JPH0672712A - Oxide superconducting material containing rare-earth element and its production - Google Patents

Oxide superconducting material containing rare-earth element and its production

Info

Publication number
JPH0672712A
JPH0672712A JP4143670A JP14367092A JPH0672712A JP H0672712 A JPH0672712 A JP H0672712A JP 4143670 A JP4143670 A JP 4143670A JP 14367092 A JP14367092 A JP 14367092A JP H0672712 A JPH0672712 A JP H0672712A
Authority
JP
Japan
Prior art keywords
phase
precursor
superconducting material
oxide
oxide superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4143670A
Other languages
Japanese (ja)
Other versions
JPH07106906B2 (en
Inventor
Mitsuru Morita
充 森田
Kiyonori Takebayashi
聖記 竹林
Keiichi Kimura
圭一 木村
Masamoto Tanaka
将元 田中
Katsuyoshi Miyamoto
勝良 宮本
Kiyoshi Sawano
清志 澤野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2099025A external-priority patent/JPH0832594B2/en
Priority to US07/834,554 priority Critical patent/US5308799A/en
Priority to DE69114445T priority patent/DE69114445T2/en
Priority to EP91910631A priority patent/EP0486698B1/en
Priority to PCT/JP1991/000769 priority patent/WO1991019029A1/en
Priority to JP3162360A priority patent/JP2556401B2/en
Priority claimed from PCT/JP1991/000769 external-priority patent/WO1991019029A1/en
Priority claimed from JP4055203A external-priority patent/JP2550253B2/en
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP4143670A priority patent/JPH07106906B2/en
Publication of JPH0672712A publication Critical patent/JPH0672712A/en
Publication of JPH07106906B2 publication Critical patent/JPH07106906B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • Y02E40/64

Abstract

PURPOSE:To improve the critical current density by heating a precursor for a specified superconductor to a specified. temp. to form a liq. phase contg. a 211 phase, Ba and Cu, then slowly cooling the precursor to grow a 123 phase and enriching the precursor with oxygen. CONSTITUTION:The RE2O3 (RE is rare-earth element) such as Y2O3 and a Ba and Cu compd. such as BaCuO2 are mixed so that the composition of (RE/Ba/ Cu) is positioned in the area enclosed by the points in atomic % of (10/60/30), (10/20/70) and (50/20/30), and further Pt or PtO2 powder is added to the mixture by 0.05-5wt.% as Pt and kneaded to form a precursor for the oxide superconductor. The precursor us then heated and kept at 900-1300 deg.C to form a liq. phase contg. RE2BaCuO5 (211 phase), Ba and Cu, then slowly cooled from 900-1100 deg.C when the REBa2CU3O7-x (123 phase) begins to be formed at the rate of 5 deg.C/hr to grow a 123 phase and enriched with oxygen to obtain an oxide superconductor in which the 211 phase of <=5mum is finely dispersed and having high critical current density.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は酸化物超電導材料および
その製造方法に関するものである。
TECHNICAL FIELD The present invention relates to an oxide superconducting material and a method for producing the same.

【0002】[0002]

【従来の技術】REBa2 Cu37-X (123相)の
組成を有する超電導体材料は、臨界電流密度を上げるた
め、現在主に溶融法による材料作製がなされている。溶
融法と呼ばれている製造プロセスはMTG(Melt
Texture Growth)法、QMG(Quen
ch and Melt Growth)法、MPMG
(Melt Power Melt Growth)法
などがあげられる。MPMG法の特徴は一旦、溶融、冷
却したRE元素を含む材料を粉砕、加圧成形して前駆体
を作製することにあり、後の熱処理はQMG法と同様で
ある。又、前駆体の作製方法としてBa,Cuの酸化物
だけを一旦、溶融急冷した後、RE23粉末とともに
粉砕、混練、成形し前駆体を作製し同様の熱処理を行う
QMG法も報告されている。ここで、前駆体とは211
相(RE2 BaCuO5 )と液相状態から123相を成
長させる熱処理を行う前の成形体を意味する。
2. Description of the Related Art Superconductor materials having a composition of REBa 2 Cu 3 O 7-X (123 phase) are currently mainly manufactured by the melting method in order to increase the critical current density. The manufacturing process called the melting method is MTG (Melt).
Texture Growth method, QMG (Quen)
ch and Melt Growth) method, MPMG
(Melt Power Melt Growth) method and the like. The MPMG method is characterized in that a material containing the RE element that has been melted and cooled is crushed and pressure-molded to prepare a precursor, and the subsequent heat treatment is the same as in the QMG method. Also, as a method for producing a precursor, a QMG method has been reported in which only Ba and Cu oxides are once melt-quenched, and then pulverized, kneaded, and molded together with RE 2 O 3 powder to produce a precursor and the same heat treatment. ing. Here, the precursor is 211
It means a compact before heat treatment for growing 123 phase from the liquid phase with the phase (RE 2 BaCuO 5 ).

【0003】MTG法とQMG,MPMG法のちがい
は、最終的にえられる超電導材料が一方向に配向した多
結晶体(MTG)と大傾角粒界のない単結晶状の材料
(QMG,MPMG)のちがいと、123相中に含まれ
る211相の細かさ(MTGは、数十μm。QMG,M
PMGは1μm程度)のちがいにある。
The difference between the MTG method and the QMG, MPMG method is that the finally obtained superconducting material is a unidirectionally oriented polycrystalline body (MTG) and a single crystal material without a large tilt grain boundary (QMG, MPMG). The difference is that the fineness of the 211 phase contained in the 123 phase (MTG is several tens of μm. QMG, M
PMG is about 1 μm).

【0004】[0004]

【発明が解決しようとする課題】高い臨界電流密度(J
c)(77K,数Tで104 A/平方センチメートル以
上)を有する超電導材料を得るには211相を微細に分
散させることが重要である。Jcを向上させるには、磁
束の動きを止めるピン止め中心の導入や電流パスをさえ
ぎるクラックの発生防止が必要である。QMG材料中に
微細に分散した211相は磁束のピン止め中心としてま
たクラックの防止に有効であると考えられている。21
1相を微細に分散させるためには前駆体を熱処理する
際、半溶融状態に於て直径数μm程度の針状の211相
を液相のBaCu酸化物中に分散させる必要がある。そ
のためには前駆体中の組成を調整する必要がある。
[Problems to be Solved by the Invention] High critical current density (J
c) It is important to disperse the 211 phase finely in order to obtain a superconducting material having (7 K, 10 4 A / square centimeter or more at several T). In order to improve Jc, it is necessary to introduce pinning centers that stop the movement of magnetic flux and prevent the generation of cracks that block current paths. The 211 phase finely dispersed in the QMG material is considered to be effective as a pinning center for magnetic flux and also for preventing cracks. 21
In order to disperse one phase finely, it is necessary to disperse the needle-like 211 phase having a diameter of several μm in the semi-molten state in the liquid BaCu oxide when the precursor is heat-treated. For that purpose, it is necessary to adjust the composition in the precursor.

【0005】たとえばMTG法の様に123相と211
相とを混合した前駆体では、半溶融状態で数十μmのブ
ロック状の211相が多くでき最終的な材料中の211
相も大きくなってしまう。これに対しMPMG法では一
旦溶融し冷却した材料およびそれを粉砕した材料中に2
11相を微細に分散させる組成を有しているため、半溶
融状態で針状の211相ができ結果的に211相が微細
に分散した超電導材料が得られるものと考えられてい
る。しかしながらこの組成がどのような物質からなりど
のような作用(メカニズム)で211相が微細分散する
かについての知見は乏しく、現在のところ、溶融、冷
却、粉砕の行程を経て前駆体を作製している。本発明は
超電導相である123相に211相を微細分散させるた
めの手段を提供し、高い臨界電流密度の超電導材料を得
ることを目的とする。
For example, as in the MTG method, 123 phases and 211
In the precursor mixed with the phase, a large number of block-like 211 phases of several tens of μm can be formed in the semi-molten state, and the 211
The phase will also grow. On the other hand, in the MPMG method, the amount of 2
Since it has a composition in which 11 phases are finely dispersed, a needle-like 211 phase is formed in a semi-molten state, and as a result, a superconducting material in which the 211 phase is finely dispersed can be obtained. However, there is little knowledge about what kind of substance this composition consists of and what kind of action (mechanism) causes the 211 phase to finely disperse, and at present, the precursor is produced through the steps of melting, cooling, and crushing. There is. An object of the present invention is to provide a means for finely dispersing a 211 phase in a 123 phase which is a superconducting phase, and to obtain a superconducting material having a high critical current density.

【0006】[0006]

【課題を解決するための手段】本発明は前記課題を解決
するものであって、主な金属元素が、RE(Yを含む希
土類元素の1種類またはそれらの組合せ)、Ba、Cu
からなる酸化物超電導材料において、超電導相であるR
EBa2 Cu37-X 結晶中に常電導相である5μm以
下のRE2 BaCuO5 が微細に分散した組織を有しか
つ、Ptを0.05重量パーセントから5重量パーセン
ト含有していることを特徴とする酸化物超電導材料であ
る。
Means for Solving the Problems The present invention is to solve the above problems, and the main metal elements are RE (one kind of rare earth element including Y or a combination thereof), Ba and Cu.
In the oxide superconducting material consisting of R, which is a superconducting phase
EBA 2 Cu 3 O 7-X crystal has a structure in which RE 2 BaCuO 5 of 5 μm or less, which is a normal conducting phase, is finely dispersed, and contains 0.05 to 5% by weight of Pt. Is an oxide superconducting material.

【0007】またRE23 、およびBa、Cuの化合
物を各々の金属元素比(RE:Ba:Cu)が原子パー
セントで(10:60:30),(10:20:7
0),(50:20:30)の点で囲まれる領域内の組
成であるように混合し、さらにPt粉末またはPtの化
合物を前記混合粉中にPt元素として0.05重量パー
セントから5重量パーセント添加した後、混練、加圧成
型して酸化物超電導体の前駆体を作製し、前記前駆体を
900度C〜1300度Cに加熱しRE2 BaCuO5
とBaおよびCuを含む液相とし、900度C〜110
0度Cの温度領域から5度C/時間以下の冷却速度で徐
冷することによりREBa2 Cu37-X 相を成長させ
た後、酸素富化処理を行うことを特徴とする酸化物超電
導材料の製造方法である。
In addition, RE 2 O 3 and the compounds of Ba and Cu are (10:60:30) and (10: 20: 7) in terms of the atomic ratio of each metal element (RE: Ba: Cu).
0) and (50:20:30) are mixed so as to have a composition in a region surrounded by points, and Pt powder or a compound of Pt is further added as 0.05% by weight to 5% by weight as Pt element in the mixed powder. After adding in a percentage, kneading and pressure molding are carried out to prepare a precursor of an oxide superconductor, and the precursor is heated to 900 ° C. to 1300 ° C. and RE 2 BaCuO 5 is added.
And a liquid phase containing Ba and Cu, 900 ° C.-110
An oxide characterized by performing an oxygen enrichment treatment after growing a REBa 2 Cu 3 O 7-X phase by gradually cooling from a temperature range of 0 ° C at a cooling rate of 5 ° C / hour or less. It is a method of manufacturing a superconducting material.

【0008】[0008]

【作用】本発明者らは、RE23 とBa、Cuの酸化
物に白金(Pt)を微量添加して酸化物超電導材料を作
製することによって上記課題を解決できることを発見
し、本発明を完成させた。
The present inventors have discovered that the above problems can be solved by adding a trace amount of platinum (Pt) to an oxide of RE 2 O 3 , Ba, and Cu to produce an oxide superconducting material. Was completed.

【0009】すなわち 溶融法で作製した超電導材料の
最終組織(211相の分散状態)は、前駆体中のY,B
aとCu量やこれらの元素の結合状態すなわち出発原料
および他の添加元素の有無に大きく依存する。211相
が微細に分散した組織を得るには、半溶融状態(211
相+BaCu酸化物の液相)ですでに211が微細分散
している必要がある。そのために前駆体が加熱され21
1相ができる反応過程で最終組織がほとんど決まること
になる。このような理由から前駆体中の出発原料(例え
ば、123,211,RE23 ,BaCuO2 ,Ba
Cu22 ・・・)や添加元素が超電導材料の特性を決
める重要な要素になる。
That is, the final structure (dispersed state of the 211 phase) of the superconducting material produced by the melting method is Y, B in the precursor.
It largely depends on the amounts of a and Cu and the bonding state of these elements, that is, the presence or absence of the starting material and other additional elements. To obtain a structure in which the 211 phase is finely dispersed, a semi-molten state (211
It is necessary that 211 is already finely dispersed in the phase + liquid phase of BaCu oxide). Therefore the precursor is heated 21
The final structure is almost determined by the reaction process in which one phase is formed. For this reason, the starting materials in the precursor (for example, 123, 211, RE 2 O 3 , BaCuO 2 , Ba
Cu 2 O 2 ...) and additional elements are important factors that determine the characteristics of the superconducting material.

【0010】具体的には、211相を微細分散させるた
めの条件は二つある。(1)前駆体中のRE,Ba,C
uが実質的にRE23 とBa、Cuの酸化物および炭
酸塩からなること。(2)前駆体中にPtが微量に含ま
れていること。この両者を満たす必要がある。このよう
な条件下では、前駆体を加熱した時の211相の生成反
応は下の式のようになる。 RE23 +L(Ptを含むBaCu酸化物の液相) → 211(直径1μmの針状)+L
Specifically, there are two conditions for finely dispersing the 211 phase. (1) RE, Ba, C in the precursor
u substantially consists of RE 2 O 3 and Ba and Cu oxides and carbonates. (2) A small amount of Pt is contained in the precursor. It is necessary to satisfy both of these. Under such conditions, the reaction for producing the 211 phase when the precursor is heated is as shown in the following equation. RE 2 O 3 + L (liquid phase of BaCu oxide containing Pt) → 211 (needle-shaped with a diameter of 1 μm) + L

【0011】これに対し片方の条件しか満たしていない
場合は下の式のようになり、いずれも細かな211相は
得られない。 REBa2 Cu37-X +Pt→211(数十μm)+
L RE23 +L′(BaCu酸化物の液相)→ 211
(直径10μm程度)+L′
On the other hand, when only one of the conditions is satisfied, the following equation is obtained, and a fine 211 phase cannot be obtained in either case. REBa 2 Cu 3 O 7-X + Pt → 211 (tens of μm) +
L RE 2 O 3 + L ′ (BaCu oxide liquid phase) → 211
(Diameter about 10 μm) + L '

【0012】次にPtの添加量は、0.05重量パーセ
ント程度からその効果が現れ、211相の一部が細かく
なりはじめる。また、5重量パーセント程度以上添加す
ると数十μmのPtとBaとの複合酸化物が211相を
包むようにして多く生成するようになり、大きな非超電
導相を形成してしまう。2重量パーセント以上ではPt
Ba複合酸化物がかなり多く見られた。最終組織の元素
分析の結果から、Ptは211相ではなく主に123相
に含まれており、約2重量パーセント以上添加した場
合、固溶できなくなったPtがBaとの複合酸化物を作
るものと思われる。また半溶融状態ではPtは液相に溶
けているものと思われる。このようなことからPtの添
加量は0.3から2.0重量パーセントが特に望まし
い。なおPtの添加はPt単体でも酸化物等のPtの化
合物でもよい。
Next, the effect appears when the amount of Pt added is about 0.05% by weight, and a part of the 211 phase begins to become fine. Further, when it is added in an amount of about 5 weight percent or more, a large amount of composite oxide of Pt and Ba of several tens of μm is generated so as to wrap the 211 phase, and a large non-superconducting phase is formed. Pt above 2 weight percent
A considerable amount of Ba composite oxide was found. From the result of elemental analysis of the final structure, Pt is mainly contained in 123 phase instead of 211 phase, and when about 2 wt% or more is added, Pt which cannot be solid-solved forms a complex oxide with Ba. I think that the. Also, Pt seems to be dissolved in the liquid phase in the semi-molten state. For this reason, the amount of Pt added is particularly preferably 0.3 to 2.0 weight percent. The addition of Pt may be Pt alone or a Pt compound such as an oxide.

【0013】また本発明の製造方法においては、RE2
3 、およびBa、Cuの化合物を各々の金属元素比
(RE:Ba:Cu)が原子パーセントで(10:6
0:30),(10:20:70),(50:20:3
0)の点で囲まれる領域内の組成であるように混合し、
さらにPt粉末またはPtの化合物を前記混合粉中にP
t元素として0.05重量パーセントから5重量パーセ
ント添加した後、混練、加圧成型し酸化物超電導体の前
駆体を作製する。次に、この前駆体を10度C/時間以
上の昇温速度で加熱し、RE組成によって900度C〜
1300度Cに保持しRE2 BaCuO5 とBaおよび
Cuを含む液相にした後、REBa2 Cu37-X がで
き始める900度C〜1100度Cまでの温度領域から
5度C/時間以下の冷却速度で徐冷することによりRE
Ba2 Cu37-X 相を成長させた後、酸素富化処理を
行うことにより酸化物超電導材料を製造する。
Further, in the manufacturing method of the present invention, RE 2
O 3 and a compound of Ba and Cu have a metal element ratio (RE: Ba: Cu) of 10: 6 in atomic percent.
0:30), (10:20:70), (50: 20: 3)
0) Mix so that the composition is within the area surrounded by points,
Further, Pt powder or a Pt compound is added to the mixed powder as P.
After adding 0.05 wt% to 5 wt% as a t element, kneading and pressure molding are performed to prepare a precursor of an oxide superconductor. Next, this precursor is heated at a temperature rising rate of 10 ° C./hour or more, depending on the RE composition, 900 ° C.
After being kept at 1300 ° C and made into a liquid phase containing RE 2 BaCuO 5 and Ba and Cu, REBa 2 Cu 3 O 7-X starts to form and the temperature range from 900 ° C to 1100 ° C is 5 ° C / hour. RE by slowly cooling at the following cooling rate
After growing the Ba 2 Cu 3 O 7-X phase, an oxygen enrichment treatment is performed to manufacture an oxide superconducting material.

【0014】この場合、211相が微細に分散した単結
晶状の123相を得るには、前駆体中のRE、Ba、C
u元素が適した割合で存在していなければならない。
(RE:Ba:Cu)が(50:20:30)よりRE
が多くなると液相成分が不足して123相の成長が進ま
なくなる。また(10:20:70)よりCuが多い場
合、123相が箔片状になりバルクの材料が得られなく
なる。また、(10:60:30)よりBaが多い場
合、液相成分が多くなり試料形状が保てなくなる。この
ような理由から(RE:Ba:Cu)を(50:20:
30),(10:20:70),(10:60:30)
で囲まれる組成範囲に限定した。なお、RE:Ba:C
uの金属元素の割合では、(1:2:3)比率よりRE
が多い比率の方が211相は細かくなる傾向がある。
In this case, in order to obtain the single crystal 123 phase in which the 211 phase is finely dispersed, RE, Ba and C in the precursor are obtained.
The u element must be present in a suitable proportion.
(RE: Ba: Cu) is RE from (50:20:30)
If the amount is large, the liquid phase component becomes insufficient and the growth of the 123 phase does not proceed. When the amount of Cu is more than (10:20:70), the 123 phase becomes a foil piece and a bulk material cannot be obtained. Further, when Ba is larger than (10:60:30), the liquid phase component is large and the sample shape cannot be maintained. For this reason, (RE: Ba: Cu) is changed to (50:20:
30), (10:20:70), (10:60:30)
It was limited to the composition range surrounded by. In addition, RE: Ba: C
In the ratio of u metal element, RE is more than (1: 2: 3) ratio.
When the ratio is large, the 211 phase tends to be finer.

【0015】また前記各原料粉末を加工成型した前駆体
は900〜1300度Cに加熱され、RE2 BaCuO
5 (211相)とBaおよびCuを含む液相になる。こ
の加熱温度範囲はRE組成によって異なるが、下限の9
00度Cは123相生成温度超、つまり211相である
固相と液相とが共存する温度域である。一方上限の13
00度Cは211相の溶解温度未満、つまり液相だけに
なって前駆体が形状を保持し得なくならない温度であ
る。なお、加熱速度は前駆体が熱衝撃で割れない程度の
昇温速度(好ましくは200度C/時間以下)にする。
The precursor obtained by processing and molding each of the raw material powders is heated to 900 to 1300 ° C., and RE 2 BaCuO
5 (211 phase) and a liquid phase containing Ba and Cu. This heating temperature range varies depending on the RE composition, but the lower limit is 9
00 degrees C is a temperature range in which the 123-phase formation temperature is exceeded, that is, the solid phase and the liquid phase, which are 211 phases, coexist. On the other hand, the upper limit of 13
00 ° C. is below the melting temperature of the 211 phase, that is, the temperature at which the precursor cannot retain its shape only in the liquid phase. The heating rate is such that the precursor is not cracked by thermal shock (preferably 200 ° C./hour or less).

【0016】次にこの固相と液相との共存状態から冷却
してREBa2 Cu37-X 相(123相)を生成さ
せ、成長させる。このさい900度C〜1100度Cの
温度領域はRE相組成によって異なるが123相生成温
度であり、この123相生成温度以下は5度C/時間以
下として123相を十分成長させる。特に123相生成
温度から40度C下の温度までは過冷却による結晶核生
成を防止するため徐冷が重要である。なおこの徐冷は段
階的に一定温度に保持するステップ状の冷却をしても同
様の目的を達成することができる。
Next, the REBa 2 Cu 3 O 7-X phase (123 phase) is generated by cooling from the coexisting state of the solid phase and the liquid phase and grown. In this case, the temperature range of 900 ° C. to 1100 ° C. is a 123-phase formation temperature although it varies depending on the RE phase composition. In particular, slow cooling is important from the 123-phase formation temperature to a temperature below 40 ° C. to prevent crystal nucleation due to supercooling. The slow cooling can achieve the same purpose by performing stepwise cooling in which the temperature is gradually maintained at a constant temperature.

【0017】なお上記のようにして製造した材料はRE
Ba2 Cu37-X の酸素欠損xを減少させて超電導特
性を発揮させるべく、酸素気流中で加熱する酸素富化処
理を行なう。これは前記製造工程において酸素気流中で
徐冷することにより行なっても、一旦常温に冷却した後
400度C以上まで再加熱して行なってもよい。
The material manufactured as described above is RE
In order to reduce the oxygen deficiency x of Ba 2 Cu 3 O 7-X and exert the superconducting property, an oxygen enrichment treatment is performed by heating in an oxygen stream. This may be performed by gradually cooling in an oxygen stream in the manufacturing process, or by once cooling to room temperature and then reheating to 400 ° C. or higher.

【0018】[0018]

【実施例】【Example】

実施例1.出発材料と添加元素を変えた前駆体を作製し
材料の組織と77K、1Tにおける臨界電流密度(J
c)を測定した。
Example 1. A precursor with different starting elements and added elements was prepared, and the structure of the material and the critical current density at 77K and 1T (J
c) was measured.

【0019】[0019]

【表1】 [Table 1]

【0020】出発原料は、つぎの4種類を用い金属元素
比(Y:Ba:Cu)がほぼ(13:17:23)にな
るように配合した。添加元素はPtの他には、比較材と
してAg,Cr,Ni,Ti,Pb,Pd,Zn,Zr
を用い、酸化物の状態で添加し0.5重量パーセントに
なるように前駆体を作製した。この前駆体を1150度
Cまで1時間で加熱、30分間保持した後、1005度
Cまで30分で冷却した後950度Cまで1度C/時間
で徐冷し123相を成長させた。酸素富化処理は酸素気
流中で600度Cで5時間保持した後、室温まで10度
C/時間で徐冷した。結果はつぎの表1のようになっ
た。
The following four starting materials were used and compounded so that the metal element ratio (Y: Ba: Cu) was approximately (13:17:23). In addition to Pt, the additive elements are Ag, Cr, Ni, Ti, Pb, Pd, Zn, and Zr as comparative materials.
Was added in the form of an oxide to prepare a precursor so as to have a concentration of 0.5% by weight. The precursor was heated to 1150 ° C. for 1 hour, held for 30 minutes, cooled to 1005 ° C. in 30 minutes, and then gradually cooled to 950 ° C. at 1 ° C./hour to grow 123 phases. In the oxygen enrichment treatment, the mixture was kept at 600 ° C for 5 hours in an oxygen stream, and then gradually cooled to room temperature at 10 ° C / hour. The results are shown in Table 1 below.

【0021】上記の結果から、Y23 とBaCuの複
合酸化物とPt元素からなる前駆体からは優れた特性の
材料ができることがわかった。
From the above results, it has been found that a precursor having a composite oxide of Y 2 O 3 and BaCu and a Pt element can produce a material having excellent characteristics.

【0022】[0022]

【表2】 [Table 2]

【0023】次にPtの添加量の検討を行った。6.5
23 +6BaCu22 +11BaCuO2 からな
る混合粉末に対しPtO2 粉末を用いPt元素の重量パ
ーセントを変化させた前駆体を作製し、前記熱処理方法
により試料を作製した。その結果は表2のようになっ
た。
Next, the amount of Pt added was examined. 6.5
A precursor in which the weight percentage of Pt element was changed was prepared by using PtO 2 powder with respect to a mixed powder composed of Y 2 O 3 + 6BaCu 2 O 2 + 11BaCuO 2, and a sample was prepared by the heat treatment method. The results are shown in Table 2.

【0024】これによると0.01重量パーセント以下
では、無添加の時と同様の組織を有し、0.05重量パ
ーセント添加から5重量パーセント添加は効果が現れ1
μm以下の211相を多く含む組織が得られ、Jcは、
15000A/平方センチメートル程度の高い値が得ら
れた。また10重量パーセント添加した試料は数十μm
程度のPtBaの複合酸化物が極めて多くなり、Jcも
12000A/平方センチメートルと減少する傾向にな
った。
According to this, below 0.01% by weight, the same structure as that without addition is obtained, and the addition of 0.05% by weight to 5% by weight has an effect.
A structure containing a large amount of 211 phases of less than μm was obtained, and Jc was
Values as high as 15,000 A / square centimeter were obtained. In addition, the sample added with 10 weight percent is several tens of μm.
The amount of PtBa complex oxide was extremely large, and Jc also tended to decrease to 12000 A / square centimeter.

【0025】これらの実験結果から、Pt元素はY2
3 とBaCu酸化物から211相を生成する過程に於
て、1μm程度の針状の211相の生成させる働きがあ
り、極微量でその効果を発揮し、超電導特性を大きく向
上させる働きがあることがわかった。
From these experimental results, the Pt element is Y 2 O.
In the process of forming the 211 phase from 3 and BaCu oxide, it has a function of generating a needle-like 211 phase of about 1 μm, exerts its effect even in an extremely small amount, and has a function of greatly improving superconducting properties. I understood.

【0026】実施例2.金属元素比(Ho:Ba:C
u)が(13:17:20)になるようにHo23
Ba2 CuO3 、BaCu22 粉末を混合し、さらに
Pt元素をPtO2 粉末のかたちで0.3重量パーセン
ト添加し、これらの混合粉を加圧成形して円筒状の前駆
体を作製した。この前駆体を1150度Cまで1時間で
加熱、30分間保持した後、1005度Cまで30分で
冷却した後950度Cまで1度C/時間で徐冷し123
相を成長させた。酸素富化処理は酸素空気中で600度
Cで5時間保持した後、室温まで10度C/時間で徐冷
した。
Example 2. Metal element ratio (Ho: Ba: C
As u) is (13:17:20) Ho 2 O 3,
Ba 2 CuO 3 and BaCu 2 O 2 powder were mixed, 0.3 wt% of Pt element was added in the form of PtO 2 powder, and these mixed powders were pressure-molded to prepare a cylindrical precursor. . This precursor was heated to 1150 ° C for 1 hour, held for 30 minutes, cooled to 1005 ° C in 30 minutes, and then gradually cooled to 950 ° C at 1 ° C / hour.
The phase has grown. In the oxygen enrichment treatment, the temperature was kept at 600 ° C in oxygen air for 5 hours, and then gradually cooled to room temperature at 10 ° C / hour.

【0027】その結果、1μm以下の211相を多く含
む超電導体をえられ、77K.1Tに於ける臨界電流密
度(Jc)は、磁化測定の結果から16000A/平方
センチメートルの高い値が得られた。
As a result, a superconductor containing a large amount of 211 phases having a size of 1 μm or less was obtained. As for the critical current density (Jc) at 1T, a high value of 16000 A / square centimeter was obtained from the result of magnetization measurement.

【0028】実施例3.金属元素比(Y:Yb:Ba:
Cu)が(7:7:17:20)になるようにY2
3 、Yb23 、BaCuO2 、BaCu22 粉末を
混合し、さらにPt元素をPt粉末のかたちで1.0重
量パーセント添加し、これらの混合粉を加圧成形して円
筒状の前駆体を作製した。この前駆体を1150度Cま
で1時間で加熱、30分間保持した後、1000度Cに
冷却し、Sm系の123種結晶を用い種付けを行なっ
た。さらに965度Cまで30分で冷却した後910度
Cまで1度C/時間で徐冷し123結晶を成長させた。
酸素富化処理は酸素気流中で600度Cで5時間保持し
た後、室温まで10度C/時間で徐冷した。
Example 3. Metal element ratio (Y: Yb: Ba:
Cu) becomes (7: 7: 17: 20) Y 2 O
3 , Yb 2 O 3 , BaCuO 2 , and BaCu 2 O 2 powders were mixed, 1.0% by weight of Pt element was added in the form of Pt powder, and these mixed powders were pressed to form a cylindrical precursor. The body was made. This precursor was heated to 1150 ° C. for 1 hour, held for 30 minutes, cooled to 1000 ° C., and seeded with Sm-based 123 seed crystals. Further, after cooling to 965 ° C in 30 minutes, it was gradually cooled to 910 ° C at 1 ° C / hour to grow 123 crystals.
In the oxygen enrichment treatment, the mixture was kept at 600 ° C for 5 hours in an oxygen stream, and then gradually cooled to room temperature at 10 ° C / hour.

【0029】その結果、1μm以下の211相を多く含
む超電導体がえられ、77K.1Tに於ける臨界電流密
度(Jc)は、磁化測定の結果から15000A/平方
センチメートルの高い値が得られた。
As a result, a superconductor containing a large amount of 211 phases of 1 μm or less was obtained. As for the critical current density (Jc) at 1T, a high value of 15000 A / square centimeter was obtained from the result of magnetization measurement.

【0030】[0030]

【発明の効果】以上詳述したごとく本発明は、Ptを添
加することで123相中に微細な211相を分散させる
ことができ、高い臨界電流密度を有する超電導材料の作
製を容易に可能にするもので、各分野での応用が可能で
あり極めて工業的効果が大きい。具体例としては、超電
導コイル、超電導ベアリング、超電導磁気シールド材等
が挙げられる。
As described in detail above, according to the present invention, by adding Pt, it is possible to disperse the fine 211 phase in the 123 phase, thereby facilitating the production of a superconducting material having a high critical current density. It can be applied in various fields and has a great industrial effect. Specific examples include superconducting coils, superconducting bearings, and superconducting magnetic shield materials.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田中 将元 神奈川県川崎市中原区井田1618番地 新日 本製鐵株式会社第一技術研究所内 (72)発明者 宮本 勝良 神奈川県川崎市中原区井田1618番地 新日 本製鐵株式会社第一技術研究所内 (72)発明者 澤野 清志 神奈川県川崎市中原区井田1618番地 新日 本製鐵株式会社第一技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masamoto Tanaka 1618 Ida, Nakahara-ku, Kawasaki-shi, Kanagawa Inside Nippon Steel Co., Ltd. Technical Research Institute (72) Inventor Katsuyoshi Miyamoto Ida, Nakahara-ku, Kawasaki-shi, Kanagawa 1618 Nippon Steel Co., Ltd. First Technology Research Laboratory (72) Inventor Kiyoshi Sawano 1618 Ida, Nakahara-ku, Kawasaki City, Kanagawa Pref.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 主な金属元素が、RE(Yを含む希土類
元素の1種類またはそれらの組合せ)、Ba、Cuから
なる酸化物超電導材料において、超電導相であるREB
2 Cu37-X 結晶中に常電導相である5μm以下の
RE2 BaCuO5 が微細に分散した組織を有しかつ、
Ptを0.05重量パーセントから5重量パーセント含
有していることを特徴とする酸化物超電導材料。
1. An oxide superconducting material having a main metal element of RE (one kind of rare earth element including Y or a combination thereof), Ba and Cu, which is a superconducting phase.
a 2 Cu 3 O 7-X crystal has a structure in which RE 2 BaCuO 5 having a normal conducting phase of 5 μm or less is finely dispersed, and
An oxide superconducting material containing 0.05 to 5 weight percent of Pt.
【請求項2】 RE23 、およびBa、Cuの化合物
を各々の金属元素比(RE:Ba:Cu)が原子パーセ
ントで(10:60:30),(10:20:70),
(50:20:30)の点で囲まれる領域内の組成であ
るように混合し、さらにPt粉末またはPtの化合物を
前記混合粉中にPt元素として0.05重量パーセント
から5重量パーセント添加した後、混練、加圧成型して
酸化物超電導体の前駆体を作製し、前記前駆体を900
度C〜1300度Cに加熱しRE2 BaCuO5 とBa
およびCuを含む液相とし、900度C〜1100度C
の温度領域から5度C/時間以下の冷却速度で徐冷する
ことによりREBa2 Cu37-X 相を成長させた後、
酸素富化処理を行うことを特徴とする酸化物超電導材料
の製造方法。
2. RE 2 O 3 and a compound of Ba and Cu having a metal element ratio (RE: Ba: Cu) of (10:60:30), (10:20:70) in atomic percent.
The mixture was mixed so as to have a composition in a region surrounded by points (50:20:30), and Pt powder or a compound of Pt was further added to the mixed powder as a Pt element in an amount of 0.05 to 5 wt%. After that, kneading and pressure molding are performed to prepare a precursor of the oxide superconductor, and the precursor is mixed with 900
It was heated to degrees C~1300 ° C RE 2 BaCuO 5 and Ba
And a liquid phase containing Cu, 900 ° C to 1100 ° C
After the REBa 2 Cu 3 O 7-X phase is grown by gradually cooling from the temperature range of 5 ° C./hour or less,
A method for producing an oxide superconducting material, which comprises performing an oxygen enrichment treatment.
JP4143670A 1990-04-13 1992-05-11 Oxide superconducting material containing rare earth element and method for producing the same Expired - Lifetime JPH07106906B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP3162360A JP2556401B2 (en) 1990-06-07 1991-06-07 Oxide superconductor and method for manufacturing the same
DE69114445T DE69114445T2 (en) 1990-06-07 1991-06-07 OXIDE SUPER LADDER AND THEIR PRODUCTION.
US07/834,554 US5308799A (en) 1990-06-07 1991-06-07 Oxide superconductor and process for preparation thereof
EP91910631A EP0486698B1 (en) 1990-06-07 1991-06-07 Oxide superconductor and production thereof
PCT/JP1991/000769 WO1991019029A1 (en) 1990-06-07 1991-06-07 Oxide superconductor and production thereof
JP4143670A JPH07106906B2 (en) 1990-04-13 1992-05-11 Oxide superconducting material containing rare earth element and method for producing the same

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP2099025A JPH0832594B2 (en) 1990-04-13 1990-04-13 Silicon nitride ceramics design support system
JP14740690 1990-06-07
JP02402204 1990-12-14
JP03038911 1991-02-12
PCT/JP1991/000769 WO1991019029A1 (en) 1990-06-07 1991-06-07 Oxide superconductor and production thereof
JP4055203A JP2550253B2 (en) 1990-12-14 1992-03-13 Method for producing oxide high temperature superconductor
JP4143670A JPH07106906B2 (en) 1990-04-13 1992-05-11 Oxide superconducting material containing rare earth element and method for producing the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP03038911 Division 1990-04-13 1991-02-12

Publications (2)

Publication Number Publication Date
JPH0672712A true JPH0672712A (en) 1994-03-15
JPH07106906B2 JPH07106906B2 (en) 1995-11-15

Family

ID=27564479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4143670A Expired - Lifetime JPH07106906B2 (en) 1990-04-13 1992-05-11 Oxide superconducting material containing rare earth element and method for producing the same

Country Status (1)

Country Link
JP (1) JPH07106906B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5736489A (en) * 1997-02-07 1998-04-07 Wright State University Method of producing melt-processed polycrystalline YBa2 Cu3 O.sub.
JP2007093059A (en) * 2005-09-27 2007-04-12 Nippon Steel Corp Cooling method using nitrogen-oxygen mixed refrigerant
JP2014146760A (en) * 2013-01-30 2014-08-14 Nippon Steel & Sumitomo Metal Superconducting bulk magnet

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63285159A (en) * 1987-05-19 1988-11-22 Matsushita Electric Ind Co Ltd Production of superconductor of oxide
JPS63291857A (en) * 1987-05-05 1988-11-29 アメリカン テレフォン アンド テレグラフ カムパニー Superconductor
JPS63310799A (en) * 1987-06-11 1988-12-19 Toshiba Corp Production of oxide superconducting crystal
JPS643909A (en) * 1987-06-26 1989-01-09 Hitachi Ltd Fiber-reinforced oxide superconductive material
JPH01131098A (en) * 1987-11-13 1989-05-23 Toshiba Corp Production of oxide superconductor crystal
JPH01164731A (en) * 1987-12-22 1989-06-28 Tanaka Kikinzoku Kogyo Kk Superconducting material and its production
JPH01246174A (en) * 1988-03-28 1989-10-02 Aisin Seiki Co Ltd Superconducting ceramic composite material
JPH0248459A (en) * 1988-08-11 1990-02-19 Kawasaki Steel Corp Production of compound oxide superconductor
JPH04224111A (en) * 1990-12-20 1992-08-13 Kokusai Chodendo Sangyo Gijutsu Kenkyu Center Rare earth type oxide superconductor and its production

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63291857A (en) * 1987-05-05 1988-11-29 アメリカン テレフォン アンド テレグラフ カムパニー Superconductor
JPS63285159A (en) * 1987-05-19 1988-11-22 Matsushita Electric Ind Co Ltd Production of superconductor of oxide
JPS63310799A (en) * 1987-06-11 1988-12-19 Toshiba Corp Production of oxide superconducting crystal
JPS643909A (en) * 1987-06-26 1989-01-09 Hitachi Ltd Fiber-reinforced oxide superconductive material
JPH01131098A (en) * 1987-11-13 1989-05-23 Toshiba Corp Production of oxide superconductor crystal
JPH01164731A (en) * 1987-12-22 1989-06-28 Tanaka Kikinzoku Kogyo Kk Superconducting material and its production
JPH01246174A (en) * 1988-03-28 1989-10-02 Aisin Seiki Co Ltd Superconducting ceramic composite material
JPH0248459A (en) * 1988-08-11 1990-02-19 Kawasaki Steel Corp Production of compound oxide superconductor
JPH04224111A (en) * 1990-12-20 1992-08-13 Kokusai Chodendo Sangyo Gijutsu Kenkyu Center Rare earth type oxide superconductor and its production

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5736489A (en) * 1997-02-07 1998-04-07 Wright State University Method of producing melt-processed polycrystalline YBa2 Cu3 O.sub.
JP2007093059A (en) * 2005-09-27 2007-04-12 Nippon Steel Corp Cooling method using nitrogen-oxygen mixed refrigerant
JP2014146760A (en) * 2013-01-30 2014-08-14 Nippon Steel & Sumitomo Metal Superconducting bulk magnet

Also Published As

Publication number Publication date
JPH07106906B2 (en) 1995-11-15

Similar Documents

Publication Publication Date Title
JP2871258B2 (en) Oxide superconductor and manufacturing method thereof
JPH0672713A (en) Production of rare-earth superconducting composition
EP0493007B1 (en) Rare earth oxide superconducting material and process for producing the same
JPH05270827A (en) Oxide superconductor and its production
JPH0672712A (en) Oxide superconducting material containing rare-earth element and its production
JP2920001B2 (en) Method for producing rare earth oxide superconductor
JP3889139B2 (en) Oxide superconductor containing silver and method for producing the same
JP3242350B2 (en) Oxide superconductor and manufacturing method thereof
JP3174847B2 (en) Superconducting whisker and manufacturing method thereof
JPH02275799A (en) Oxide superconductor and its production
JP2931446B2 (en) Method for producing rare earth oxide superconductor
JP3115915B2 (en) Method for producing rare earth oxide superconductor
JP3260410B2 (en) Oxide superconductor containing rare earth element and manufacturing method thereof
JP3115357B2 (en) Manufacturing method of oxide superconducting material
JPH061616A (en) Production of bi based oxide superconductor
JPH10265221A (en) Production of oxide superconductor
JP4019132B2 (en) RE-Ba-Cu-O-based oxide superconductor and method for producing the same
JP2709000B2 (en) Superconductor and method of manufacturing the same
JPH05254834A (en) Oxide superconductor and production process thereof
JPH0448518A (en) Manufacture of bismuth-based superconductor
JPH0412023A (en) Oxide superconductor
JPH05234437A (en) Manufacture of oxide superconductive wire
JPH06219817A (en) Production of bi-containing oxide superconductor
JPH01119556A (en) Production of oxide-based superconductor
JPH06256021A (en) Production of oxide superconductor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970311

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071115

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081115

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081115

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091115

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101115

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101115

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111115

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111115

Year of fee payment: 16