JPH0255298A - Method for growing oxide superconductor single crystal - Google Patents

Method for growing oxide superconductor single crystal

Info

Publication number
JPH0255298A
JPH0255298A JP20466788A JP20466788A JPH0255298A JP H0255298 A JPH0255298 A JP H0255298A JP 20466788 A JP20466788 A JP 20466788A JP 20466788 A JP20466788 A JP 20466788A JP H0255298 A JPH0255298 A JP H0255298A
Authority
JP
Japan
Prior art keywords
single crystal
oxide superconductor
flux
superconductor
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20466788A
Other languages
Japanese (ja)
Inventor
Shiyunji Nomura
俊自 野村
Tomohisa Yamashita
知久 山下
Hisashi Yoshino
芳野 久士
Takeshi Ando
健 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP20466788A priority Critical patent/JPH0255298A/en
Publication of JPH0255298A publication Critical patent/JPH0255298A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a high-quality and large-sized Bi-based oxide superconductor single crystal by adding a flux consisting of a Pb compound to a raw material powder of a Bi-based superconductor and growing the single crystal according to a flux method. CONSTITUTION:A Bi-based superconductor powder or raw material powder capable of providing the Bi-based superconductor by heating is mixed with a flux consisting of a Pb-containing compound and the resultant mixture is kept at a high temperature, homogeneously melted and then annealed to grow a single crystal. Since Pb is used as the flux, a high Tc phase can be readily deposited to grow a high-quality single crystal without impairing superconductive characteristics. PbO, PbF2, PbCl2, etc., are used as the Pb-containing compound. If the concentration of the Pb compound is <=2%, the high Tc phase is hardly deposited and crystals will scarcely grow. Thereby, the mixing ratio of the flux to the oxide superconductor is preferably 2-30mol%.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、高品質で大型なりi系の酸化物超電導体単結
晶の育成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a method for growing a high-quality, large-sized, i-based oxide superconductor single crystal.

(従来の技術) 近年、Ba−La−Cu−0系の層状ペロブスカイト型
の酸化物が高い臨界温度を有する可能性のあることが発
表されて以来、各所で酸化物超電導体の研究が行われて
いる( Z、Phys、B CondensedMat
ter 84,189−193(1986) ) 、そ
の中でもYBa−Cu−0系で代表される酸素欠陥を有
する欠陥ペロブスカイト型の酸化物超電導体は、臨界温
度が90に以上と液体窒素以上の高い温度を有すること
が確認されている( Phys、Rev、Lett、V
o158、No、9.90’8−910)。
(Prior Art) In recent years, it has been announced that layered perovskite-type oxides based on Ba-La-Cu-0 may have a high critical temperature, and since then, research on oxide superconductors has been carried out in various places. (Z, Phys, B CondensedMat
ter 84, 189-193 (1986)), among which defective perovskite-type oxide superconductors with oxygen defects, represented by the YBa-Cu-0 system, have a critical temperature of 90°C or higher, which is higher than liquid nitrogen. (Phys, Rev, Lett, V
o158, No. 9.90'8-910).

さらに、1988年には、臨界温度が105にのB i
−3r−Ca−Cu−0系の超電導酸化物が発見される
に至った(日本経済新聞昭和63年1月22日等)。
Furthermore, in 1988, B i with a critical temperature of 105
-3r-Ca-Cu-0 system superconducting oxide has been discovered (Nihon Keizai Shimbun January 22, 1988, etc.).

このB i−3r−Ca−Cu−0系の超電導酸化物は
、Ba−La−Cu−0系やY−Ba−Cu−0系の超
電導酸化物に比べて、臨界温度が高いばかりでなく、高
価な希土類元素が不要であること、水分等に対する化学
的安定性が高いことなどの利点があり、より優れた酸化
物超電導材料である。
This B i-3r-Ca-Cu-0 based superconducting oxide not only has a higher critical temperature than the Ba-La-Cu-0 based and Y-Ba-Cu-0 based superconducting oxides. It is a superior oxide superconducting material because it has the advantages of not requiring expensive rare earth elements and having high chemical stability against moisture and the like.

このような酸化物超電導体は、結晶性の酸化物であるた
め、これらを各種超電導装置として利用する場合には、
その焼結体を使用することが試みられている、しかし、
この酸化物超電導体は、その結晶の0面に沿って超電導
電流か流れるという性質を有しているため、電流密度を
高めるためには結晶を一定方向に配列させることか必要
とされている。
Since such oxide superconductors are crystalline oxides, when using them as various superconducting devices,
Attempts have been made to use the sintered body, however,
This oxide superconductor has the property that superconducting current flows along the zero plane of its crystals, so it is necessary to align the crystals in a certain direction in order to increase the current density.

ところで、酸化物超電導体の焼結体を得る際に、酸化物
超電導体粉末を単に焼結させただけでは多結晶体となり
、結晶の配列方向かランダムであるため、上述したよう
に臨界電流密度か不十分なものになってしまう。そこで
、結晶方位が一定な単結晶のある程度の大きさを有する
バルクを得ることか可能となれば、臨界電流密度などの
超電導特性か向上された各種電子デバイスなどの超電導
装置を形成することが可能になる。また、酸化物超電導
体の物性の解明においても酸化物超電導体単結晶は必要
とされている。
By the way, when obtaining a sintered body of an oxide superconductor, simply sintering the oxide superconductor powder results in a polycrystalline body, and the orientation of the crystals is random, so as mentioned above, the critical current density or end up being inadequate. Therefore, if it becomes possible to obtain a bulk of a certain size of single crystal with a constant crystal orientation, it will be possible to form superconducting devices such as various electronic devices with improved superconducting properties such as critical current density. become. Oxide superconductor single crystals are also needed to elucidate the physical properties of oxide superconductors.

そこで、溶融法等により酸化物超電導体単結晶を作製す
ることが試みられているが、Bi系超超電導体高T c
 )[]は焼結体でさえ100%単相のものが得られて
おらずその製法の確立か急務とされている。
Therefore, attempts have been made to produce oxide superconductor single crystals using a melting method, etc., but the Bi-based superconductor has a high T c
)[] has not been obtained as a 100% single-phase sintered body, and there is an urgent need to establish a manufacturing method for it.

(発明が解決しようとする課題) 上述したように、現状ではBi系高Tc相の酸化物超電
導体単結晶の製造方法か見出されていない。
(Problems to be Solved by the Invention) As described above, currently no method has been found for producing a Bi-based high Tc phase oxide superconductor single crystal.

本発明は、このような事情に対処すべくなされたもので
、高品質でしかもある程度の大きざを有するBi系高T
c相の酸化物超電導体単結晶の製造方法を提供すること
を目的とする。
The present invention was made in order to cope with such circumstances, and is a Bi-based high T material having high quality and a certain degree of size.
An object of the present invention is to provide a method for manufacturing a c-phase oxide superconductor single crystal.

[発明の構成] (課題を解決するための手段) 本発明の酸化物超電導体単結晶の製造方法は、酸化物超
電導体粉末または加熱により酸化物超電導体となる原料
粉末にPbを含む化合物からなる融剤を加えた混合物を
用いフラックス法により育成することを特徴としている
[Structure of the Invention] (Means for Solving the Problems) The method for producing an oxide superconductor single crystal of the present invention includes using a compound containing Pb as an oxide superconductor powder or a raw material powder that becomes an oxide superconductor by heating. It is characterized by being grown by the flux method using a mixture containing a fluxing agent.

本発明に使用される酸化物超電導体粉末は、例えば以下
のようにして製造される。
The oxide superconductor powder used in the present invention is produced, for example, as follows.

ます、Bi、Sr、Ca、Cu等の構成元素を十分混合
する。混合の際には、B12Q3,5rCO3,CaC
O2,CuO等の酸化物や炭酸塩を原f4として用いる
ことができるほか、他の焼成後酸化物に添加する硝酸塩
、水酸化物等の化合物を用いてもよい。さらには共沈法
等で得たシュウ酸塩等を用いてもよい。B1−5r−C
a−Cu−〇系酸化物超電導体を構成する元素は、基本
的に化学量論比の組成となるように混合するが、多少製
造条件等との関係でずれていても差支えない。例えば、
B i 2 molに対しSr2mol、Ca2mol
 Cu 3molが標準組成であるが、実用上はB i
 2 molに対して、Sr、Ca2±0 、4mo 
1Cu3±0.6mol程度のずれは問題ない。
First, constituent elements such as Bi, Sr, Ca, and Cu are thoroughly mixed. When mixing, B12Q3,5rCO3, CaC
Oxides and carbonates such as O2 and CuO can be used as the raw f4, and other compounds such as nitrates and hydroxides that are added to the oxides after firing may also be used. Furthermore, oxalate obtained by a coprecipitation method or the like may be used. B1-5r-C
The elements constituting the a-Cu-○-based oxide superconductor are basically mixed so as to have a stoichiometric composition, but there may be a slight deviation depending on the manufacturing conditions and the like. for example,
Sr2 mol, Ca2 mol for B i 2 mol
The standard composition is 3 mol of Cu, but in practice B i
For 2 mol, Sr, Ca2±0, 4 mol
A deviation of about 1Cu3±0.6 mol is not a problem.

そして前述の原料を充分に混合した後、800℃程度の
温度条件で仮焼して反応させる。
After thoroughly mixing the above-mentioned raw materials, they are calcined at a temperature of about 800° C. to react.

この後、この仮焼物をボールミル、サンドグラインダ1
その池公知の手段により粉砕することにより酸化物超電
導体粉末か得られる。
After that, this calcined product is passed through a ball mill and a sand grinder.
An oxide superconductor powder is obtained by pulverizing the powder using known means.

本発明の酸化物超電導体単結晶の製造方法についてさら
に詳述すると、まず上述したような方法により作製した
酸化物超電導体粉末、あるいは前述した酸化物超電導体
の原料粉末にPbを含む化合物からなるフラックスとを
混合した後高温に保持し、均一に溶融して、その後除冷
して単結晶を育成する。
To explain in more detail the method for producing the oxide superconductor single crystal of the present invention, first, the oxide superconductor powder produced by the method described above or the compound containing Pb as the raw material powder of the oxide superconductor described above is used. After mixing with flux, it is held at a high temperature to uniformly melt, and then slowly cooled to grow a single crystal.

また本発明に使用するフラックスとしては、Pbを用い
ているため、高Tc用を)斤出させやすく、超電導特性
をそこなうことなく品質の高い単結晶を育成することが
できる。なおこの方法を用い基板上に液相エピタキシカ
ル成長により膜状の単結晶を成長させることもできる。
Furthermore, since Pb is used as the flux used in the present invention, it is easy to cast out a high Tc flux, and a high quality single crystal can be grown without impairing superconducting properties. Note that this method can also be used to grow a film-like single crystal on a substrate by liquid phase epitaxial growth.

本発明に使用するフラックスとしてはPbを含む化合物
であることが必要である。すなわちPbO,PbF2゜
Pbc42などのPb化合物からえらばれる。
The flux used in the present invention needs to be a compound containing Pb. That is, it is selected from Pb compounds such as PbO and PbF2°Pbc42.

股にこれらPb化合物は蒸気圧が高くこれらフラックス
を高濃度に含む場合育成中の組成変動か起りやすい。一
方Pb化合物の濃度が2%以下では高T c t[Jが
析出しに<<、はとんどその結晶は成長しない。従って
フラックスと酸化物超電導体との混合比は、2〜30モ
ル%が好ましい。
These Pb compounds have a high vapor pressure, and if these fluxes are included in a high concentration, compositional changes are likely to occur during growth. On the other hand, if the concentration of the Pb compound is 2% or less, the high T c t[J will cause precipitation, and the crystal will hardly grow. Therefore, the mixing ratio of flux and oxide superconductor is preferably 2 to 30 mol%.

更にPbの蒸発を抑え育成中の組成変動を小さくし、加
えて溶液の粘性を調整し単結晶の核発生数をコントロー
ルするため)1ラツクスに8203を添加することも有
効である。
Furthermore, it is also effective to add 8203 to 1 lac (in order to suppress evaporation of Pb and reduce compositional fluctuations during growth, as well as to adjust the viscosity of the solution and control the number of nuclei generated in single crystals).

また、貴金属育成容器の場合には高温てPb化合物か還
元され、金属Pbとなり貴金属と金属間化合物を生成し
、育成容器を脆化させ更にはクラックを生じさせやすい
。これらを防止する目的でフラックス中にV2 osな
どの酸化物を添、加することか有効である。
In addition, in the case of a noble metal growth container, the Pb compound is reduced at high temperatures and becomes metal Pb, producing an intermetallic compound with the noble metal, making the growth container brittle and prone to cracking. For the purpose of preventing these, it is effective to add an oxide such as V2 os to the flux.

この酸化物超電導体と融剤との混合物を、この混合物の
液相生成温度、あるいは液相生成温度以上の温度で溶融
液内が均一となるように一定時間保持した後、結晶析出
温度範囲内を所定の速度で竹 合札によって異なるが、はぼ融解温度より600徹 ℃以内程度の範囲内である。また、この祐冷速度は、当
然ながら余り大きければ充分に単結晶を育成することか
不可能となり、また小さいほど核発生は少なく大きい単
結晶を得ることができるが、あまり小さくして温度調節
精度が低下すると逆に単結晶の品質に悪影響を及ぼすの
で、20℃/時冷したり、種結晶を使用することも可能
である。
After holding the mixture of the oxide superconductor and the flux at the liquid phase formation temperature of this mixture or at a temperature higher than the liquid phase formation temperature for a certain period of time so that the inside of the melt becomes uniform, the mixture is kept within the crystal precipitation temperature range. The predetermined speed varies depending on the bamboo plate, but it is within a range of about 600 degrees Celsius or less than the melting temperature. Naturally, if this cooling rate is too large, it will be impossible to grow a single crystal sufficiently, and if it is too small, the generation of nuclei will be small and a large single crystal can be obtained, but if it is too small, it will be difficult to control the temperature accurately. Since a decrease in the temperature adversely affects the quality of the single crystal, it is also possible to cool the single crystal by 20° C./hour or to use a seed crystal.

(作 用) を用いるため、大型で高品質単結晶を得ることか可能と
なる。
(effect), it is possible to obtain large, high-quality single crystals.

(実施例) 次に、本発明の実施例について説明する。(Example) Next, examples of the present invention will be described.

実施例l Bi2O:+、SrCO3,CaCO3,CuO粉末を
用いてl/2 B i 20322.2モル%、5rO
222モル96.  Ca 022.2モル% Cu 
O33,3モル%となるように秤Q 調合し、ホールミ
ルで十分混合した後、アルミアルツボに充てんして電気
炉で大気中300℃で8時間かけて固相反応させた。
Example l Bi2O:+, l/2 Bi 20322.2 mol%, 5rO using SrCO3, CaCO3, CuO powder
222 moles 96. Ca 022.2 mol% Cu
The mixture was prepared with a balance Q of 3.3 mol% O3, thoroughly mixed in a whole mill, then filled into an aluminum crucible and subjected to a solid phase reaction in an electric furnace at 300° C. in the air for 8 hours.

この粉末を再びボールミルで十分粉砕混合して酸化物超
電導体粉末を得た。この粉末を陽イオン比はBi:Sr
:Ca:Cu−2:2+2:3であった。
This powder was thoroughly ground and mixed again using a ball mill to obtain an oxide superconductor powder. The cation ratio of this powder is Bi:Sr
:Ca:Cu-2:2+2:3.

次にPbOと上記粉末をモル比で1・9となるように総
量 100 g秤ユし、十分混合した後、アルミナルツ
ボに充てんし・て電気炉で大気中100℃で48時間か
けて充分均一に融解した後500℃まで250時間かけ
て除冷し、その後炉冷して3x3xO,5siの大きさ
の酸化物超電導体単結晶を得た。
Next, a total of 100 g of PbO and the above powder were weighed so that the molar ratio was 1.9, and after thorough mixing, the mixture was filled into an alumina crucible and heated in an electric furnace at 100°C in the air for 48 hours to ensure uniformity. After melting, the mixture was slowly cooled to 500° C. over 250 hours, and then cooled in a furnace to obtain an oxide superconductor single crystal with a size of 3×3×O,5si.

このようにして得た酸化物超電導体単結晶について、X
線回折を行い単結晶体であることを確認した。第1図は
この結晶の電気抵抗の温度特性を示す。
Regarding the oxide superconductor single crystal obtained in this way,
Linear diffraction was performed and it was confirmed that it was a single crystal. FIG. 1 shows the temperature characteristics of the electrical resistance of this crystal.

図から明らかなように、この酸化物超電導体単結晶の臨
界温度、電気抵抗の急激な降下開始温度と電気抵抗が零
となる値との差・ΔTcおよび臨界′4.流密度を測定
したところ、臨界温度108K。
As is clear from the figure, the critical temperature of this oxide superconductor single crystal, the difference between the temperature at which the electrical resistance starts to drop sharply and the value at which the electrical resistance becomes zero, ΔTc, and the critical '4. When the flow density was measured, the critical temperature was 108K.

ΔTc1Kとそれぞれ優れた値が得られた。Excellent values of ΔTc1K were obtained.

実施例2 実施例1と全く同様にして得た粉末80モル%1:P 
b F215モル%、 ’72B2035モル%を加え
、充分混合した後、アルミナルツボに充てんして100
0℃で大気中48時間かけて融解した後500℃まで5
00時間かけて除冷し、その後炉冷して4 X 4 X
 1 rrvAの大きさの酸化物超電導体単結晶を得た
。この結晶のTc−110に、  ΔTc−IK、!:
すぐれた値が得られた。
Example 2 Powder 80 mol% 1:P obtained in exactly the same manner as Example 1
b Add 15 mol% of F2 and 35 mol% of '72B2, mix thoroughly, then fill in an alumina crucible to 100%
After melting in the air at 0℃ for 48 hours, it is heated to 500℃.
It was slowly cooled for 00 hours, then furnace-cooled to 4
An oxide superconductor single crystal with a size of 1 rrvA was obtained. For Tc-110 of this crystal, ΔTc-IK,! :
Excellent values were obtained.

[発明の効果] 以上の実施例から明らかなように本発明の酸化物超電導
体単結晶の育成方法によれば、Pb化合物をフラックス
として用いたフラックス法により育成するため、高Tc
相の単結晶を得ることが可能となる。
[Effects of the Invention] As is clear from the above examples, according to the method for growing an oxide superconductor single crystal of the present invention, since the growth is performed by a flux method using a Pb compound as a flux, a high Tc
It becomes possible to obtain a single crystal of the phase.

【図面の簡単な説明】[Brief explanation of the drawing]

第 図は、 本発明の実施例における酸化物超電 導体単結晶の電気抵抗率の温度特性を示す図。 No. The diagram is Oxide superelectrics in embodiments of the present invention FIG. 3 is a diagram showing the temperature characteristics of electrical resistivity of a conductor single crystal.

Claims (3)

【特許請求の範囲】[Claims] (1)Bi系超電導体粉末または加熱によりBi系酸化
物超電導体となる原料粉末にPbを含む化合物からなる
融剤を加えた混合物を用いフラックス法により育成する
ことを特徴とする酸化物超電導体単結晶の育成方法。
(1) An oxide superconductor characterized in that it is grown by a flux method using a mixture of Bi-based superconductor powder or raw material powder that becomes a Bi-based oxide superconductor by heating and a flux made of a compound containing Pb. How to grow single crystals.
(2)融剤が酸化鉛、フッ化鉛及び塩化鉛から選ばれた
少なくとも一種であることを特徴とする請求項1記載の
酸化物超電導体単結晶の育成方法。
(2) The method for growing an oxide superconductor single crystal according to claim 1, wherein the flux is at least one selected from lead oxide, lead fluoride, and lead chloride.
(3)酸化物超電導体原料と融剤との混合比がモル比で
2〜30%であることを特徴とする請求項1記載の酸化
物超電導体単結晶の育成方法。
(3) The method for growing an oxide superconductor single crystal according to claim 1, wherein the mixing ratio of the oxide superconductor raw material and the flux is 2 to 30% in molar ratio.
JP20466788A 1988-08-19 1988-08-19 Method for growing oxide superconductor single crystal Pending JPH0255298A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20466788A JPH0255298A (en) 1988-08-19 1988-08-19 Method for growing oxide superconductor single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20466788A JPH0255298A (en) 1988-08-19 1988-08-19 Method for growing oxide superconductor single crystal

Publications (1)

Publication Number Publication Date
JPH0255298A true JPH0255298A (en) 1990-02-23

Family

ID=16494292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20466788A Pending JPH0255298A (en) 1988-08-19 1988-08-19 Method for growing oxide superconductor single crystal

Country Status (1)

Country Link
JP (1) JPH0255298A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0465396A (en) * 1990-07-03 1992-03-02 Agency Of Ind Science & Technol Superconducting single crystal and its production
JPH04130093A (en) * 1990-09-21 1992-05-01 Nec Corp Production of oxide superconductor single crystal and method for controlling superconductivity transition temperature
US5113756A (en) * 1989-09-20 1992-05-19 Teijin Seiki Company, Limited Press machine
JPH04202093A (en) * 1990-11-30 1992-07-22 Nec Corp Production of single crystal of oxide superconductor and method for controlling superconductivity transition temperature
US5269163A (en) * 1991-06-28 1993-12-14 Aida Engineering Ltd. Device for correcting die spacing at bottom dead center of a press

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5113756A (en) * 1989-09-20 1992-05-19 Teijin Seiki Company, Limited Press machine
JPH0465396A (en) * 1990-07-03 1992-03-02 Agency Of Ind Science & Technol Superconducting single crystal and its production
JPH04130093A (en) * 1990-09-21 1992-05-01 Nec Corp Production of oxide superconductor single crystal and method for controlling superconductivity transition temperature
JPH04202093A (en) * 1990-11-30 1992-07-22 Nec Corp Production of single crystal of oxide superconductor and method for controlling superconductivity transition temperature
US5269163A (en) * 1991-06-28 1993-12-14 Aida Engineering Ltd. Device for correcting die spacing at bottom dead center of a press

Similar Documents

Publication Publication Date Title
Assmus et al. Crystal growth of HTSC materials
US5240903A (en) Oxide superconductor comprising babo3 dispersions (where b is zr, sn, ce or ti)
JPH0255298A (en) Method for growing oxide superconductor single crystal
JPH01157499A (en) Production of single crystal of oxide superconductor
US5545610A (en) Oxide-based superconductor, a process for preparing the same and a wire material of comprising the same
JPH01275493A (en) Method for growing oxide superconductor single crystal
Markl et al. Preparation of Ln2− xCexCu1O4− δ single crystals (Ln= Nd, Sm) by a modified flux flow method
JPH01282187A (en) Production of single crystal of oxide semiconductor
JPH02275799A (en) Oxide superconductor and its production
JP3889139B2 (en) Oxide superconductor containing silver and method for producing the same
JP2557882B2 (en) Method for growing superconducting oxide single crystal
JPH0818910B2 (en) Method for producing oxide superconducting single crystal
JPH0365509A (en) Rare earth metal oxide superconductor
JPH0238359A (en) Production of superconductor
JP2655797B2 (en) Method for forming oriented thick film of bismuth-based superconducting ceramics
JPH0465395A (en) Superconducting fibrous crystal and its production
Rao et al. Growth of CaLnBaCu3O7-delta (Ln= La, Pr and Nd) single crystals by the flux technique
JP2838312B2 (en) Oxide superconducting material
JPH0714818B2 (en) Superconducting fibrous crystal and method for producing the same
JPH06157041A (en) Lead complex copper oxide material
JPH02120234A (en) Production of oxide superconductor
JPH03223117A (en) Production of bi-based oxide superconductor
JPS63315572A (en) Production of superconductor
JPH02153821A (en) Production of thallium-based superconductor
JPH0753218A (en) Production of bi-base superconducting material