JPH01148796A - Production of oxide superconductor crystal - Google Patents

Production of oxide superconductor crystal

Info

Publication number
JPH01148796A
JPH01148796A JP62304633A JP30463387A JPH01148796A JP H01148796 A JPH01148796 A JP H01148796A JP 62304633 A JP62304633 A JP 62304633A JP 30463387 A JP30463387 A JP 30463387A JP H01148796 A JPH01148796 A JP H01148796A
Authority
JP
Japan
Prior art keywords
oxide superconductor
flux
crystal
superconductor crystal
naf
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62304633A
Other languages
Japanese (ja)
Other versions
JP2672533B2 (en
Inventor
Katsuyoshi Fukuda
福田 勝義
Kazutaka Terajima
一高 寺嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62304633A priority Critical patent/JP2672533B2/en
Priority to US07/205,177 priority patent/US5162297A/en
Publication of JPH01148796A publication Critical patent/JPH01148796A/en
Application granted granted Critical
Publication of JP2672533B2 publication Critical patent/JP2672533B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To grow a multicomponent oxide superconductor crystal of high quality at a low temp. by adopting a liq. phase growth method using two kinds of fluorides including an alkali metal fluorides as a flux. CONSTITUTION:A multicomponent oxide superconductor crystal is grown by a liq. phase growth method using two kinds of fluorides including an alkali metal fluoride as a flux. The multicomponent oxide superconductor may be represented by a general formula ABa2Cu3O7-delta (where A is Y, Yb, Ho, Dy, Eu, Er, Tm or Lu). The flux may be a liq. mixture of KF-BaF2, NaF-CaF2, KF-NaF or LiF-KF.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、多元系酸化物超電導体結晶の製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to a method for producing a multi-component oxide superconductor crystal.

(従来の技術) 最近、液体窒素温度程度の高温で超電導を示す高温超電
導体材料として、ペロブスカイト構造の多元系酸化物超
電導体が注目されている。これまでに報告されている酸
化物超電導体の代表的なものは、YBa  Cu  O
や2 37−δ (La、Ba)  2Cu3O7−δ等である。これら
4−y の酸化物超電導材料は、焼結法、蒸着法、スパッタ法等
により得られている。
(Prior Art) Recently, multi-component oxide superconductors with a perovskite structure have attracted attention as high-temperature superconductor materials that exhibit superconductivity at temperatures as high as liquid nitrogen temperatures. Typical oxide superconductors reported so far are YBa Cu O
and 2 37-δ (La, Ba) 2Cu3O7-δ. These 4-y oxide superconducting materials are obtained by sintering, vapor deposition, sputtering, or the like.

今後これらの酸化物超電導体を具体的な素子に応用する
に当たって、超電導転移温度を高く安定に保ち、また大
きい臨界電流を得、素子特性の均一性、信頼性を優れた
ものとするためには、ある程度大きい面積の単結晶基板
或いは単結晶層として実現することが強く望まれる。こ
の種の酸化物超電導体の製造には、誘電体酸化物単結晶
の場合と同様にチョクラルスキー法(CZ法)を用いる
ことが考えられる。しかし、結晶材料融液を用いるCZ
法では非常に高い温度での結晶成長になり、酸化物超電
導体は相転移を生じるため、所望の超電導体を得ること
ができない。
When applying these oxide superconductors to specific devices in the future, it is necessary to maintain a high and stable superconducting transition temperature, obtain a large critical current, and achieve excellent uniformity and reliability of device characteristics. It is strongly desired to realize this as a single-crystal substrate or a single-crystal layer with a relatively large area. For the production of this type of oxide superconductor, it is possible to use the Czochralski method (CZ method) as in the case of dielectric oxide single crystals. However, CZ using a crystalline material melt
In this method, crystal growth occurs at extremely high temperatures, and the oxide superconductor undergoes a phase transition, making it impossible to obtain the desired superconductor.

(発明が解決しようとする問題点) 以上のように、多元系酸化物超電導材料の素子応用に当
たっては、その単結晶化が望まれるが、これまでそのよ
うな酸化物単結晶を形成する有効な方法は提案されてい
ない。
(Problems to be Solved by the Invention) As described above, when applying multi-component oxide superconducting materials to devices, it is desirable to make them into single crystals, but so far there has been no effective way to form such oxide single crystals. No method has been proposed.

本発明は上記した点に鑑み、多元系酸化物超電導体の結
晶の製造方法を提供することを目的とする。
In view of the above-mentioned points, an object of the present invention is to provide a method for producing a crystal of a multi-component oxide superconductor.

C発明の構成] (問題点を解決するための手段) 本発明の方法は、アルカリ金属弗化物を含む2元系酸化
物をフラックスとして用いた液)■成長法(キボラス法
)により多元系酸化物超電導体結晶を製造することを特
徴とする。
C Structure of the Invention] (Means for Solving the Problems) The method of the present invention is a multi-component oxidation process using a solution (liquid) growth method (quiboras method) using a binary oxide containing an alkali metal fluoride as a flux. It is characterized by producing a physical superconductor crystal.

具体的に本発明で用いるフラックスとしては、KF−B
aF3系混合液混合液F−CaF2系混合液、KF−N
aF系混合液、LiF−KF系混合液等がある。
Specifically, the flux used in the present invention is KF-B.
aF3-based mixed liquid mixed liquid F-CaF2-based mixed liquid, KF-N
There are aF-based mixed liquids, LiF-KF-based mixed liquids, etc.

(作用) 本発明によれば、アルカリ金属弗化物を含む2元系酸化
物をフラックスとする牛ポラス法を用いることにより、
低い温度で多元系酸化物超電導体結晶の成長が可能であ
り、超電導体の相転移が効果的に防止され、良好な多元
系酸化物超電導体結晶を得ることができる。
(Function) According to the present invention, by using the Ushiporas method using a binary oxide containing an alkali metal fluoride as a flux,
Multi-component oxide superconductor crystals can be grown at low temperatures, phase transition of the superconductor is effectively prevented, and good multi-component oxide superconductor crystals can be obtained.

(実施例) 以下、本発明の詳細な説明する。実施例では、YBa 
 Cu  O結晶の製造法を説明す2 37−δ る。
(Example) The present invention will be described in detail below. In the example, YBa
A method for producing CuO crystals will be explained below.

第1図は、その結晶の引上げ装置を示す。第1図におい
て1は、アルミナシールド材であり、この中に白金ヒー
タ2が配置され、その中心部に白金ルツボ3が支持台4
上に配置されている。支持台4は炉外部止つながる支持
棒5と一体化され、回転可能になっている。6は熱電対
である。ルツボ3内には、KF−BaF2混合液(KF
が70モル%以下)からなるフラックスを形成し、これ
に、YBa  Cu  Oを得るに必要な材料を2 3
7−δ 溶解した溶液7を形成する。
FIG. 1 shows the crystal pulling apparatus. In FIG. 1, reference numeral 1 denotes an alumina shield material, in which a platinum heater 2 is arranged, and a platinum crucible 3 is placed in the center of the material on a support base 4.
placed above. The support stand 4 is integrated with a support rod 5 that is connected to the outside of the furnace, and is rotatable. 6 is a thermocouple. Inside the crucible 3 is a KF-BaF2 mixed solution (KF
70 mol% or less), and add 2 3 of the materials necessary to obtain YBaCuO to this flux.
7-δ Dissolved to form solution 7.

第2図は、K F −Ba F2系の相図であり、この
系で適当なモル比を選ぶことにより、900℃程度で液
相状態が得られる。従ってこの系をフラックスとして用
いることにより、比較的低温でY−Ba −Cu −0
系結晶を引上げるための溶液を得ることが可能である。
FIG. 2 is a phase diagram of the K F -Ba F2 system, and by selecting an appropriate molar ratio in this system, a liquid phase state can be obtained at about 900°C. Therefore, by using this system as a flux, Y-Ba-Cu-0
It is possible to obtain a solution for pulling system crystals.

このようにしてルツボ3内に所望の溶液7を形成し、こ
れを1200〜1300℃で約10時間放置した後、溶
液温度を下げて約900〜1000℃に設定する。そし
てこの溶液7に引上げ軸8の先端に取付けられたYCu
 O単結晶からなる種子結晶を浸し、十分にこの種子結
晶を馴染ませる。その後、0.1〜0.5℃/hという
小さい冷却速度で結晶9を引上げる。この引上げに際し
、溶液7の表面にはガス導入パイプ12を介して酸素ガ
スを100mノ/n+in程度供給する。
In this way, a desired solution 7 is formed in the crucible 3, and after being left at 1200 to 1300°C for about 10 hours, the solution temperature is lowered and set to about 900 to 1000°C. Then, the YCu plate attached to the tip of the pulling shaft 8 is added to this solution 7.
A seed crystal consisting of an O single crystal is immersed in the solution, and the seed crystal is sufficiently absorbed. Thereafter, the crystal 9 is pulled up at a low cooling rate of 0.1 to 0.5°C/h. During this pulling, oxygen gas is supplied to the surface of the solution 7 through the gas introduction pipe 12 at a rate of approximately 100 m/n+in.

10は内部観察用光入射窓であり、11は内部観察窓で
ある。
10 is a light entrance window for internal observation, and 11 is an internal observation window.

こうしてこの実施例によれば、キポラス法によって比較
的低温で、従って相転移を生じることなく、良質のYB
a  Cu  O結晶を引上げる2  37−δ ことができる。この場合、結晶引上げに際して酸素ガス
を供給することにより、溶液中および成長結晶中の酸素
欠陥の発生を防止することができる。
Thus, according to this example, good quality YB can be obtained by the Kiporus method at a relatively low temperature and therefore without phase transition.
a CuO crystal can be pulled up 237-δ. In this case, by supplying oxygen gas during crystal pulling, it is possible to prevent the generation of oxygen defects in the solution and in the grown crystal.

KF−BaF2に更にBaOを加えた混合液をフラック
スとして用いても、同様の結晶成長が可能である。
Similar crystal growth is also possible by using a mixture of KF-BaF2 and BaO as the flux.

次に、フラックスとして、NaF−CaF2混合液を用
いた場合を説明する。第3図は、NaFCaF2系の相
図であり、この系で適当なモル比を選ぶことにより、や
はり900℃程度で液相状態が得られる。このNaFC
aF2混合液(Na Fが40〜80モル%)をフラッ
クスとして用いて先の実施例と同様に必要な原料を溶解
した溶液を形成し、1200〜1300℃で約10時間
放置した後、溶液温度を下げて900〜1000℃に設
定する。この後先の実施例と同様にして、YBa  C
u  O結晶を引上げる。
Next, a case will be described in which a NaF-CaF2 mixed solution is used as the flux. FIG. 3 is a phase diagram of the NaFCaF2 system, and by selecting an appropriate molar ratio in this system, a liquid phase state can also be obtained at about 900°C. This NaFC
Using an aF2 mixture (40 to 80 mol% NaF) as a flux, a solution containing the necessary raw materials was formed in the same manner as in the previous example, and after being left at 1200 to 1300 °C for about 10 hours, the solution temperature was Lower the temperature and set to 900-1000℃. After this, in the same manner as in the previous example, YBa C
u Pull up the O crystal.

2 37−δ この実施例によっても先の実施例と同様、良質のYBa
  Cu  O結晶を得ることができる。
2 37-δ In this example, as well as in the previous example, good quality YBa
CuO crystals can be obtained.

2 37−δ 次に、フラックスとして、KF−NaF混合液を用いた
場合を説明する。第4図は、KF−NaF系の相図であ
り、この系で適当なモル比を選ぶことにより、やはり9
00℃程度で液相状態が得られる。二〇KF−NaF混
合液(Na Fが70モル%以下)をフラックスとして
用いて先の実施例と同様に必要な原料を溶解した溶液を
形成し、1200〜1300℃で約10時間放置した後
、溶液温度を下げて900〜1000℃に設定する。こ
の後先の実施例と同様にして、YBa  Cu  O結
晶を引上げる。
2 37-δ Next, a case will be described in which a KF-NaF mixed liquid is used as the flux. Figure 4 is a phase diagram of the KF-NaF system, and by selecting an appropriate molar ratio in this system, 9
A liquid phase state is obtained at about 00°C. 20 Using a KF-NaF mixed solution (NaF is 70 mol% or less) as a flux, a solution containing the necessary raw materials was formed in the same manner as in the previous example, and after being left at 1200 to 1300°C for about 10 hours. , lower the solution temperature and set it to 900-1000°C. After this, the YBa Cu O crystal is pulled up in the same manner as in the previous example.

2 37−δ この実施例によっても先の実施例と同様、良質のYBa
  Cu  O結晶を得ることができる。
2 37-δ In this example, as well as in the previous example, good quality YBa
CuO crystals can be obtained.

次に、フラックスとして、Li F−KF混合液を用い
た場合を説明する。第5図は、Li F−KF系の相図
であり、この系で適当なモル比を選ぶことにより、やは
り900℃程度で液相状態が得られる。このLi F−
KF混合液をフラックスとして用いて先の実施例と同様
に必要な原料を溶解した溶液を形成し、1200〜13
00℃で約10時間放置した後、溶液温度を下げて90
0〜1000℃に設定する。この後先の実施例と同様に
して、YBa  Cu  O結晶を引上げる。
Next, a case will be described in which a Li F-KF mixed solution is used as the flux. FIG. 5 is a phase diagram of the Li F-KF system, and by selecting an appropriate molar ratio in this system, a liquid phase state can also be obtained at about 900°C. This Li F-
Using the KF mixture as a flux, a solution containing the necessary raw materials was formed in the same manner as in the previous example, and the solution was 1200-13
After leaving it at 00°C for about 10 hours, lower the solution temperature to 90°C.
Set at 0-1000°C. After this, the YBa Cu O crystal is pulled up in the same manner as in the previous example.

2 37−δ この実施例によっても先の実施例と同様、良質のYBa
  Cu  O結晶を得る4とができる。
2 37-δ In this example, as well as in the previous example, good quality YBa
4 to obtain CuO crystals.

2   3  7−δ 以上の実施例では、YBa  Cu  O結晶2 37
−δ を引上げる場合を説明したが、Yの代わりにYb。
2 3 7-δ In the above examples, YBa Cu O crystal 2 37
We have explained the case where -δ is raised, but Yb is used instead of Y.

Ho、Dy、Eu、Er、Tta、Luなど他の希土類
元素が入った酸化物超電導体結晶の場合にも本発明は有
効であり、また、Sc −Ba −Cu −0系、Sr
 −La −Cu−0系、更にS「をBa。
The present invention is also effective in the case of oxide superconductor crystals containing other rare earth elements such as Ho, Dy, Eu, Er, Tta, and Lu;
-La-Cu-0 system, and further S' and Ba.

Caなどで置換した系等、他のペロブスカイト構造を有
する多元系酸化物超電導体結晶を成長させる場合にも本
発明は有効である。また実施例では結晶引上げを説明し
たが、本発明は多元系酸化物超電導体のエピタキシャル
成長にも有効である。
The present invention is also effective when growing multi-component oxide superconductor crystals having other perovskite structures, such as those substituted with Ca or the like. Furthermore, although crystal pulling has been explained in the embodiment, the present invention is also effective for epitaxial growth of multi-component oxide superconductors.

その池水発明はその趣旨を逸脱しない範囲で種々変形し
て実施することができる。
The pond water invention can be implemented with various modifications without departing from the spirit thereof.

[発明の効果] 以上述べたように本発明によれば、アルカリ金属弗化物
を含む2元系酸化物をフラックスとするキポラス法によ
り、多元系酸化物超電導体の良質の結晶を得ることがで
きる。
[Effects of the Invention] As described above, according to the present invention, high-quality crystals of a multi-component oxide superconductor can be obtained by the Kiporas method using a binary oxide containing an alkali metal fluoride as a flux. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のY−Ba−Cu−0系結晶
の引上げ装置を示す図、第2図は、KF−Ba F2系
の相図、第3図は、Na −ca F2系の相図、第4
図は、KF−NaF系の相図、第5図は、LI F−K
F系の相図である。 1・・・アルミナシールド材、2・・・白金ヒータ、3
・・・白金ルツボ、4・・・支持台、5・・・支持棒、
6・・・熱電対、7・・・フラックスを含む溶液、8・
・・引上げ軸、9・・・YBa  Cu  O結晶、1
0・・・内部観察2 37−δ 用光照射窓、11・・・内部観察窓、12・・・ガス導
入バイブ。 出願人代理人 弁理士 鈴江武彦 第1図 第2図 NaF−CaF2 第3図 第4図
FIG. 1 is a diagram showing a pulling device for Y-Ba-Cu-0 system crystal according to an embodiment of the present invention, FIG. 2 is a phase diagram of KF-Ba F2 system, and FIG. Phase diagram of the system, 4th
The figure shows the phase diagram of the KF-NaF system, and Figure 5 shows the LIF-K
It is a phase diagram of F system. 1... Alumina shield material, 2... Platinum heater, 3
...Platinum crucible, 4...Support stand, 5...Support rod,
6... Thermocouple, 7... Solution containing flux, 8...
... Pulling shaft, 9 ... YBa Cu O crystal, 1
0... Light irradiation window for internal observation 2 37-δ, 11... Internal observation window, 12... Gas introduction vibrator. Applicant's representative Patent attorney Takehiko Suzue Figure 1 Figure 2 NaF-CaF2 Figure 3 Figure 4

Claims (6)

【特許請求の範囲】[Claims] (1)アルカリ金属弗化物を含む2元系酸化物をフラッ
クスとして用いた液相成長法により多元系酸化物超電導
体結晶を成長させることを特徴とする酸化物超電導体結
晶の製造方法。
(1) A method for producing an oxide superconductor crystal, which comprises growing a multi-component oxide superconductor crystal by a liquid phase growth method using a binary oxide containing an alkali metal fluoride as a flux.
(2)前記多元系酸化物超電導体は、 ABa_2Cu_3O_7_−_δ(Aは、Y、Yb、
Ho、Dy、Eu、Er、Tm、Luから選ばれた一種
〕である特許請求の範囲第1項記載の酸化物超電導体結
晶の製造方法。
(2) The multi-component oxide superconductor is ABa_2Cu_3O_7_-_δ (A is Y, Yb,
The method for producing an oxide superconductor crystal according to claim 1, wherein the oxide superconductor crystal is one selected from Ho, Dy, Eu, Er, Tm, and Lu.
(3)前記フラックスは、KF−BaF_2系混合液で
ある特許請求の範囲第1項記載の酸化物超電導体結晶の
製造方法。
(3) The method for producing an oxide superconductor crystal according to claim 1, wherein the flux is a KF-BaF_2 mixed liquid.
(4)前記フラックスは、NaF−CaF_2系混合液
である特許請求の範囲第1項記載の酸化物超電導体結晶
の製造方法。
(4) The method for producing an oxide superconductor crystal according to claim 1, wherein the flux is a NaF-CaF_2-based mixed liquid.
(5)前記フラックスは、KF−NaF系混合液である
特許請求の範囲第1項記載の酸化物超電導体結晶の製造
方法。
(5) The method for producing an oxide superconductor crystal according to claim 1, wherein the flux is a KF-NaF mixed liquid.
(6)前記フラックスは、LiF−KF系混合液である
特許請求の範囲第1項記載の酸化物超電導体結晶の製造
方法。
(6) The method for producing an oxide superconductor crystal according to claim 1, wherein the flux is a LiF-KF mixed liquid.
JP62304633A 1987-06-11 1987-12-03 Method for producing oxide superconductor crystal Expired - Fee Related JP2672533B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP62304633A JP2672533B2 (en) 1987-12-03 1987-12-03 Method for producing oxide superconductor crystal
US07/205,177 US5162297A (en) 1987-06-11 1988-06-10 Liquid phase epitaxial growth of high temperature superconducting oxide wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62304633A JP2672533B2 (en) 1987-12-03 1987-12-03 Method for producing oxide superconductor crystal

Publications (2)

Publication Number Publication Date
JPH01148796A true JPH01148796A (en) 1989-06-12
JP2672533B2 JP2672533B2 (en) 1997-11-05

Family

ID=17935385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62304633A Expired - Fee Related JP2672533B2 (en) 1987-06-11 1987-12-03 Method for producing oxide superconductor crystal

Country Status (1)

Country Link
JP (1) JP2672533B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5043319A (en) * 1988-08-03 1991-08-27 General Electric Company Synthesis of lanthanum-alkaline earth-copper-oxygen superconductive material
US5602081A (en) * 1993-05-10 1997-02-11 International Superconductivity Technology Center Method of preparing metal oxide crystal
US5962374A (en) * 1997-02-21 1999-10-05 International Superconductivity Technology Center Preparation of oxide crystals

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JAPANESE JOURNAL OF APPLIED PHYSICS=1987 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5043319A (en) * 1988-08-03 1991-08-27 General Electric Company Synthesis of lanthanum-alkaline earth-copper-oxygen superconductive material
US5602081A (en) * 1993-05-10 1997-02-11 International Superconductivity Technology Center Method of preparing metal oxide crystal
US5962374A (en) * 1997-02-21 1999-10-05 International Superconductivity Technology Center Preparation of oxide crystals

Also Published As

Publication number Publication date
JP2672533B2 (en) 1997-11-05

Similar Documents

Publication Publication Date Title
Klemenz et al. Liquid phase epitaxy of high-Tc superconductors
US5407907A (en) Method of preparing metal oxide crystal
JP2651481B2 (en) How to make superconducting materials
Scheel et al. Crystal growth of high temperature superconductors
JPH01148796A (en) Production of oxide superconductor crystal
JPH09100193A (en) Preparation of oxide crystal
JP2637123B2 (en) Method for producing oxide superconductor crystal
JPH01148794A (en) Production of oxide superconductor crystal
JPS63310799A (en) Production of oxide superconducting crystal
JPH01131098A (en) Production of oxide superconductor crystal
US5962374A (en) Preparation of oxide crystals
JPS63310798A (en) Production of oxide superconducting element wafer
JP3205646B2 (en) Method for producing Sm-based 123 crystal
JP2833640B2 (en) Method for producing Pr123 crystal
JP2963604B2 (en) Method for producing ReBa2Cu3Oy crystal from melt
JP2733197B2 (en) Method for producing rare earth element-containing single crystal
JP2852405B2 (en) Bi (2) (Sr, Ca) (3) Cu (2) O (8) Single crystal production method by solution pulling method
JPS63242997A (en) Production of ceramics superconducting material
RU2051210C1 (en) High-temperature super-conducting material and method for production thereof
JPH0676278B2 (en) Manufacturing method of oxide superconductor single crystal
JPH06305890A (en) Preparation of oxide crystal
JPS63274698A (en) Method for growing superconductive oxide single crystal
JPS63310796A (en) Oxide superconducting element wafer
YBa2Cua07_x REPRODUCIBLE GROWTH OF LARGE FREE CRYSTALS
JPH0471876B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees