JPS63310799A - Production of oxide superconducting crystal - Google Patents

Production of oxide superconducting crystal

Info

Publication number
JPS63310799A
JPS63310799A JP62145722A JP14572287A JPS63310799A JP S63310799 A JPS63310799 A JP S63310799A JP 62145722 A JP62145722 A JP 62145722A JP 14572287 A JP14572287 A JP 14572287A JP S63310799 A JPS63310799 A JP S63310799A
Authority
JP
Japan
Prior art keywords
crystal
soln
flux
oxide
oxide superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62145722A
Other languages
Japanese (ja)
Inventor
Kazutaka Terajima
一高 寺嶋
Katsuyoshi Fukuda
福田 勝義
Yuji Nakada
裕二 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62145722A priority Critical patent/JPS63310799A/en
Publication of JPS63310799A publication Critical patent/JPS63310799A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide

Abstract

PURPOSE:To obtain a multicomponent oxide superconductor in the form of a bulk crystal of high quality by using kyropouls method. CONSTITUTION:A Pt heater 2 is arranged to the inside of an alumina shielding material 1 and a Pt crucible 3 is supported on a base 4 at the center of the Pt heater. The base 4 is integrated with a supporting rod 5 connected to the outside of a furnace and is revolvable. A thermocouple 6 is provided to the base and a flux comprising a liquid mixture consisting of, for example, BaCO3 and B2O3 is formed in the crucible 3. A soln. 7 contg. Y2O3 and CuO dissolved therein is formed. After allowing the soln. to stand at about 1,200-1,300 deg.C for about 10hr, the temp. of the soln. is set at about 900-1,000 deg.C by cooling, then, a seed crystal of YCuO single crystal attached to a tip of a pulling shaft 8 is dipped in the soln. 7 and the seed crystal is allowed to be accustomed to the soln. Thereafter, a crystal 9 is pulled up with a specified low cooling velocity. In this stage, gaseous O2 is fed through a pipe 12 to the surface of the soln. 7. By this method, a YBa2Cu3O7-delta crystal having good quality is prepd. at relatively low temp., accordingly, without causing phase transition.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、多元系酸化物超電導結晶の製造方法に関する
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a method for producing a multi-component oxide superconducting crystal.

(従来の技術) 最近、液体窒素温度程度の高温で超電導を示す高温超電
導体材料として、ペロブスカイト構造の多元系酸化物超
電導体が注目されている。これまでに報告されている酸
化物超電導体の代表的なものは、 YBa 2 Cu 
3O7−4や(La 、  Ba ) 2 Cu 04
−y等である。これらの酸化物超電導材料は、焼結法、
蒸着法、スパッタ法等により得られている。
(Prior Art) Recently, multi-component oxide superconductors with a perovskite structure have attracted attention as high-temperature superconductor materials that exhibit superconductivity at temperatures as high as liquid nitrogen temperatures. The typical oxide superconductor reported so far is YBa 2 Cu
3O7-4 and (La, Ba) 2 Cu 04
-y etc. These oxide superconducting materials can be produced using sintering methods,
It is obtained by a vapor deposition method, a sputtering method, etc.

今後これらの酸化物超電導体を具体的な素子に応用する
に当たって、超電導転移温度を高く安定に保ち、また大
きい臨界電流を得、素子特性の均一性、信頼性を優れた
ものとするためには、ある程度大きい面積の単結晶基板
或いは単結晶層として実現することが強く望まれる。こ
の種の酸化物超電導単結晶の製造には、誘電体酸化物単
結晶の場合と同様にチョクラルスキー法(CZ法)を用
いることが考えられる。しかし、結晶材料融液を用いる
CZ法では非常に高い温度での結晶成長になり、酸化物
超電導体は相転移を生じるために所望の超電導体を得る
ことができない。
When applying these oxide superconductors to specific devices in the future, it is necessary to maintain a high and stable superconducting transition temperature, obtain a large critical current, and achieve excellent uniformity and reliability of device characteristics. It is strongly desired to realize this as a single-crystal substrate or a single-crystal layer with a relatively large area. For manufacturing this type of oxide superconducting single crystal, it is possible to use the Czochralski method (CZ method) as in the case of dielectric oxide single crystals. However, in the CZ method using a crystalline material melt, crystal growth occurs at a very high temperature, and the oxide superconductor undergoes a phase transition, making it impossible to obtain the desired superconductor.

(発明が解決しようとする問題点) 以上のように、多元系酸化物超電導材料の素子応用に当
たってその単結晶化が望まれるが、これまでその方法が
ないのが実状であった。
(Problems to be Solved by the Invention) As described above, when applying multi-component oxide superconducting materials to devices, it is desired to make them into single crystals, but the reality is that there is no method for this until now.

本発明は上記した点に鑑み、多元系酸化物超電導体を良
質のバルク結晶として得ることを可能とした酸化物超電
導結晶の製造方法を提供すること)目的とする。
In view of the above-mentioned points, an object of the present invention is to provide a method for producing an oxide superconducting crystal that makes it possible to obtain a multi-component oxide superconductor as a high-quality bulk crystal.

[発明の構成] (問題点を解決するための1段) 本発明の方法は、所望の多元系酸化物超電導体の構成元
素のうち少なくとも1つの金属元素の酸化物を含む酸化
物混合液をフラックスとした溶液を用い、キポラス法に
より多元系酸化物超電導結晶を引上げることを特徴とす
る。
[Structure of the Invention] (First Step for Solving the Problems) The method of the present invention comprises preparing an oxide mixture containing an oxide of at least one metal element among the constituent elements of a desired multi-component oxide superconductor. It is characterized by pulling a multi-component oxide superconducting crystal using a flux solution using the Kiporas method.

例えば、Y Ba 2 Cu 3O7−J結晶の引上げ
を行うには、BaO−B2O3混合液をフラックスとし
て用いる。 この場合、原子比で Ba/(Ba +B
)が0.2〜0.5程度となるように選ぶと、1000
℃以下という比較的低温で液相が得られる。
For example, to pull a Y Ba 2 Cu 3 O7-J crystal, a BaO-B 2 O 3 mixture is used as a flux. In this case, the atomic ratio is Ba/(Ba +B
) is about 0.2 to 0.5, then 1000
A liquid phase can be obtained at a relatively low temperature below ℃.

(作用) 本発明によれば、キポラス法を用いることにより、CZ
法に比べて十分に低い温度で結晶成長が可能であり、超
電導体の相転移が効果的に防止される。これにより、超
電導転移温度の均一性がよく、臨界電流が大きい所望の
酸化物超電導体結晶バルクを再現性よく得ることができ
る。そして本発明により得られた酸化物超電導結晶を用
いれば、各種超電導素子を再現性よく作ることがiiJ
能になる。
(Function) According to the present invention, by using the Kiporus method, CZ
Crystal growth is possible at a sufficiently lower temperature than in the conventional method, and phase transition of the superconductor is effectively prevented. Thereby, a desired oxide superconductor crystal bulk having good uniformity of superconducting transition temperature and large critical current can be obtained with good reproducibility. By using the oxide superconducting crystal obtained according to the present invention, various superconducting devices can be manufactured with good reproducibility.
become capable.

(実施例) 以下、本発明の詳細な説明する。(Example) The present invention will be explained in detail below.

第1図は、一実施例の結晶の引上げ装置を示す、。この
実施例では、多元系酸化物超電導結晶として、YBa 
2 Cu 3O7−a結晶を引上げる。第1図において
1は、アルミナシールド材であり、この中に白金ヒータ
2が配置され、その中心部に白金ルツボ3が支持台4上
に配置されている。支持台4は炉外部とつながる支持棒
5と一体化され、回転可能になっている。6は熱電対で
ある。ルツボ3内には、 Ba CO3B203混合1
夜(B203が50〜70モル%)からなるフラックス
を形成し、これに、Y 203およびCuOを溶解した
溶液7を形成する。
FIG. 1 shows an embodiment of a crystal pulling apparatus. In this example, YBa is used as the multi-component oxide superconducting crystal.
2 Pull up the Cu 3O7-a crystal. In FIG. 1, reference numeral 1 denotes an alumina shield material, in which a platinum heater 2 is placed, and a platinum crucible 3 is placed on a support base 4 at the center thereof. The support stand 4 is integrated with a support rod 5 connected to the outside of the furnace, and is rotatable. 6 is a thermocouple. In crucible 3, Ba CO3 B203 mixture 1
A flux consisting of Y203 (50 to 70 mol % of B203) is formed, and a solution 7 in which Y203 and CuO are dissolved is formed.

第2図は、Ba0B、+03系の相図であり、この系で
適当なモル比を選ぶことにより、900℃程度で液相状
態が得られる。従ってこの系をフラックスとして用いる
ことにより、比較的低温でYBa 2 Cu 3O−r
−a結晶を引上げるための溶液を得ることが可能である
FIG. 2 is a phase diagram of the Ba0B, +03 system, and by selecting an appropriate molar ratio in this system, a liquid phase state can be obtained at about 900°C. Therefore, by using this system as a flux, YBa 2 Cu 3O-r
-a It is possible to obtain a solution for pulling crystals.

このようにしてルツボ3内に所望の溶液7を形成し、こ
れを1200〜【800℃で約10時間放置した後、溶
液温度を下げて900〜1000℃に設定する。
In this way, a desired solution 7 is formed in the crucible 3, and after being left at 1200 to 800°C for about 10 hours, the solution temperature is lowered and set to 900 to 1000°C.

そしてこの溶液7に引上げ軸8の先端に取付けられたY
Cu O1l結晶からなる種子結晶を浸し、十分にこの
種子結晶を馴染ませる。その後、0.1〜0.5℃/h
という小さい冷却速度で結晶9を引上げる。この引上げ
に際し、溶液7の表面にはガス導入バイブ12を介して
酸素ガスを100mノ/min程度供給する。10は内
部観察用光入射窓であり、11は内部観察窓である。
Then, a Y attached to the tip of the pulling shaft 8 is added to this solution 7.
Seed crystals made of CuO1l crystals are immersed in the solution and thoroughly soaked in the seed crystals. After that, 0.1-0.5℃/h
The crystal 9 is pulled up at a low cooling rate. During this pulling, oxygen gas is supplied to the surface of the solution 7 via the gas introducing vibrator 12 at a rate of about 100 m/min. 10 is a light entrance window for internal observation, and 11 is an internal observation window.

こうしてこの実施例によれば、 YBaダCu 3O7−aの一つの構成金属元素である
Baを含むフラックスを用いたキポラス法によって、比
較的低温で、従って相転移を生じることなく、良質のY
 Ba 2 Cu 3O7−a結晶を引上げることかで
きる。この実施例では、結晶引上げに際して酸素ガスを
供給することにより、溶液中および成長結晶中の酸素欠
陥の発生を防止することができる。
In this way, according to this example, high-quality Y can be produced at a relatively low temperature, and therefore without phase transition, by the Kiporas method using a flux containing Ba, which is one of the constituent metal elements of YBa da Cu3O7-a.
It is also possible to pull Ba 2 Cu 3 O7-a crystals. In this example, by supplying oxygen gas during crystal pulling, it is possible to prevent the generation of oxygen defects in the solution and in the grown crystal.

次にこのようにして得られた Y Ba 2 Cu 3 C)t−a結晶をスライス加
工し、鏡面研磨した基板を形成して、これに更にY B
a 2 Cu 3O7−6結晶層を液相成長させたエピ
タキシャル・ウェーハを形成した例を説明する。
Next, the thus obtained Y Ba 2 Cu 3 C) ta crystal was sliced to form a mirror-polished substrate, which was further coated with Y B
An example will be described in which an epitaxial wafer is formed in which an a 2 Cu 3 O7-6 crystal layer is grown by liquid phase growth.

このようなエピタキシャル・ウェーハの必要性は特に、
基板結晶が所望の組成からずれていて超電導特性を示さ
ない場合、或いは市内で均一な超電導特性が得られてい
ない場合等に認められる。
The need for such epitaxial wafers is particularly
This occurs when the substrate crystal deviates from the desired composition and does not exhibit superconducting properties, or when uniform superconducting properties cannot be obtained within the city.

第3図は、その液相成長装置の要部構成を示す。FIG. 3 shows the main structure of the liquid phase growth apparatus.

21は白金ルツボであり、この中にBa CO3−B 
203(20〜50mo1%)混合液をフラックスとし
てこれにYCuO粉末を溶かした溶液22をつくる。Y
 Ba 2 Cu 3O7−a結晶基板23を支持棒2
4の先端に設けた基板保持具25で保持して溶液22に
接触させ、これを50〜100 rpmの高速で回転さ
せながら、冷却速度0.1℃/h以下で液相エピタキシ
ャル成長を行う。26は熱電対である。
21 is a platinum crucible, in which Ba CO3-B
203 (20 to 50 mo1%) mixed solution is used as a flux, and a solution 22 is prepared by dissolving YCuO powder therein. Y
Ba 2 Cu 3O7-a crystal substrate 23 is supported by support rod 2
The substrate is held by a substrate holder 25 provided at the tip of the substrate 4 and brought into contact with the solution 22, and while rotating at a high speed of 50 to 100 rpm, liquid phase epitaxial growth is performed at a cooling rate of 0.1° C./h or less. 26 is a thermocouple.

これにより第4図に示すように基板23上に、20〜3
Oμmの均一なY Ba 2 Cu 3O7−a単結晶
層27が形成されたエピタキシャル・ウェーハが得られ
る。
As a result, as shown in FIG. 4, 20 to 3
An epitaxial wafer on which a uniform Y Ba 2 Cu 3 O 7-a single crystal layer 27 of 0 μm is formed is obtained.

第5図は、このようにして得られたウェーハ(2cjl
Φ)のY Ba 2 Cu 3O□−a結晶層の超電導
転移温度を、径方向に5点alll定して示したもので
ある。電気抵抗が零による温度は5点とも3O〜38に
の範囲内に収まり、均一性の優れた超電導エピタキシャ
ル・ウェーハが得られていることが分かる。
FIG. 5 shows the wafer (2cjl) obtained in this way.
The superconducting transition temperature of the Y Ba 2 Cu 3 O□-a crystal layer of Φ) is shown at all five points in the radial direction. It can be seen that the temperatures at which the electrical resistance is zero are within the range of 30 to 38 at all five points, and that superconducting epitaxial wafers with excellent uniformity have been obtained.

上記実施例では、Ba CO3−B203混合液をフラ
ックスとして用いたが、BaO−B2O3混合液、或い
はHBaO−B2O3混合液、B203−Ba B20
4 llNa 20混合液等、BaO−B2O3系のフ
ラックスを用いることかできる。 また上記実施例では Y Ba 2 Cu 3O7−4結晶を引上げる場合を
説明したが、Yの代わりにYb、Ho、Dy、Eu。
In the above example, Ba CO3-B203 mixed liquid was used as the flux, but BaO-B2O3 mixed liquid, HBaO-B2O3 mixed liquid, B203-Ba B20
A BaO-B2O3-based flux such as a 4 11Na 20 mixed solution can be used. Further, in the above embodiment, the case where Y Ba 2 Cu 3 O 7-4 crystal was pulled was explained, but instead of Y, Yb, Ho, Dy, and Eu were used.

Er、Tll1.Luなど他の希土類元素が入った場合
にも本発明は有効であり、また、Sc −Ba −Cu
−0系、Sr −La −Cu−0系、更にS「をBa
、Caなどで置換した系等、他のペロブスカイト構造を
有する多元系酸化物超電導結晶を製造する場合にも本発
明は有効である。
Er, Tll1. The present invention is also effective when other rare earth elements such as Lu are included;
-0 system, Sr -La -Cu-0 system, and further S
The present invention is also effective in producing multi-component oxide superconducting crystals having other perovskite structures, such as those substituted with , Ca, or the like.

その池水発明はその趣旨を逸脱しない範囲で種々変形し
て実施することができる。
The pond water invention can be implemented with various modifications without departing from the spirit thereof.

[発明の効果] 以上述べたように本発明によれば、所望の酸化物超電導
体の構成元素のうち少なくとも一つの金属元素を含む酸
化物混合液をフラックスとするキポラス法により、多元
系酸化物超電導体のバルク結晶を得ることができる。
[Effects of the Invention] As described above, according to the present invention, a multi-component oxide is produced by the Kiporas method using as a flux an oxide mixture containing at least one metal element among the constituent elements of a desired oxide superconductor. Bulk crystals of superconductors can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の Y Ba 2 Cu 3Ot−a結晶引上げ装置を示す
図、第2図は、Ba 0−B2o3系の相図、第3図は
Y Ba 2 Cu 3Oy−a結晶のエピタキシャル
成長法を説明するための図、第4図は得られたYBa 
2 Cu 3O7−J結晶のエピタキシャル・ウェーハ
を示す図、第5図はそのエピタキシャル・ウェーハの超
電導転移温度分布を測定した結果を示す図である。 1・・・アルミナシールド材、 2・・・白金ヒータ、
3・・・白金ルツボ、 4・・・支持台、 5・・・支
持棒、6・・・熱電対、 7・・・溶液、 8・・・引
上げ軸、9・・・Y Ba 2 Cu 3O7−a結晶
、 10 ・・・内部観察用光照射窓、 11・・・内
部観察窓、 12・・・ガス導入バイブ、 21・・・
白金ルツボ、 2・・・溶液、23−・・YBa 2 
Cu 3Oフ−a結晶基数、 24−・・支持棒、 2
5・・・保持具、 26・・・熱電対、2701.YB
a 2 Cu 3O7−a結晶層。 出願人代理人 弁理士 鈴江武彦 第1図 第2図 第3図 第4図 17亥(K) 第5図
FIG. 1 is a diagram showing a Y Ba 2 Cu 3 Ot-a crystal pulling apparatus according to an embodiment of the present invention, FIG. 2 is a phase diagram of Ba 0-B2o3 system, and FIG. 3 is a diagram showing a Y Ba 2 Cu 3 Oy-a crystal pulling apparatus. A diagram for explaining the epitaxial growth method of crystals, Figure 4 shows the obtained YBa
FIG. 5 is a diagram showing an epitaxial wafer of 2Cu 3O7-J crystal, and FIG. 5 is a diagram showing the results of measuring the superconducting transition temperature distribution of the epitaxial wafer. 1... Alumina shield material, 2... Platinum heater,
3... Platinum crucible, 4... Support stand, 5... Support rod, 6... Thermocouple, 7... Solution, 8... Pulling shaft, 9... Y Ba 2 Cu 3O7 -a crystal, 10... light irradiation window for internal observation, 11... internal observation window, 12... gas introduction vibrator, 21...
Platinum crucible, 2...solution, 23-...YBa 2
Cu 3O f-a crystal group number, 24-... support rod, 2
5... Holder, 26... Thermocouple, 2701. YB
a2Cu3O7-a crystal layer. Applicant's Representative Patent Attorney Takehiko Suzue Figure 1 Figure 2 Figure 3 Figure 4 17 (K) Figure 5

Claims (4)

【特許請求の範囲】[Claims] (1)所望の多元系酸化物超電導体の構成元素のうち少
なくとも1つの金属元素の酸化物を含む酸化物混合液を
フラックスとした溶液を用いてキポラス法により多元系
酸化物超電導結晶を引上げることを特徴とする酸化物超
電導結晶の製造方法
(1) A multi-component oxide superconducting crystal is pulled by the Kiporas method using a solution containing an oxide mixture containing an oxide of at least one metal element among the constituent elements of the desired multi-component oxide superconductor as a flux. A method for producing an oxide superconducting crystal characterized by
(2)前記多元系酸化物超電導体は ABa_2Cu_3O_7_−_δ(Aは、Y、Yb、
Ho、Dy、Eu、Er、Tm、Luから選ばれた一種
)であり、前記フラックスはBaO−B_2O_3系混
合液である特許請求の範囲第1項記載の酸化物超電導結
晶の製造方法。
(2) The multi-component oxide superconductor is ABa_2Cu_3O_7_-_δ (A is Y, Yb,
2. The method for producing an oxide superconducting crystal according to claim 1, wherein the flux is a BaO-B_2O_3-based mixed liquid.
(3)前記多元系酸化物超電導体は ABa_2Cu_3O_7_−_δ(Aは、Y、Yb、
Ho、Dy、Eu、Er、Tm、Luから選ばれた一種
)であり、前記フラックスはBaO−B_2O_3系混
合液であって、前記フラックスの組成は原子比でBa/
(Ba+B)が0.2以上且つ0.5以下である特許請
求の範囲第1項記載の酸化物超電導結晶の製造方法。
(3) The multi-component oxide superconductor is ABa_2Cu_3O_7_-_δ (A is Y, Yb,
(one selected from Ho, Dy, Eu, Er, Tm, and Lu), the flux is a BaO-B_2O_3-based mixed liquid, and the composition of the flux is Ba/B_2O_3 in atomic ratio.
The method for producing an oxide superconducting crystal according to claim 1, wherein (Ba+B) is 0.2 or more and 0.5 or less.
(4)前記多元系酸化物超電導体結晶の引上げに際し、
前記溶液表面近傍に酸素ガスを供給する特許請求の範囲
第1項記載の酸化物超電導結晶の製造方法。
(4) When pulling the multi-component oxide superconductor crystal,
The method for producing an oxide superconducting crystal according to claim 1, wherein oxygen gas is supplied near the surface of the solution.
JP62145722A 1987-06-11 1987-06-11 Production of oxide superconducting crystal Pending JPS63310799A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62145722A JPS63310799A (en) 1987-06-11 1987-06-11 Production of oxide superconducting crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62145722A JPS63310799A (en) 1987-06-11 1987-06-11 Production of oxide superconducting crystal

Publications (1)

Publication Number Publication Date
JPS63310799A true JPS63310799A (en) 1988-12-19

Family

ID=15391618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62145722A Pending JPS63310799A (en) 1987-06-11 1987-06-11 Production of oxide superconducting crystal

Country Status (1)

Country Link
JP (1) JPS63310799A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6428300A (en) * 1987-02-27 1989-01-30 Hitachi Ltd Production of crystal of electrically conductive compound oxide
JPH0672712A (en) * 1990-04-13 1994-03-15 Nippon Steel Corp Oxide superconducting material containing rare-earth element and its production
US5407907A (en) * 1992-05-25 1995-04-18 International Superconductivity Technology Center Method of preparing metal oxide crystal
US5602081A (en) * 1993-05-10 1997-02-11 International Superconductivity Technology Center Method of preparing metal oxide crystal

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6428300A (en) * 1987-02-27 1989-01-30 Hitachi Ltd Production of crystal of electrically conductive compound oxide
JPH0672712A (en) * 1990-04-13 1994-03-15 Nippon Steel Corp Oxide superconducting material containing rare-earth element and its production
US5407907A (en) * 1992-05-25 1995-04-18 International Superconductivity Technology Center Method of preparing metal oxide crystal
US5602081A (en) * 1993-05-10 1997-02-11 International Superconductivity Technology Center Method of preparing metal oxide crystal

Similar Documents

Publication Publication Date Title
Klemenz et al. Liquid phase epitaxy of high-Tc superconductors
JP3008970B2 (en) Oxide crystal film having Y123 type crystal structure
JP2740427B2 (en) Preparation method of oxide crystal
CN100365741C (en) Metal base plate for oxide superconductive wire rod, oxide superconductive wire rod and process for producing the same
CN1970849A (en) Oxygen atmosphere control preparation method for alpha-axis oriented Yt-Ba-Cu-O superconductive thick film
JPS63310799A (en) Production of oxide superconducting crystal
EP0433337A1 (en) EPITAXIAL Ba-Y-Cu-O SUPERCONDUCTOR FILM ON PEROVSKITE STRUCTURE SUBSTRATE
JP3234711B2 (en) Method for holding oxide melt and method for producing oxide crystal
JPS63310798A (en) Production of oxide superconducting element wafer
JPH01148796A (en) Production of oxide superconductor crystal
JPH01131098A (en) Production of oxide superconductor crystal
JP2637123B2 (en) Method for producing oxide superconductor crystal
JPH02306508A (en) Tape basedon supercowductive oxide and its manufacture
JPH01148794A (en) Production of oxide superconductor crystal
JP2963604B2 (en) Method for producing ReBa2Cu3Oy crystal from melt
US5256260A (en) Method and apparatus for the electrodeposition of bismuth based materials and superconductors
US20030176287A1 (en) Oxide superconducting electroconductive article and method for its preparation
JPH01249691A (en) Production of superconducting thin film
JP2833640B2 (en) Method for producing Pr123 crystal
JPS63310797A (en) Oxide superconducting element wafer
JP3205646B2 (en) Method for producing Sm-based 123 crystal
JPH01100818A (en) High temperature superconducting material
JPS63310796A (en) Oxide superconducting element wafer
Yamada et al. Liquid phase epitaxy for the production of YBa2Cu3O7-δ coated conductor
JP2000264788A (en) Oxide superconductive film, electric device using same and their production