JPS63274698A - Method for growing superconductive oxide single crystal - Google Patents

Method for growing superconductive oxide single crystal

Info

Publication number
JPS63274698A
JPS63274698A JP62109249A JP10924987A JPS63274698A JP S63274698 A JPS63274698 A JP S63274698A JP 62109249 A JP62109249 A JP 62109249A JP 10924987 A JP10924987 A JP 10924987A JP S63274698 A JPS63274698 A JP S63274698A
Authority
JP
Japan
Prior art keywords
single crystal
oxide
growth
melt
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62109249A
Other languages
Japanese (ja)
Other versions
JP2557882B2 (en
Inventor
Yoshikazu Hidaka
日高 義和
Akinori Katsui
勝井 明憲
Ken Oda
小田 研
Toshiaki Murakami
敏明 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP62109249A priority Critical patent/JP2557882B2/en
Publication of JPS63274698A publication Critical patent/JPS63274698A/en
Application granted granted Critical
Publication of JP2557882B2 publication Critical patent/JP2557882B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/80Constructional details
    • H10N60/85Superconducting active materials
    • H10N60/855Ceramic materials
    • H10N60/857Ceramic materials comprising copper oxide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain a single crystal of a superconductive oxide having high purity without causing mixing of impurities in a grown crystal at all by melting a mixture of BaCO3, CuO, and an oxide of a rare earth element in a specified molar compsn. and cooling the melt slowly thereafter. CONSTITUTION:An oxide of a rare earth element R2O3 (wherein R is at least one element among Y and lanthanoids) is mixed with components in a molar compsn. expressed by the formula. Then, the mixture is filled in a vessel for growth and melted in an electric furnace, and cooled slowly at 1-10 deg.C/hr cooling rate thereafter to cause the growth of a single crystal expressed by the formula on the wall or the bottom of the vessel or on the surface of the melt. Said single crystal has a compsn. expressed by RBa2Cu3O6.5+delta (wherein deltais a value decided by the degree of oxygen vacancy: 0<delta<1).

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、超伝導材料として有望な銅酸希土類・バリウ
ム、化学式RBazCuJ6.s、δ(Rはイツトリウ
ムおよびランタノイドからえらばれた一種または二種以
上の元素、δは酸素欠陥の量によりきまる値でO<δ<
1)の単結晶を成長させる方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention is directed to a rare earth cuprate, barium, which has the chemical formula RBazCuJ6. s, δ (R is one or more elements selected from yttrium and lanthanoids, δ is a value determined by the amount of oxygen vacancies, and O<δ<
1) relates to a method for growing a single crystal.

(従来の技術) 化学式RBa、Cu、O,,5*δ(Rはイツトリウム
およびランタノイドからえらばれた一種または二種以上
の元素、δは酸素欠陥の量によりきまる値でO<δ<1
)で表される一連の化合物は、転移温度(T c )が
液体窒素温度<17 K)以上を示す超伝導物質である
。これらの化合物は、通常のセラミックスと同様の手段
で作ることができる高Tc用材料として極めて注目され
ている。しかし、これらの化合物の結晶構造や物性、ま
た超伝導性を示す機構、等はまだ未知であり、このため
単結晶による測定・解析が強(望まれている。
(Prior art) Chemical formula RBa, Cu, O,, 5*δ (R is one or more elements selected from yttrium and lanthanoids, δ is a value determined by the amount of oxygen vacancies, O<δ<1
A series of compounds represented by ) are superconducting materials exhibiting a transition temperature (T c ) equal to or higher than the liquid nitrogen temperature (<17 K). These compounds are attracting much attention as high Tc materials that can be produced by the same means as ordinary ceramics. However, the crystal structure, physical properties, and mechanism of superconductivity of these compounds are still unknown, and therefore measurement and analysis using single crystals is strongly desired.

ところで、これまでの所、上記化学式で表される超伝導
酸化物の単結晶は作られていない。
By the way, so far, a single crystal of a superconducting oxide represented by the above chemical formula has not been produced.

