering the raw material powder mainly consisting of the powdery oxide superconductive material and melting and solidifying the obtained rod 21, contains 3-10wt.% of silver and 0.5-1wt.% of platinum.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、極低温の冷媒中に
浸漬された超電導機器に給電するための超電導電流リー
ド線などに用いられる酸化物超電導導体の製造方法及び
酸化物超電導導体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an oxide superconducting conductor used in a superconducting current lead wire for supplying power to a superconducting device immersed in a cryogenic refrigerant, and an oxide superconducting conductor. is there.

【0002】[0002]

【従来の技術】一般に、交流超電導コイル、超電導変圧
器などの超電導機器は、液体ヘリウムなどの極低温冷媒
中に浸漬して用いられ、それらの機器から導出された超
電導導線は、冷媒中で、外部電源から導かれた電流リー
ド線に接続されている。ここでの電流リード線として
は、常電導性のものよりも、超電導性のものの使用が望
ましいとされている。そこで、超電導電流リード線とし
て、Y−Ba−Cu−O系超電導導体の使用が考えられ
ている。
2. Description of the Related Art Generally, superconducting devices such as an AC superconducting coil and a superconducting transformer are used by being immersed in a cryogenic refrigerant such as liquid helium, and a superconducting wire derived from those devices is used in a refrigerant. Connected to a current lead led from an external power supply. As the current lead wire, it is said that it is desirable to use a superconducting wire rather than a normal conducting wire. Therefore, use of a Y-Ba-Cu-O-based superconducting conductor as a superconducting current lead wire has been considered.

【0003】この種のY−Ba−Cu−O系超電導導体
の従来の製造方法としては、まず、Y−Ba−Cu−O
系超電導材料粉末を成形後、焼結して原料焼結ロッドを
作製し、ついで、この原料焼結ロッドを溶融凝固法によ
り溶融凝固することにより得られる。ここでの溶融凝固
法としては、円環状の電気炉を用い、原料焼結ロッドの
上端部側から電気炉内に導入し、該原料焼結ロッドを徐
々に引き上げることにより、原料焼結ロッドに部分的に
形成された溶融部を上端部側から下端部側に徐々に移動
させるとともに電気炉から導出された部分を冷やして凝
固させて、凝固部にY−Ba−Cu−O系超電導体の結
晶を形成していた。
[0003] As a conventional method for manufacturing this type of Y-Ba-Cu-O-based superconductor, first, Y-Ba-Cu-O is used.
The raw material sintered rod is prepared by molding and then sintering the raw material superconducting material powder, and then the raw material sintered rod is melt-solidified by a melt-solidification method. As the melting and solidifying method here, an annular electric furnace is used, and the raw material sintering rod is introduced into the electric furnace from the upper end side, and the raw material sintering rod is gradually pulled up to form a raw material sintering rod. The melted portion formed partially is gradually moved from the upper end portion side to the lower end portion side, and the portion led out from the electric furnace is cooled and solidified, and the solidified portion is made of the Y-Ba-Cu-O-based superconductor. It had formed crystals.

【0004】[0004]

【発明が解決しようとする課題】ところで、前述の酸化
物超電導導体の製造方法により得られたY−Ba−Cu
−O系超電導導体にあっては、臨界電流密度(Jc)や
機械的強度において不満があり、これらの問題を解決す
るために、酸化物超電導材料粉末を主成分とする原料粉
末にAg粉末あるいはPt粉末を添加する方法が考えられ
ている。しかしながらAg粉末を添加した場合において
は、添加量の大小にかかわらず、図4に示すように原料
焼結ロッド7の溶融部9の下に異常凝固物12が生じ、
さらに該異常凝固物12は溶融凝固法を進めるにつれて
(時間が経過するにつれて)大きくなり、正常なY−B
a−Cu−O系超電導体の結晶の連続成長が阻害され、
得られる酸化物超電導体の結晶配向性が低下し、臨界電
流密度が低いという欠点あった。なお、図4中符号11
は、溶融部9と凝固部10との境界に位置する成長界面
である。
By the way, Y-Ba-Cu obtained by the above-mentioned method for producing an oxide superconducting conductor is described.
The -O-based superconducting conductor is unsatisfactory in terms of critical current density (Jc) and mechanical strength. In order to solve these problems, in order to solve these problems, the raw material powder containing the oxide superconducting material powder as the main component is added with Ag powder or A method of adding Pt powder has been considered. However, when Ag powder is added, irrespective of the amount of addition, abnormal solidified matter 12 is generated below the melting portion 9 of the raw material sintering rod 7, as shown in FIG.
Further, the abnormal solidified matter 12 becomes larger as the melt solidification method proceeds (as time passes), and the normal Y-B
The continuous growth of crystals of the a-Cu-O-based superconductor is hindered,
The crystal orientation of the obtained oxide superconductor is lowered, and the critical current density is low. Incidentally, reference numeral 11 in FIG.
Is a growth interface located at the boundary between the fusion zone 9 and the solidification zone 10.

【0005】また、Pt粉末を加える場合は、Pt粉末の
添加量の大小にかかわらず、図4と同様の異常凝固物が
生じてしまい、該異常凝固物に起因して臨界電流密度が
低くなるという欠点があった。従って、前述の酸化物超
電導導体の製造方法により得られるY−Ba−Cu−O
系酸化物超電導導体にあっては、磁場下での臨界電流密
度が低いという問題があった。
When Pt powder is added, an abnormal coagulated substance similar to that shown in FIG. 4 is produced regardless of the amount of Pt powder added, and the critical current density decreases due to the abnormal coagulated substance. There was a drawback. Therefore, Y-Ba-Cu-O obtained by the above-mentioned method for producing an oxide superconducting conductor is obtained.
The system oxide superconductor has a problem that the critical current density is low under a magnetic field.

【0006】本発明は、上記事情に鑑みてなされたもの
で、酸化物超電導体の結晶の連続成長を正常に行うこと
ができ、しかも優れた結晶配向性を維持しながら酸化物
超電導体の結晶を成長させることができる酸化物超電導
導体の製造方法と、これによって得られる機械的強度が
優れ、かつ磁場下での臨界電流密度が優れた酸化物超電
導導体を提供することにある。
The present invention has been made in view of the above circumstances, and it is possible to normally carry out continuous growth of crystals of an oxide superconductor, while maintaining excellent crystal orientation and maintaining the crystal of the oxide superconductor. It is intended to provide a method for producing an oxide superconducting conductor capable of growing GaN, and an oxide superconducting conductor obtained by the method, which has excellent mechanical strength and excellent critical current density under a magnetic field.

【0007】[0007]

【課題を解決するための手段】請求項1記載の発明は、
酸化物超電導材料粉末を主成分とする原料粉末を成形
後、焼結して原料焼結ロッドを形成し、該原料焼結ロッ
ドを溶融凝固法により溶融凝固して酸化物超電導導体を
製造する方法において、前記原料粉末中に銀粉末3〜1
0重量%と白金粉末0.5〜1重量%をそれぞれ添加す
る工程を少なくとも備えることを特徴とする酸化物超電
導導体の製造方法を前記課題の解決手段とした。また、
請求項2記載の発明は、酸化物超電導材料粉末を主成分
とする原料粉末を成形、焼結してなる原料焼結ロッドが
溶融凝固されてなる酸化物超電導導体であって、前記原
料焼結ロッド中には銀3〜10重量%と白金0.5〜1
重量%とがそれぞれ含有されていることを特徴とする酸
化物超電導導体を前記課題の解決手段とした。
According to the first aspect of the present invention,
A method for producing an oxide superconducting conductor by molding a raw material powder containing an oxide superconducting material powder as a main component, sintering the raw material powder to form a raw material sintering rod, and melting and solidifying the raw material sintering rod by a melt solidification method. In the raw material powder, silver powder 3 to 1
A method for manufacturing an oxide superconducting conductor, which comprises at least a step of adding 0% by weight and 0.5 to 1% by weight of platinum powder, respectively, is a means for solving the above problems. Also,
The invention according to claim 2 is an oxide superconducting conductor obtained by melting and solidifying a raw material sintering rod obtained by molding and sintering a raw material powder containing oxide superconducting material powder as a main component. 3-10 wt% silver and 0.5-1 platinum in the rod
The oxide superconducting conductor is characterized in that each of them is contained in an amount of 1% by weight.

【0008】[0008]

【発明の実施の形態】以下、本発明の酸化物超電導導体
の製造方法をY−Ba−Cu−O系超電導導体の製造方
法に適用した例について説明する。まず、酸化物超電導
材料粉末としてのYBa2Cu37-x(以下、Y123と
略す)粉末に、Y2BaCuO5(以下、Y211と略す)
粉末と、銀粉末と、白金粉末を添加、混合して原料粉末
を用意する。ここでのY123粉末とY211粉末との
混合比率は、10モル:1〜5モル程度、好ましくは1
0モル:3〜5モル程度、より好ましくは10モル:4
モル程度である。Y211粉末の添加量が5モルを越え
ると、Y123結晶の連続成長が阻害されるため好まし
くなく、Y211粉末の添加量が1モル未満であると、
高臨界電流密度(Jc)をもたらす磁束ピンニング量が
少ないため好ましくない。
BEST MODE FOR CARRYING OUT THE INVENTION An example in which the method for producing an oxide superconducting conductor according to the present invention is applied to a method for producing a Y-Ba-Cu-O based superconducting conductor will be described below. First, YBa 2 Cu 3 O 7-x (hereinafter abbreviated as Y123) powder as an oxide superconducting material powder is added to Y 2 BaCuO 5 (hereinafter abbreviated as Y211).
Powder, silver powder, and platinum powder are added and mixed to prepare a raw material powder. The mixing ratio of the Y123 powder and the Y211 powder here is about 10 mol: 1 to 5 mol, preferably 1 mol.
0 mol: about 3 to 5 mol, more preferably 10 mol: 4
It is about a mole. When the amount of Y211 powder added exceeds 5 mol, continuous growth of Y123 crystals is hindered, which is not preferable. When the amount of Y211 powder added is less than 1 mol,
It is not preferable because the amount of magnetic flux pinning that causes the high critical current density (Jc) is small.

【0009】前記原料粉末中に銀粉末と白金粉末のうち
一方のみしか添加されていないと、得られる溶融凝固ロ
ッドの表面が粗くなったり、あるいは原料焼結ロッドの
溶融部の下に異常凝固物が発生し、Y123の結晶の連
続成長が阻害され、Y123の結晶配向性が低下してし
まう。前記原料粉末中の銀粉末の添加量は、3〜10重
量%、好ましくは5〜10重量%である。銀粉末の添加
量が3重量%未満であると異常凝固物が発生しやすく、
一方、銀粉末の添加量が10重量%を越えると、凝固部
中の銀粉末の分布が不均一となり、特に、銀粉末が凝固
部の中央に集まり易く、これによって得られるY−Ba
−Cu−O系超電導導体の電流経路が狭くなり、超電導
特性が低下するため好ましくない。
If only one of silver powder and platinum powder is added to the raw material powder, the surface of the obtained melt-solidified rod becomes rough, or an abnormal solidified substance is formed under the fused part of the raw material sintered rod. Occurs, the continuous growth of Y123 crystals is hindered, and the crystal orientation of Y123 deteriorates. The addition amount of silver powder in the raw material powder is 3 to 10% by weight, preferably 5 to 10% by weight. When the addition amount of the silver powder is less than 3% by weight, abnormal coagulated matter is easily generated,
On the other hand, if the amount of the silver powder exceeds 10% by weight, the distribution of the silver powder in the solidified portion becomes non-uniform, and in particular, the silver powder tends to gather at the center of the solidified portion, and the Y-Ba obtained thereby is obtained.
The current path of the -Cu-O-based superconducting conductor is narrowed, and the superconducting characteristics are undesirably reduced.

【0010】前記原料粉末中の白金粉末の含有量は、
0.5〜1重量%である。白金粉末の添加量が0.5重
量%未満であると、異常凝固物が発生し易いため好まし
くない。一方、白金粉末の添加量が1重量%を越える
と、原料焼結ロッドを溶融凝固する際に液相である溶融
部に塊状のY123の結晶が晶出し易く、凝固部に形成
されるY123の結晶の結晶配向性を低下させるため好
ましくない。
The content of platinum powder in the raw material powder is
0.5 to 1% by weight. If the amount of the platinum powder is less than 0.5% by weight, an abnormal solidified product is likely to be generated, which is not preferable. On the other hand, when the amount of platinum powder added exceeds 1% by weight, when the raw material sintered rod is melted and solidified, massive Y123 crystals are easily crystallized in the melted portion which is a liquid phase, and Y123 formed in the solidified portion is easily crystallized. It is not preferable because it lowers the crystal orientation of the crystals.

【0011】ついで、混合した原料粉末を常温静水圧圧
縮成形法(CIP)などにより圧縮成形してロッド状出
発材を作製した後、該ロッド状出発材を酸素雰囲気中に
おいて900〜930℃の温度で、8〜24時間程度加
熱して焼結して、原料焼結ロッドを作製する。ついで、
原料焼結ロッドを溶融凝固法により溶融凝固させて溶融
凝固ロッドを作製する。
Then, the mixed raw material powder is compression molded by a room temperature isostatic pressing method (CIP) or the like to prepare a rod-shaped starting material, and the rod-shaped starting material is heated in an oxygen atmosphere at a temperature of 900 to 930 ° C. Then, the raw material sintered rod is manufactured by heating and sintering for about 8 to 24 hours. Then
A raw material sintered rod is melted and solidified by a melt solidification method to produce a melt-solidified rod.

【0012】図1は、ここでの溶融凝固法に用いられる
電気炉を説明するための概略構成図である。この電気炉
20は、円環状のものであり、その中央には作製した原
料焼結ロッド21を通すための孔23が設けられ、さら
に、この孔23の周囲に加熱手段25が設けられてお
り、前記孔23内に通した原料焼結ロッド21を部分的
に加熱して溶融できるようになっているものである。加
熱手段25のピーク温度は、原料焼結ロッド21の融点
より高い温度に設定される。また、電気炉20内の温度
分布は、Y123の結晶を成長させるのに必要な温度勾
配であることが好ましく、例えば、原料焼結ロッド21
の融点が950℃であるとき160℃/cm程度とされ
る。
FIG. 1 is a schematic configuration diagram for explaining an electric furnace used in the melting and solidifying method here. The electric furnace 20 has an annular shape, and a hole 23 for passing the produced raw material sintering rod 21 is provided in the center of the electric furnace 20, and a heating means 25 is provided around the hole 23. The raw material sintering rod 21 passed through the hole 23 can be partially heated and melted. The peak temperature of the heating means 25 is set to a temperature higher than the melting point of the raw material sintering rod 21. Further, the temperature distribution in the electric furnace 20 is preferably a temperature gradient necessary for growing the crystal of Y123, for example, the raw material sintering rod 21.
When the melting point of is 950 ° C., it is set to about 160 ° C./cm.

【0013】このような円環状の電気炉20を用いて原
料焼結ロッド21を溶融凝固させるには、原料焼結ロッ
ド21を上端部27側から電気炉20の孔23内に導入
し、該原料焼結ロッド21をその長手方向に沿った軸2
6を中心にして回転させながら徐々に引き上げることに
より、この原料焼結ロッド21に部分的に形成された溶
融部9を上端部側から下端部側に徐々に移動させるとと
もに孔23から導出された部分を冷やして凝固させる
と、凝固部10にY123の結晶が形成される。ここで
凝固部のY123の結晶の成長速度は、原料焼結ロッド
21の引き上げ速度により制限され、1〜3mm/程度
とされる。
In order to melt and solidify the raw material sintering rod 21 using such an annular electric furnace 20, the raw material sintering rod 21 is introduced into the hole 23 of the electric furnace 20 from the upper end 27 side, The shaft 2 along the longitudinal direction of the raw material sintering rod 21
By gradually pulling up while rotating around 6 as a center, the molten portion 9 partially formed in the raw material sintering rod 21 was gradually moved from the upper end side to the lower end side and was led out from the hole 23. When the portion is cooled and solidified, crystals of Y123 are formed in the solidified portion 10. Here, the growth rate of the Y123 crystal in the solidified portion is limited by the pulling rate of the raw material sintering rod 21 and is set to about 1 to 3 mm /.

【0014】ついで、溶融凝固ロッドを酸素雰囲気中に
おいて450〜500℃の温度で、48〜150時間程
度アニールする。この後、溶融凝固ロッドを常温まで冷
却すると、目的とするY−Ba−Cu−O系超電導導体
が得られる。このY−Ba−Cu−O系超電導導体は、
銀3〜10重量%と白金0.5〜1重量%とがそれぞれ
含まれている。前述のようにして製造されたY−Ba−
Cu−O系超電導導体は、極低温の冷媒中に浸漬された
超電導機器に給電するための超電導電流リード線などに
好適に用いることができる。
Then, the melted and solidified rod is annealed in an oxygen atmosphere at a temperature of 450 to 500 ° C. for about 48 to 150 hours. Thereafter, when the melt-solidified rod is cooled to room temperature, the intended Y-Ba-Cu-O-based superconductor is obtained. This Y-Ba-Cu-O-based superconducting conductor is
3 to 10% by weight of silver and 0.5 to 1% by weight of platinum are contained, respectively. Y-Ba- manufactured as described above
The Cu-O-based superconducting conductor can be suitably used as a superconducting current lead wire for supplying power to a superconducting device immersed in a cryogenic refrigerant.

【0015】この例のY−Ba−Cu−O系超電導導体
の製造方法にあっては、Y123粉末を主成分とする原
料粉末中に銀粉末3〜10重量%と白金粉末0.5〜1
重量%をそれぞれ添加することにより、この原料粉末を
成形後、焼結して形成した原料焼結ロッド21を溶融凝
固法により溶融凝固する際に、溶融部9の下に異常凝固
物が生じることや凝固部中の銀粉末の分布が不均一とな
ることを防止でき、Y123の結晶の連続成長を正常に
行うことができ、しかも優れた結晶配向性を維持しなが
ら酸化物超電導体の結晶を成長させることができる。ま
た、このようにして製造されたY−Ba−Cu−O系超
電導導体にあっては、銀3〜10重量%と白金0.5〜
1重量%が含有されているので、銀と白金のうち一方の
みが含まれたY−Ba−Cu−O系超電導導体に比べ
て、機械的強度が優れており、しかもY123の結晶配
向性が優れ、磁場下での臨界電流密度に優れる。
In the method of manufacturing the Y-Ba-Cu-O-based superconducting conductor of this example, 3 to 10% by weight of silver powder and 0.5 to 1 of platinum powder are contained in the raw material powder containing Y123 powder as the main component.
When the raw material sintered rod 21 formed by sintering the raw material powder after molding is melted and solidified by the melt solidification method, an abnormal solidified matter is generated under the melted portion 9 by adding the respective weight%. It is possible to prevent non-uniform distribution of the silver powder in the solidified portion or the solidified portion, to normally perform continuous growth of Y123 crystals, and to maintain the crystal orientation of the oxide superconductor while maintaining excellent crystal orientation. Can grow. Further, in the Y-Ba-Cu-O-based superconducting conductor manufactured as described above, 3 to 10% by weight of silver and 0.5 to 5% of platinum are used.
Since it contains 1% by weight, it has excellent mechanical strength as compared with a Y-Ba-Cu-O-based superconducting conductor containing only one of silver and platinum, and has a crystal orientation of Y123. Excellent and excellent in critical current density under magnetic field.

【0016】なお、前述酸化物超電導導体の製造方法の
例においては、原料焼結ロッドを溶融凝固する際に、原
料焼結ロッドに部分的に形成された溶融部を上端部側か
ら下端部側に徐々に移動させる一方向溶融凝固法を採用
する場合について説明したが、必ずしもこの限りではな
く、溶融部を下端部側から上端部側に徐々に移動させて
もよく、あるいは、溶融部を上端部側から下端部側に徐
々に移動させた後、溶融部を下端部側から上端部側に徐
々に移動させる二方向溶融凝固法を採用してもよい。ま
た、前述の酸化物超電導導体の製造方法の例において
は、Y−Ba−Cu−O系超電導導体を製造する場合に
ついて説明したが、A−B−Cu−O系(ただし、Aは
La,Ce,Y,Sc,Ybなどの周期律表IIIa族元素の1
種以上を示し、BはSr,Baなどの周期律表IIa族元素
の1種以上を示す)系超電導導体を製造する場合にも同
様になし得る。
In the example of the method for producing the oxide superconducting conductor, when the raw material sintered rod is melted and solidified, the melted portion partially formed on the raw material sintered rod is changed from the upper end side to the lower end side. Although the case of adopting the one-way melting and solidifying method in which the melting portion is gradually moved to the above is not limited to this, the melting portion may be gradually moved from the lower end side to the upper end side, or the melting portion is moved to the upper end side. A two-way melt solidification method may be employed in which the melted portion is gradually moved from the lower end side to the lower end side after being gradually moved from the part side to the lower end side. In the example of the method for manufacturing the oxide superconducting conductor described above, the case of manufacturing the Y-Ba-Cu-O-based superconducting conductor has been described. However, the AB-Cu-O-based (where A is La, Ce, Y, Sc, Yb, etc. 1 of the IIIa group elements of the periodic table
The same can be applied to the case of producing a superconducting conductor of the type (1) or more, and B represents one or more elements of Group IIa of the periodic table such as Sr and Ba.

【0017】[0017]

【実施例】 (実験例1)YBa2Cu37-x(Y123)粉末とY2
aCuO5(Y211)粉末と比率が10モル:3モルの
粉末に、Ag粉末0〜10重量%と、Pt粉末0〜0.5
重量%とを混合した原料粉末(サンプルNo.1〜4)
を用意した。ここでの原料粉末の配合を下記表1に示
す。
Example (Experimental Example 1) YBa 2 Cu 3 O 7-x (Y123) powder and Y 2 B
aCuO 5 (Y211) powder in a ratio of 10 mol: 3 mol, Ag powder 0 to 10 wt%, Pt powder 0 to 0.5
Raw powder mixed with wt% (Sample Nos. 1 to 4)
Was prepared. The composition of the raw material powder here is shown in Table 1 below.

【0018】[0018]

【表1】 [Table 1]

【0019】ついで、混合した原料粉末を常温静水圧圧
縮成形法により成形圧力2000kg/cm2で圧縮成
形し、ロッド状出発材を作製した。これらのロッド状出
発材を、酸素雰囲気中で900℃、8時間で焼結し原料
焼結ロッドを作製した。ついで、これらの原料焼結ロッ
ドを一方向溶融凝固法により溶融凝固し、溶融凝固ロッ
ドを作製した。ここでの一方向溶融凝固法では円環状の
電気炉を用い、電気炉のピーク温度は1000℃にセッ
トし、温度勾配は950℃において160℃/cmであ
った。また、原料焼結ロッドを溶融凝固させる際、原料
焼結をその長手方向に沿った軸を中心にして回転させな
がら電気炉内を通すとともに、YBa2Cu37-x(Y1
23)の結晶を成長速度1mm/hで成長させた。つい
で、溶融凝固ロッドを酸素雰囲気中において500℃の
温度で、48時間程度アニールした後、冷却した。ここ
で得られた溶融凝固ロッドの大きさは、径2〜3mm、
長さ20〜100mmであった。
Then, the mixed raw material powder was compression-molded by a room temperature isostatic pressing method at a molding pressure of 2000 kg / cm 2 to produce a rod-shaped starting material. These rod-shaped starting materials were sintered in an oxygen atmosphere at 900 ° C. for 8 hours to prepare raw material sintered rods. Next, these raw material sintered rods were melted and solidified by the unidirectional melting and solidifying method to prepare a melted and solidified rod. In the unidirectional melting and solidification method here, an annular electric furnace was used, the peak temperature of the electric furnace was set to 1000 ° C., and the temperature gradient was 160 ° C./cm at 950 ° C. Further, when the raw material sintered rod is melted and solidified, the raw material sintered body is passed through the electric furnace while being rotated around an axis along the longitudinal direction, and YBa 2 Cu 3 O 7-x (Y1
The crystal of 23) was grown at a growth rate of 1 mm / h. Next, the melted and solidified rod was annealed at a temperature of 500 ° C. in an oxygen atmosphere for about 48 hours and then cooled. The size of the melting and solidifying rod obtained here has a diameter of 2 to 3 mm,
The length was 20 to 100 mm.

【0020】次に、得られた溶融凝固ロッドの外観につ
いて調べた。その結果を図2に示す。図2は、サンプル
No.1〜4の原料粉末を用いて得られた溶融凝固ロッ
ドの外観を示す図であり、図2(a)はPt、Ag粉末も
Pt粉末も添加されていないサンプルサンプルNo.1
の原料粉末を用いて作製した溶融凝固ロッド、(b)は
Pt粉末のみ0.5重量%添加されたサンプルNo.2
の原料粉末を用いて作製した溶融凝固ロッド、(c)は
Ag粉末のみ10重量%添加されたサンプルNo.3の
原料粉末を用いて作製した溶融凝固ロッド、(d)はA
g粉末10重量%とPt粉末0.5重量%の両方が添加さ
れたサンプルNo.4の原料粉末を用いて作製した溶融
凝固ロッドである。
Next, the appearance of the obtained melt-solidified rod was examined. The result is shown in FIG. 2 shows the sample No. It is a figure which shows the external appearance of the fusion solidification rod obtained using the raw material powder of 1-4, FIG.2 (a) is Pt, Ag powder, and neither Pt powder nor sample sample No. 1
Melted and solidified rod produced by using the raw material powder of No. 3, and (b) is sample No. in which only 0.5 wt% of Pt powder is added. Two
Melted and solidified rod manufactured by using the raw material powder of No. 1, (c) is sample No. 10 in which only 10% by weight of Ag powder is added. Melt-solidifying rod manufactured using the raw material powder of No. 3, (d) is A
Sample No. 10 to which both 10% by weight of g powder and 0.5% by weight of Pt powder were added. 4 is a melting and solidifying rod produced by using the raw material powder of No. 4.

【0021】図2に示した結果から明らかなように、A
g粉末もPt粉末も添加されていない、溶融凝固ロッド
や、Ag粉末とPt粉末のうち一方のみが添加された溶融
凝固ロッドは、表面が粗く、溶融部の下に好ましくない
異常凝固物があり、Y123の結晶の連続成長が妨げら
れた。これに対してPt粉末とAg粉末の両方が添加され
た溶融凝固ロッドは、表面が緻密で、異常凝固物も認め
られず、Y123の結晶の連続成長を可能にすることが
分る。
As is clear from the results shown in FIG.
The melt-solidification rod to which neither g powder nor Pt powder is added, or the melt-solidification rod to which only one of Ag powder and Pt powder is added has a rough surface and has an undesired abnormal solidification substance under the melting portion. , Y123 continuous growth was hindered. On the other hand, the melt-solidified rod to which both Pt powder and Ag powder are added has a dense surface and no abnormal solidified material is observed, and it can be seen that Y123 crystals can be continuously grown.

【0022】(実験例2)YBa2Cu37-x(Y12
3)粉末とY2BaCuO5(Y211)粉末と比率が10
モル:3モルの粉末に、Ag粉末3重量%と、Pt粉末
0.5〜3重量%とを混合した原料粉末(サンプルN
o.5〜7)を用意した。ここでの原料粉末の配合を下
記表2に示す。ついで、混合した原料粉末を用いて前述
の実験例1と同様にして溶融凝固ロッドを作製した。
Experimental Example 2 YBa 2 Cu 3 O 7-x (Y12
3) The ratio of powder to Y 2 BaCuO 5 (Y211) powder is 10
Mol: 3 mol of powder mixed with 3 wt% of Ag powder and 0.5 to 3 wt% of Pt powder (Sample N
o. 5-7) were prepared. The composition of the raw material powder here is shown in Table 2 below. Then, using the mixed raw material powders, a melting and solidifying rod was produced in the same manner as in Experimental Example 1 described above.

【0023】[0023]

【表2】 [Table 2]

【0024】次に、得られた溶融凝固ロッドの結晶の構
造について光学顕微鏡を用いて調べた。その結果を図3
に示す。図3は、サンプルNo.5〜7の原料粉末を用
いて得られた溶融凝固ロッドの成長界面と凝固部の結晶
の構造を示す写真である。であり、図3(a)はサンプ
ルNo.5の原料粉末を用いて作製した溶融凝固ロッ
ド、(b)サンプルNo.6の原料粉末を用いて作製し
た溶融凝固ロッド、(c)サンプルNo.7の原料粉末
を用いて作製した溶融凝固ロッドである。
Next, the crystal structure of the obtained melt-solidified rod was examined by using an optical microscope. The result is shown in FIG.
Shown in FIG. 3 shows sample No. It is a photograph which shows the growth interface of the solidification | melting solidification rod obtained using 5-7 raw material powder, and the crystal structure of a solidification part. 3A is the sample No. (B) Sample No. 5, a melting and solidifying rod produced using the raw material powder of No. 5 (C) Sample No. 6, a melt-solidifying rod manufactured using the raw material powder of No. 6 7 is a melting and solidifying rod produced by using the raw material powder of No. 7.

【0025】図3に示した結果から明らかなようにサン
プルNo.7の原料粉末を用いて作製した溶融凝固ロッ
ドは、液相である溶融部に塊状のY123の結晶が晶出
しており、凝固部に形成されるY123の結晶の結晶配
向性を低下させていることが分る。この結果から、原料
粉末にAg粉末が添加されているときPt粉末の添加量を
0.5〜1重量%とすることが、溶融部に塊状のY12
3の結晶が晶出されることの防止に有効であることが分
る。
As is clear from the results shown in FIG. In the melting and solidifying rod manufactured using the raw material powder of No. 7, lumpy Y123 crystals are crystallized in the melting part which is a liquid phase, and the crystal orientation of the Y123 crystals formed in the solidifying part is lowered. I understand. From this result, when Ag powder is added to the raw material powder, the addition amount of Pt powder should be 0.5 to 1% by weight.
It can be seen that it is effective in preventing the crystals of 3 from being crystallized.

【0026】(実験例3)YBa2Cu37-x(Y12
3)粉末とY2BaCuO5(Y211)粉末と比率が10
モル:3モルあるいは10モル:5モルのYBaCuOの
粉末に、Agを3〜10重量%、Ptを0.5〜1重量%
を混合した原料粉末(サンプルNo.8〜17)を用意
した。ここでの原料粉末の配合を下記表3に示す。つい
で、混合した原料粉末を用い、YBa2Cu37-x(Y1
23)の結晶の成長速度を1mm/hまたは3mm/h
で成長させた以外は前述の実験例1と同様にして溶融凝
固ロッドを作製した。成長後、溶融凝固ロッドは臨界電
流温度を測定するためにゆっくり冷やした。次に、直流
四端子法により77K、0テスラにおける臨界電流(I
c)と臨界電流密度(Jc)を測定した。その結果を表3
に合わせて示す。
Experimental Example 3 YBa 2 Cu 3 O 7-x (Y12
3) The ratio of powder to Y 2 BaCuO 5 (Y211) powder is 10
3 to 10% by weight of YBaCuO powder and 3 to 10% by weight of Ag and 0.5 to 1% by weight of Pt.
Raw material powders (Sample Nos. 8 to 17) mixed with each other were prepared. The composition of the raw material powder here is shown in Table 3 below. Then, using the mixed raw material powder, YBa 2 Cu 3 O 7-x (Y 1
23) Crystal growth rate of 1 mm / h or 3 mm / h
A molten and solidified rod was produced in the same manner as in Experimental Example 1 except that the rod was grown in 1. After growth, the melt-solidification rod was slowly cooled to measure the critical current temperature. Next, by the DC four-terminal method, a critical current (I
c) and the critical current density (Jc) were measured. Table 3 shows the results.
Shown along with.

【0027】[0027]

【表3】 [Table 3]

【0028】表3に示した結果から明らかなように、P
t粉末とAg粉末を特定量添加することにより、高臨界電
流密度(Jc)のものが得られることが分る。
As is clear from the results shown in Table 3, P
It can be seen that a high critical current density (Jc) can be obtained by adding a specific amount of t powder and Ag powder.

【0029】[0029]

【発明の効果】以上説明したように本発明の酸化物超電
導導体の製造方法にあっては、酸化物超電導材料粉末を
主成分とする原料粉末中に銀粉末3〜10重量%と白金
粉末0.5〜1重量%をそれぞれ添加することにより、
この原料粉末を成形後、焼結して形成した原料焼結ロッ
ドを溶融凝固法により溶融凝固する際に、溶融部の下に
異常凝固物が生じることや凝固部中の銀粉末の分布が不
均一となることを防止でき、酸化物超電導体の結晶の連
続成長を正常に行うことができ、しかも優れた結晶配向
性を維持しながら酸化物超電導体の結晶を成長させるこ
とができる。また、本発明の酸化物超電導導体にあって
は、銀3〜10重量%と白金0.5〜1重量%とがそれ
ぞれ含有されていることにより、銀と白金のうち一方の
みが含まれた酸化物超電導導体に比べて、機械的強度が
優れ、しかも酸化物超電導体の結晶配向性が優れ、磁場
下での臨界電流密度に優れ、極低温の冷媒中に浸漬され
た超電導機器に給電するための超電導電流リード線など
として好適に用いることができる。
As described above, according to the method for producing an oxide superconducting conductor of the present invention, 3 to 10% by weight of silver powder and 0 of platinum powder are contained in the raw material powder containing the oxide superconducting material powder as the main component. By adding 0.5 to 1% by weight respectively,
When the raw material sintering rod formed by sintering this raw material powder is melted and solidified by the melt solidification method, abnormal solidified matter is generated under the melted portion and the distribution of silver powder in the solidified portion is not uniform. It is possible to prevent the oxide superconductor from becoming uniform, to normally perform continuous growth of the oxide superconductor crystal, and to grow the oxide superconductor crystal while maintaining excellent crystal orientation. Further, the oxide superconducting conductor of the present invention contained 3 to 10% by weight of silver and 0.5 to 1% by weight of platinum, respectively, so that only one of silver and platinum was included. Compared to oxide superconductors, mechanical strength is excellent, and the crystal orientation of oxide superconductors is excellent, critical current density is excellent under magnetic field, and power is supplied to superconducting devices immersed in cryogenic refrigerant. It can be suitably used as a superconducting current lead wire or the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の酸化物超電導導体の製造方法におい
て、原料焼結ロッドを溶融凝固する際に用いる電気炉の
例を説明するための概略構成図である。
FIG. 1 is a schematic configuration diagram for explaining an example of an electric furnace used for melting and solidifying a raw material sintered rod in a method for producing an oxide superconducting conductor of the present invention.

【図2】 実験例1のサンプルNo.1〜4の原料粉末
を用いて得られた溶融凝固ロッドの外観を示す図であ
る。
2 is a sample No. of Experimental example 1. FIG. It is a figure which shows the external appearance of the fusion solidification rod obtained using 1-4 raw material powders.

【図3】 実験例2のサンプルNo.5〜7の原料粉末
を用いて得られた溶融凝固ロッドの成長界面と凝固部の
結晶の構造を示す写真である。
3 is a sample No. of Experimental Example 2. It is a photograph which shows the growth interface of the solidification | melting solidification rod obtained using 5-7 raw material powder, and the crystal structure of a solidification part.

【図4】 従来の酸化物超電導導体の製造方法により製
造されたY−Ba−Cu−O系超電導導体の外観を示す
図である。
FIG. 4 is a diagram showing an appearance of a Y—Ba—Cu—O-based superconducting conductor manufactured by a conventional method for manufacturing an oxide superconducting conductor.

【符号の説明】[Explanation of symbols]

9・・・溶融部、10・・・凝固部、11・・・成長界面、20・
・・電気炉、21・・・原料焼結ロッド、23・・・孔、25・・
・加熱手段、26・・・軸、27・・・上端部。
9 ... Melting part, 10 ... Solidification part, 11 ... Growth interface, 20 ...
..Electric furnace, 21 ... Raw material sintering rod, 23 ... Hole, 25 ...
-Heating means, 26 ... Shaft, 27 ... Upper end.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 斉藤 隆 東京都江東区木場1丁目5番1号 株式会 社フジクラ内 (72)発明者 中川 三紀夫 東京都江東区木場1丁目5番1号 株式会 社フジクラ内 (72)発明者 河野 宰 東京都江東区木場1丁目5番1号 株式会 社フジクラ内 (72)発明者 長屋 重夫 愛知県名古屋市緑区大高町字北関山20番地 の1 中部電力株式会社電力技術研究所内 (72)発明者 下之園 隆明 愛知県名古屋市緑区大高町字北関山20番地 の1 中部電力株式会社電力技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takashi Saito 1-5-1, Kiba, Koto-ku, Tokyo Fujikura Ltd. (72) Inventor Mikio Nakagawa 1-1-5, Kiba, Koto-ku, Tokyo Shareholders Inside Fujikura (72) Inventor Satoshi Kono 1-5-1 Kiba, Koto-ku, Tokyo Stock Company Inside Fujikura (72) Inventor Shigeo Nagaya 1 of 20 Kitakanzan, Otakamachi, Nagoya, Aichi Electric Power Co., Ltd. Electric Power Technology Research Institute (72) Inventor Takaaki Shimonosono 20-1 Kitakousan, Otaka-cho, Midori-ku, Nagoya, Aichi Chubu Electric Power Co., Inc.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 酸化物超電導材料粉末を主成分とする原
料粉末を成形後、焼結して原料焼結ロッドを形成し、該
原料焼結ロッドを溶融凝固法により溶融凝固して酸化物
超電導導体を製造する方法において、前記原料粉末中に
銀粉末3〜10重量%と白金粉末0.5〜1重量%をそ
れぞれ添加する工程を少なくとも備えることを特徴とす
る酸化物超電導導体の製造方法。
1. A raw material powder containing an oxide superconducting material powder as a main component is molded and then sintered to form a raw material sintered rod, and the raw material sintered rod is melted and solidified by a melt solidification method to form an oxide superconducting material. A method for producing an oxide superconducting conductor, comprising at least a step of adding 3 to 10% by weight of silver powder and 0.5 to 1% by weight of platinum powder in the raw material powder.
【請求項2】 酸化物超電導材料粉末を主成分とする原
料粉末を成形、焼結してなる原料焼結ロッドが溶融凝固
されてなる酸化物超電導導体であって、前記酸化物超電
導導体には銀3〜10重量%と白金0.5〜1重量%と
がそれぞれ含有されていることを特徴とする酸化物超電
導導体。
2. An oxide superconducting conductor obtained by molding and sintering a raw material powder containing an oxide superconducting material powder as a main component, the raw material sintering rod being melted and solidified, wherein: An oxide superconducting conductor containing 3 to 10% by weight of silver and 0.5 to 1% by weight of platinum, respectively.
JP8108304A 1996-04-26 1996-04-26 Production of oxide superconductive conductor and oxide superconductive conductor Pending JPH09295873A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8108304A JPH09295873A (en) 1996-04-26 1996-04-26 Production of oxide superconductive conductor and oxide superconductive conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8108304A JPH09295873A (en) 1996-04-26 1996-04-26 Production of oxide superconductive conductor and oxide superconductive conductor

Publications (1)

Publication Number Publication Date
JPH09295873A true JPH09295873A (en) 1997-11-18

Family

ID=14481313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8108304A Pending JPH09295873A (en) 1996-04-26 1996-04-26 Production of oxide superconductive conductor and oxide superconductive conductor

Country Status (1)

Country Link
JP (1) JPH09295873A (en)

Similar Documents

Publication Publication Date Title
CA1327441C (en) Method of fabricating a superconductive body, and apparatus and systems comprising the body
US5011823A (en) Fabrication of oxide superconductors by melt growth method
JPH09295873A (en) Production of oxide superconductive conductor and oxide superconductive conductor
KR910009198B1 (en) Method of manufacturing superconductive products
JPH09500083A (en) High temperature superconducting solid and method for producing the same
JP3597319B2 (en) Method for producing oxide superconducting conductor and melt solidification apparatus
JP2518043B2 (en) Method for producing ceramics by melt solidification method
JP3560541B2 (en) Method for producing oxide superconductor single crystal
JPH052933A (en) Manufacture of oxide superconductive wire
JP3709532B2 (en) Manufacturing method of oxide superconductor
JPH05258625A (en) Manufacture for superconductive wire
JPH03150208A (en) Preparation of oxide superconductive fiber
JP2000247795A (en) Production of re123 oxide superconductive bulk body
Balkin et al. The Effect of Er2BaCuo5 Additions on the Microstructure and Magnetic Properties of Zone Melt Textured YBa2Cu3O6+ x Wires
JP3709531B2 (en) Manufacturing method of oxide superconductor
JPH0791056B2 (en) Method for producing oxide superconductor having new structure
JPH0717714A (en) Production of superconducting oxide
JPH0816014B2 (en) Manufacturing method of oxide superconducting bulk material
Poeppel et al. Recent improvements in bulk properties of ceramic superconductors
JPH03216919A (en) Manufacture of oxide superconductor wire
Lehndorff Conductor Preparation and Phase Evolution
JP2001270716A (en) Oxide superconductor and method for producing the same
JPH05234437A (en) Manufacture of oxide superconductive wire
JPH05286718A (en) Oxide superconductor containing rare-earth element and its production
JPH04119985A (en) Production of ceramic superconductor

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040106