この化合物は、コングルエンドには融解せず、融点に至
るまでに分解する。そのため、常圧下でその単結晶を化
学量論的組成の融液から成長させることは相当の困難を
伴う、高温高圧装置を用いることが考えられるが、装置
が複雑、かつ、高価とならざるを得す、この方法は事実
上不可能である。従って、分解の生しないような温度で
結晶成長を行う必要がある。そのためには、低温成長が
可能な単結晶成長融液用の出発原料となりうる原料の組
成比を明らかにする必要がある。
This compound does not melt into congruendo, but decomposes by the time it reaches its melting point. Therefore, it is quite difficult to grow a single crystal from a melt with a stoichiometric composition under normal pressure, and it is conceivable to use a high-temperature, high-pressure equipment, but the equipment would be complicated and expensive. However, this method is virtually impossible. Therefore, it is necessary to grow the crystal at a temperature that does not cause decomposition. To this end, it is necessary to clarify the composition ratio of raw materials that can be used as starting materials for single crystal growth melts that can be grown at low temperatures.

こうした出発原料に求められる条件としては、■その融
液を冷却したとき、望みの化合物が、その分解温度以下
で最初に結晶化すること、■化合物に固溶して、その物
性や結晶構造に影響を及ぼす元素を含まないこと、■結
晶成長用容器や炉材を腐食しないこと、■溶融状態で適
度な粘性を持つこと、等の条件を充足する物質と組成を
選ぶ必要がある。
The conditions required for these starting materials are: 1. When the melt is cooled, the desired compound first crystallizes below its decomposition temperature; 2. It dissolves in the compound and changes its physical properties and crystal structure. It is necessary to select a substance and composition that satisfies the following conditions: 1) It does not contain any elements that may affect the crystal growth, 2) It does not corrode the crystal growth container or furnace material, and 2) It has appropriate viscosity in the molten state.

一最にある組成の単結晶を成長させようとする場合には
、出発原料として成長させようとする化合物の粉末焼結
体や多結晶体、もしくは、化学量論的組成を有する化合
物の構成酸化物の混合物等の他に、各種の塩や弗化物、
もしくは、化合物の構成酸化物以外の酸化物を含むもの
が用いられている。しかしながら、それら数多くの物質
の中で、どの物質や組合せ、もしくは組成、が上記■〜
■の条件を具備する出発原料となるかを判定するための
データは極めて乏しい、従って、経験的に決めるのが通
例であり、上記超伝導酸化物、RBa、Cu、0.0.
δの単結晶成長に対しては、如何なる物質、組合せ、組
成、が最も適した出発原料となるかどうか知られていな
かった。従って、従来、RBazCu206. s、δ
の単結晶を成長させることは不可能であった。
When trying to grow a single crystal with a certain composition, use a powder sintered body or polycrystal of the compound to be grown as a starting material, or a constituent oxidation of a compound with a stoichiometric composition. In addition to mixtures of substances, various salts and fluorides,
Alternatively, a compound containing an oxide other than the constituent oxides of the compound is used. However, among these many substances, which substances, combinations, or compositions are mentioned above?
There is very little data to determine whether the starting material satisfies the condition (2), so it is customary to determine it empirically.
It was not known what materials, combinations, and compositions would be the most suitable starting materials for single crystal growth of δ. Therefore, conventionally, RBazCu206. s, δ
It was impossible to grow single crystals of .

(発明の解決しようとする問題点) 本発明は、従来不可能であったRBa、Cu、O,、、
(Problems to be solved by the invention) The present invention solves the problems of RBa, Cu, O, .
.

δの単結晶を容易に成長しうる出発原料の組成範囲を明
らかにし、主にフラツクス性による単結晶成長方法を与
えようとするものである。
The purpose of this study is to clarify the composition range of starting materials that can easily grow single crystals of δ, and to provide a method for growing single crystals mainly based on flux properties.

(問題点を解決するための手段) 本発明では炭酸バリウム(化学式: BaCOx )と
酸化第二銅(化学式:CuO)と希土類酸化物(化学式
; R10z、但しRはイツトリウムおよびランタノイ
ドからえらばれた一種または二種以上の元素)を、 (
BaCO3)x (CuO)y (1/2RzOs)z
においてx+y+z=1とするとき0.15≦x≦06
40、0.40≦y≦0.75.0.10≦2≦0,2
5で表されるモル組成に混合し、該混合物を加熱溶融し
1次いで徐冷することによりRBazCuxOi、 s
。δ(ただしδは酸素欠陥の量によりきまる値でOくδ
く1)からなる単結晶を得ることを特徴とする0本発明
によれば、従来不可能であった上記超伝導酸化物の大形
で品質が良(、物性測定に通した形状の単結晶を容易に
成長させうると言う利点がある。
(Means for solving the problem) The present invention uses barium carbonate (chemical formula: BaCOx), cupric oxide (chemical formula: CuO), and rare earth oxide (chemical formula: R10z, where R is a type selected from yttrium and lanthanoids). or two or more elements), (
BaCO3)x (CuO)y (1/2RzOs)z
When x+y+z=1, 0.15≦x≦06
40, 0.40≦y≦0.75.0.10≦2≦0,2
RBazCuxOi, s by heating and melting the mixture and then slowly cooling it.
. δ (However, δ is a value determined by the amount of oxygen defects.
According to the present invention, it is possible to obtain a single crystal of the above-mentioned superconducting oxide with a large size and good quality (and a shape that has passed physical property measurements), which was previously impossible. It has the advantage of being easy to grow.

より具体的には上記組成範囲の出発原料を秤量混合し成
長用容器に充填して電気炉内で加熱し溶融する。これを
、1〜10° C/hrの速度で徐冷すると、臨界温度
以下で、容器の壁や底、また融液表面に単結晶が成長す
る。また、融液表面に種結晶を接触させ回転しながら徐
冷すると、種結晶上に単結晶が同様に成長する。
More specifically, starting materials having the above composition range are weighed and mixed, filled into a growth container, and heated and melted in an electric furnace. When this is slowly cooled at a rate of 1 to 10° C/hr, single crystals grow on the walls and bottom of the container and on the surface of the melt below the critical temperature. Further, when a seed crystal is brought into contact with the surface of the melt and slowly cooled while rotating, a single crystal similarly grows on the seed crystal.

更に、格子整合性の良い単結晶基板を融液に接触させる
ことにより、その上にRBaICu)06.5やδの単
結晶N膜をエピタキシャル成長させることも出来る。成
長する単結晶と融液の組成のずれにあたる部分は成長中
のフラックスとして作用する。
Furthermore, by bringing a single crystal substrate with good lattice matching into contact with the melt, a single crystal N film of RBaICu)06.5 or δ can be epitaxially grown thereon. The portion corresponding to the difference in composition between the growing single crystal and the melt acts as a flux during growth.

(実施例1) モル%で、1/2Y*Os:BaCO5:CuO=10
:30:60の組成比となるよう粉末状の3酸化2イツ
トリウム、炭酸バリウム、及び酸化第二銅をそれぞれ秤
量した0次に、この混合粉末を、アルミナ坩堝にいれ電
気炉内で酸素ガスを約117min流しつづけながら、
900° Cで24時間加熱した。得られた粉末焼結体
を白金坩堝に充填し、縦型の電気炉内で1250−13
50″ Cに加熱し約2時間保持した。その後約2°C
/hrで1O00〜1100° C迄冷却したのち、電
気炉の電源を切り炉冷した。白金坩堝を電気炉から取り
出し中を観察したところ、坩堝内には、最大で、2x2
mm”、厚さ数百μmの金属光沢を持った板状結晶が成
長していた。得られた結晶は、単結晶であり、かつ、斜
方晶構造を持ったYBazCuxOh、 s。δである
ことがX線回折法で明らかとなった。また、四端子法に
より、電気抵抗の温度変化を測定したところ、超伝導転
移を示すことがva認された。かくして、超伝導転移を
示すYBa、Cu、0.、、δの単結晶を成長できた。
(Example 1) In mol%, 1/2Y*Os:BaCO5:CuO=10
Powdered diyttrium trioxide, barium carbonate, and cupric oxide were each weighed to give a composition ratio of :30:60. Next, this mixed powder was placed in an alumina crucible and oxygen gas was introduced in an electric furnace. While continuing to flow for about 117 minutes,
Heated at 900°C for 24 hours. The obtained powder sintered body was filled into a platinum crucible and heated to 1250-13 in a vertical electric furnace.
Heated to 50″C and held for about 2 hours. Then heated to about 2°C.
After cooling to 1000 to 1100° C. at a rate of 1000 to 1100° C., the power to the electric furnace was turned off and the furnace was cooled. When I took the platinum crucible out of the electric furnace and observed it, I found that there were a maximum of 2x2 pieces inside the crucible.
A plate-shaped crystal with a metallic luster and a thickness of several hundred μm was grown. This was revealed by X-ray diffraction.Furthermore, by measuring the change in electrical resistance with temperature using the four-terminal method, it was confirmed that a superconducting transition was observed.Thus, YBa, which exhibits a superconducting transition, We were able to grow a single crystal of Cu, 0., δ.

更に単結晶を回収した坩堝を、熱したHNO□:H2O
・1:1熔液に漬け、残留物をエツチングにより完全に
取り除いた後は、出発原料を充填する前と同じであり、
坩堝は腐食されていなかった。また、成長中融液からの
蒸発は極めて少なく、炉材との反応も殆どなかった。
Furthermore, the crucible in which the single crystal was collected was heated with HNO□:H2O.
・After soaking in 1:1 melt and removing the residue completely by etching, it is the same as before filling with starting materials,
The crucible was not corroded. Furthermore, evaporation from the melt during growth was extremely low, and there was almost no reaction with the furnace material.

(実施例2) モル%で、1/2YzOt:BaC0t:CuO=25
:25:50の組成比からなる単結晶成長用出発原料を
白金坩堝内で、実施例1と同様の方法で溶融し徐冷した
所、同じ様に、板状で、超伝導転移を示すYBazcu
xOa、 soδ単結晶を得ることが出来た。第1図は
、かくして溶解・徐冷した(BaCO3) x (Cu
b) y(1/2RzO3)zなるモル組成を有する出
発原料の実施例を示す。図に於て、O印で示した組成で
は、前記■〜■の条件が満足され、超伝導転移を示すY
BazCuxOh、 s。δの単結晶を成長できた。一
方、X印で示した組成では、超伝導相以外の相が最初に
晶出したり、成長温度が著しく高温となり、単結晶を成
長できなかった。
(Example 2) In mol%, 1/2YzOt:BaC0t:CuO=25
A starting material for single crystal growth having a composition ratio of :25:50 was melted in a platinum crucible in the same manner as in Example 1 and slowly cooled.
xOa, soδ single crystals could be obtained. Figure 1 shows (BaCO3) x (Cu
b) An example of a starting material having a molar composition of y(1/2RzO3)z is shown. In the figure, the composition indicated by O satisfies the conditions (■) to (■) above, and the Y
BazCuxOh, s. We were able to grow a single crystal of δ. On the other hand, in the composition indicated by the X mark, a phase other than the superconducting phase crystallized first, and the growth temperature became extremely high, making it impossible to grow a single crystal.

(実施例3) モル%で、1/2LazOz:BaCO5:CuO=1
0.5:25:62.5の組成比からなる出発原料を実
施例1と同様の方法で熔融・徐冷した所、同じ様に板状
の超伝導転移を示す化学式LaBatCu30i、 S
sδで表される単結晶を成長できた。
(Example 3) In mol%, 1/2LazOz:BaCO5:CuO=1
When a starting material with a composition ratio of 0.5:25:62.5 was melted and slowly cooled in the same manner as in Example 1, the chemical formula LaBatCu30i, S, which also shows a plate-like superconducting transition, was obtained.
A single crystal represented by sδ could be grown.

(実施例4) モル%で、1/2EuzOz : BaC0z :Cu
O=10:25:65の組成比の出発原料を溶融し、そ
の表面に、これまでの実施例と同じ方法で成長させたE
uBa2CuiOi、 s。δ単結晶を白金線で縛り付
は固定したものを種結晶とし、回転しながら徐冷した所
、種結晶上に大形のEuBa、CuxO*、 5+δ単
結晶を成長させることが出来た。成長は、大気中および
酸素ガスフロー中で行ったが、同じ結果が得られた。ま
た、酸素ガス加圧下でも、単結晶を成長出来た。
(Example 4) In mol%, 1/2EuzOz:BaC0z:Cu
A starting material with a composition ratio of O = 10:25:65 was melted, and E was grown on the surface in the same manner as in the previous examples.
uBa2CuiOi, s. A δ single crystal bound and fixed with platinum wire was used as a seed crystal, and when the seed crystal was slowly cooled while rotating, large EuBa, CuxO*, and 5+δ single crystals could be grown on the seed crystal. Growth was carried out in air and oxygen gas flow with the same results. Furthermore, single crystals could be grown even under oxygen gas pressure.

また、希土類酸化物R10,のRをY、La、EU基以
外他の希土類元素に変えた場合にも、これまでと同じ様
に、RBazCuxOi、 sやδδで表される超伝導
転移を示す単結晶が得られることが分かった。
Furthermore, even when R in the rare earth oxide R10 is changed to a rare earth element other than Y, La, or EU group, the monomer that exhibits the superconducting transition represented by RBazCuxOi, s, or δδ will remain as before. It was found that crystals were obtained.

以上説明した実施例から明らかなように、RBazcu
lo、82.δの単結晶成長用出発原料としての必須条
件が満たされているモル組成は、(BaCOi)x (
Cub) ! (1/2RzOi)z  において0.
15≦x≦0.40.0.40≦y≦0.75,0.1
0≦2≦0.25 (但し、x+y+z=1 )であり
、第1図に示したハツチング領域で表される。
As is clear from the examples described above, RBazcu
lo, 82. The molar composition that satisfies the essential conditions for δ as a starting material for single crystal growth is (BaCOi) x (
Cub)! (1/2RzOi)z at 0.
15≦x≦0.40.0.40≦y≦0.75, 0.1
0≦2≦0.25 (however, x+y+z=1), and is represented by the hatched area shown in FIG.

(発明の効果) 以上のように、本発明は、これまで成功を収めていなか
った銅酸希土類・バリウム、RBatCuxob、s*
δ(但しRはインドリウムおよびランタノイドからえら
ばれた一種または二種以上の元素)の単結晶成長を可能
とする新規な方法を提供するもので、次の利点がある。
(Effects of the Invention) As described above, the present invention solves the problem of the rare earth cuprate barium, RBatCuxob, s*
The present invention provides a novel method that enables single crystal growth of δ (where R is one or more elements selected from indolium and lanthanoids), and has the following advantages.

■出発原料が、化合物の構成物からなるため、成長結晶
へ不純物が混入する心配が皆無であり、高純度の単結晶
が得られる。
(2) Since the starting material consists of compound components, there is no concern that impurities will be mixed into the growing crystal, and a highly pure single crystal can be obtained.

■本発明の出発原料によれば、種々の希土類元素を含み
、超伝導転移を示す高品質大形単結晶成長に対しては無
論、格子整合性の良い結晶基板上への単結晶薄膜の成長
に通用しても極めて有効である。
■According to the starting material of the present invention, it is possible to grow a single crystal thin film on a crystal substrate with good lattice matching, as well as to grow a high-quality large-sized single crystal containing various rare earth elements and exhibiting superconducting transition. It is extremely effective even if it is applied to

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、(BaCO:+)x(CuO)y(1/2Y
zOs)zなるモル組成を有する単結晶成長用出発原料
において’1BatcuzO6,s−δの単結晶を成長
可能な組成領域を示すための図である。
Figure 1 shows (BaCO:+)x(CuO)y(1/2Y
FIG. 2 is a diagram showing a composition range in which a single crystal of '1BatcuzO6,s-δ can be grown in a starting material for single crystal growth having a molar composition of zOs)z.

Claims (2)

【特許請求の範囲】[Claims] (1)炭酸バリウム(化学式:BaCO_3)と酸化第
二銅(化学式:CuO)と希土類酸化物(化学式:R_
2O_3、但しRはイットリウムおよびランタノイドか
らえらばれた一種または二種以上の元素)を、(BaC
O_3)x(CuO)y(1/2R_2O_3)zにお
いてx+y+z=1とするとき0.15≦x≦0.40
、0.40≦y≦0.75、0.10≦z≦0.25で
表されるモル組成に混合し、該混合物を加熱溶融し、次
いで徐冷することによりRBa_2Cu_3O_6、_
5_+δ(ただしδは酸素欠陥の量によりきまる値で0
<δ<1)からなる単結晶を得ることを特徴とする超伝
導酸化物単結晶の成長方法。
(1) Barium carbonate (chemical formula: BaCO_3), cupric oxide (chemical formula: CuO), and rare earth oxide (chemical formula: R_
2O_3, where R is one or more elements selected from yttrium and lanthanoids), (BaC
O_3)x(CuO)y(1/2R_2O_3)z, when x+y+z=1, 0.15≦x≦0.40
RBa_2Cu_3O_6, _
5_+δ (however, δ is a value determined by the amount of oxygen defects and is 0
<δ<1)
(2)x:y:zが2:3:1以外であることを特徴と
する、特許請求の範囲第1項記載の超伝導酸化物単結晶
の成長方法。
(2) The method for growing a superconducting oxide single crystal according to claim 1, wherein x:y:z is other than 2:3:1.
JP62109249A 1987-05-01 1987-05-01 Method for growing superconducting oxide single crystal Expired - Fee Related JP2557882B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62109249A JP2557882B2 (en) 1987-05-01 1987-05-01 Method for growing superconducting oxide single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62109249A JP2557882B2 (en) 1987-05-01 1987-05-01 Method for growing superconducting oxide single crystal

Publications (2)

Publication Number Publication Date
JPS63274698A true JPS63274698A (en) 1988-11-11
JP2557882B2 JP2557882B2 (en) 1996-11-27

Family

ID=14505394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62109249A Expired - Fee Related JP2557882B2 (en) 1987-05-01 1987-05-01 Method for growing superconducting oxide single crystal

Country Status (1)

Country Link
JP (1) JP2557882B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0573798A2 (en) * 1992-06-10 1993-12-15 Hoechst Aktiengesellschaft Process for producing high-temperature superconductor and shaped product thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0573798A2 (en) * 1992-06-10 1993-12-15 Hoechst Aktiengesellschaft Process for producing high-temperature superconductor and shaped product thereof
EP0573798A3 (en) * 1992-06-10 1995-02-08 Hoechst Ag Process for producing high-temperature superconductor and shaped product thereof.

Also Published As

Publication number Publication date
JP2557882B2 (en) 1996-11-27

Similar Documents

Publication Publication Date Title
Erb et al. BaZrO3: the solution for the crucible corrosion problem during the single crystal growth of high-Tc superconductors REBa2Cu3O7− δ; RE= Y, Pr
US5055445A (en) Method of forming oxidic high Tc superconducting materials on substantially lattice matched monocrystalline substrates utilizing liquid phase epitaxy
JP3384919B2 (en) Preparation method of oxide crystal
Hidaka et al. Single crystal growth of (La1-xAx) 2CuO4 (A= Ba or Sr) and Ba2YCu3O7-y
Assmus et al. Crystal growth of HTSC materials
Nakamura et al. Fabrication of NdBa2Cu3O7− δ single crystals by the top-seeded solution-growth method in 1%, 21%, and 100% oxygen partial pressure atmosphere
JPH10114524A (en) Production of superconductor
US5324712A (en) Formation of the high TC 2223 phase in BI-SR-CA-CU-O by seeding
Wang et al. Phase relations around langasite (La3Ga5SiO14) in the system La2O3–Ga2O3–SiO2 in air
Fratello et al. Nickel containing perovskites
JPS63274698A (en) Method for growing superconductive oxide single crystal
JPH02275685A (en) Thin film superconducting materia on lattice matching single crystal lanthanum ortho gallate
Wada et al. Preparation of single crystal of Ca2CuO3 by TSFZ method
Görnert et al. On the flux growth and some properties of superconducting YBa2Cu3O7-ϰ single crystals and LPE films
US4792377A (en) Flux growth of sodium beta&#34; alumina
JPH0255298A (en) Method for growing oxide superconductor single crystal
US5208214A (en) Multiphase superconductor and process for its production
Huang et al. Primary crystallization field and crystal growth of Bi2Sr2CaCu2Ox
JP2672533B2 (en) Method for producing oxide superconductor crystal
Fratello et al. Solid solution perovskite substrate materials with indifferent points
Voronkova et al. Flux growth and properties of oxide crystals
JPH06321693A (en) Production of oxide superconducting material
JP2637123B2 (en) Method for producing oxide superconductor crystal
JPH0471876B2 (en)
JPH02229787A (en) Production of oxide superconductor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees