JPH04130093A - Production of oxide superconductor single crystal and method for controlling superconductivity transition temperature - Google Patents

Production of oxide superconductor single crystal and method for controlling superconductivity transition temperature

Info

Publication number
JPH04130093A
JPH04130093A JP2249964A JP24996490A JPH04130093A JP H04130093 A JPH04130093 A JP H04130093A JP 2249964 A JP2249964 A JP 2249964A JP 24996490 A JP24996490 A JP 24996490A JP H04130093 A JPH04130093 A JP H04130093A
Authority
JP
Japan
Prior art keywords
single crystal
oxide superconductor
range
pbcl2
tl2ba2cuo6
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2249964A
Other languages
Japanese (ja)
Inventor
Takashi Masako
隆志 眞子
Yuichi Shimakawa
祐一 島川
Yoshimi Kubo
佳実 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2249964A priority Critical patent/JPH04130093A/en
Publication of JPH04130093A publication Critical patent/JPH04130093A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To produce the Tl2Ba2CuO6 single crystal having good quality and sufficient size by heating and melting a powder mixture composed of Tl2O3, Bad, Cub, and PbCl2 consisting of specific compounding ratios under specific conditions, then slowly cooling the mixture. CONSTITUTION:The powder mixture of the compsn. range consisting of Tl2O3+2 BaO+CuO+xPbCl2 (3<=x<=300) is melted by using PbCl2, as a flux and the melt is slowly cooled at a mate of <=10 deg.C/hour. The resulted single crystal is washed with water to remove PbCl2. The single crystal of the Tl2Ba2CuO6 is then taken out. The single crystal of the Tl2Ba2CuO6 having the good quality and the sufficient size is obtd. in this way and is subjected to the heat treatment in the temp. range of 300 to 600 deg.C under the pressurized oxygen up to 400atm, by which the superconductivity transition temp. (Tc) is arbitrarily controlled in an about 0 to 85K range.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、各種の超伝導応用装置や超伝導素子に使用さ
れる酸化物超伝導材料に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to oxide superconducting materials used in various superconducting application devices and superconducting elements.

[従来の技術] 金属・合金系超伝導材料、化合物超伝導材料は、ジョセ
フソン素子や超伝導マグネットの線材として既に広く利
用されている。ジョセフソン接合は、その磁場に対する
高い感度のため5QUIDを初めとする精密計測に応用
されているほか、その高速性から電子計算機への応用が
期待されている。
[Prior Art] Metal/alloy-based superconducting materials and compound superconducting materials are already widely used as wire materials for Josephson elements and superconducting magnets. Josephson junctions are used in precision measurements such as 5QUID due to their high sensitivity to magnetic fields, and are expected to be applied to electronic computers due to their high speed.

また、通常導体では得られないような高磁場を発生でき
る超伝導マグネットは、NMR−CTなどの医療機器や
浮上型リニアモーターカー等にも応用されている。
Furthermore, superconducting magnets, which can generate high magnetic fields that cannot be obtained with ordinary conductors, are also used in medical equipment such as NMR-CT, levitated linear motor cars, and the like.

超伝導体の応用を考えた場合、超伝導転移温度(Tc)
はできる限り高いことが望まれる。金属・合金系超伝導
体や化合物系超伝導体は、冷媒として高価で希少な液体
ヘリウムを用いなければならず、このことがこれらの超
伝導体の広い分野への応用を妨げる一因となっている。
When considering the application of superconductors, the superconducting transition temperature (Tc)
is desired to be as high as possible. Metal/alloy-based superconductors and compound-based superconductors require the use of expensive and rare liquid helium as a coolant, and this is one of the factors that prevents the application of these superconductors in a wide range of fields. ing.

この点では銅酸化物系超伝導体は、従来の超伝導体より
もはるかに優れており、1987年に3a−Y−Cu−
0系超伝導体が発見されて以来、B−sr−ca−cu
−o系、Ti−Ba−CaCu−0系などの液体窒素温
度を超えるTcをもつ超伝導体が相次いで発見されてい
る。これらの酸化物超伝導体が実用化されれば、今まで
考えられなかったような分野にまでその応用の可能性が
広がるとして、現在も研究開発が盛んに行われている。
In this respect, cuprate-based superconductors are far superior to conventional superconductors, and in 1987, 3a-Y-Cu-
Since the discovery of 0-series superconductors, B-sr-ca-cu
BACKGROUND ART Superconductors having Tc exceeding the temperature of liquid nitrogen, such as -o series and Ti-Ba-CaCu-0 series, have been discovered one after another. If these oxide superconductors are put into practical use, their potential applications will expand to fields that were previously unimaginable, and research and development efforts are currently underway.

[発明が解決しようとする課題] 現在研究されている酸化物超伝導体試料のほとんどは多
結晶体である。超伝導体の多結晶試料では、その結晶粒
界に無数の超伝導の弱結合が存在するため、望む特性を
持つジョセフソン接合を制御性良く作ることが困難であ
る。また、多結晶体が含んでいる各種の欠陥や不均質性
が超伝導特性の安定性に悪い影響を与えることも考えら
れるため、デバイスなどへの応用には単結晶体を用いる
ことが望ましい。
[Problems to be Solved by the Invention] Most of the oxide superconductor samples currently being studied are polycrystalline. In polycrystalline superconductor samples, there are countless superconducting weak bonds at the grain boundaries, making it difficult to controllably create Josephson junctions with desired properties. Furthermore, since the various defects and inhomogeneities contained in polycrystals may have a negative effect on the stability of superconducting properties, it is desirable to use single crystals for applications such as devices.

さらに、焼結体にあける研究から、下!2Ba2 Cu
b6のTCは、酸素量の制御により任意にコントロール
することができることが知られている。この性質は温度
センサ等への応用に有用であるが、単結晶体では焼結体
より酸素が出入りしにくいため、焼結体の時のように広
い範囲でTCを変えることが難しい。
Furthermore, from the research conducted on sintered bodies, see below! 2Ba2 Cu
It is known that the TC of b6 can be arbitrarily controlled by controlling the amount of oxygen. This property is useful for applications such as temperature sensors, but it is difficult for oxygen to enter and exit in a single crystal body than in a sintered body, so it is difficult to change the TC over a wide range as in the case of a sintered body.

本発明はこのような従来の事情に鑑みてなされたもので
、良質で充分な大きざを持つTI!2Ba2 Cub6
単結晶の製造方法およびそのTCの制御方法を提供する
ことを目的とする。
The present invention was made in view of the above-mentioned conventional circumstances, and it is a TI film of good quality and sufficient size. 2Ba2 Cub6
The present invention aims to provide a method for manufacturing a single crystal and a method for controlling its TC.

[課題を解決するための手段] 本発明は、T12 Ba2 Cub6と表さレル酸化物
超伝導体単結晶の製造方法において、PbCl2をフラ
ックスとして用い、 ■T1203 +2BaO+CuO +xPbCJ!2 (3≦X≦300) なる組成範囲の混合粉末、もしくは、 ■T12 Ba2Cub6+xPbCj!2(3≦X≦
300 > なる組成範囲の混合粉末を、600〜850℃の温度範
囲で融解し、10℃/ hou r以下の速度で徐冷す
ることを特徴とする酸化物超伝導体単結晶の製造方法で
ある。
[Means for Solving the Problems] The present invention provides a method for manufacturing a single crystal oxide superconductor expressed as T12 Ba2 Cub6, using PbCl2 as a flux, ■T1203 +2BaO+CuO +xPbCJ! 2 (3≦X≦300) A mixed powder having a composition range of 2 (3≦X≦300) or ■T12 Ba2Cub6+xPbCj! 2 (3≦X≦
300> is a method for producing an oxide superconductor single crystal, characterized in that a mixed powder having a composition range of .

また、この酸化物超伝導体単結晶は、400気圧までの
加圧酸素下で、300〜600℃の温度範囲で熱処理す
ることにより、超伝導転移温度をO〜85 Kの範囲で
任意にコントロールできる。
In addition, this oxide superconductor single crystal can be heat-treated in a temperature range of 300 to 600°C under pressurized oxygen up to 400 atmospheres, so that the superconducting transition temperature can be arbitrarily controlled in the range of 0 to 85 K. can.

[作用] T1203 +2BaO+CuO+30 PbC1zな
る組成の混合粉から、最高温度800℃、徐冷速度10
℃/hourで作製した単結晶は数龍角で厚み0.3−
  程度の大きさで、85 Kで超伝導に転移した。こ
の単結晶を、10気圧の酸素中で500℃、10時間熱
処理することにより、転移の鋭さを失わずにTc62K
に変えることができた。
[Function] From a mixed powder with the composition T1203 +2BaO+CuO+30PbC1z, the maximum temperature is 800°C and the slow cooling rate is 10.
The single crystal produced at ℃/hour has a thickness of 0.3-
It transitioned to superconductivity at 85 K. By heat-treating this single crystal at 500°C for 10 hours in oxygen at 10 atm, Tc62K was obtained without losing the sharpness of the transition.
I was able to change it to .

熱処理時の酸素圧をさらに上げることにより、OKまで
の任意のTOが得られることが確認された。
It was confirmed that any desired TO up to OK could be obtained by further increasing the oxygen pressure during heat treatment.

[実施例] 以下実施例により、本発明を具体的に説明する。[Example] The present invention will be specifically explained below with reference to Examples.

実施例1 ■出発原料として純度99.9%以上の酸化タリウム(
Tj!203 )、酸化バリウム(Bad>。
Example 1 ■ Thallium oxide with a purity of 99.9% or more as a starting material (
Tj! 203), barium oxide (Bad>).

酸化第二銅(Cub)、塩化鉛(PbCJ!2)を使用
し、 TI203 +28aO+CuO+xPbCJ!2なる
一般式で、Xについては、第1表に示す配合比になるよ
うに秤量、混合し、直径20111111、深さ25 
gnmの金坩堝に封入し、600〜850℃で1〜10
時間融解させたのち、1時間に10℃以下の速度で50
0℃まで徐冷した。500℃から室温までは1時間に1
00℃の割合で冷却した。
Using cupric oxide (Cub) and lead chloride (PbCJ!2), TI203 +28aO+CuO+xPbCJ! In the general formula 2, X is weighed and mixed so that the compounding ratio shown in Table 1 is obtained.
sealed in a gnm gold crucible and heated at 600 to 850°C for 1 to 10
After melting for an hour, 50
It was slowly cooled to 0°C. 1 hour per hour from 500℃ to room temperature
It was cooled at a rate of 00°C.

単結晶試料は、PbCJ!zを水で洗い流すことによっ
て取り出した。
The single crystal sample is PbCJ! z was removed by rinsing with water.

■試薬は■と同様のものを出発原料とした。初めにTf
203 、Bad、CuOをT1213a2 Cu06
の比になるように混合し、プレスした後、金箔で包んで
860〜900 ’Cで3〜5時間焼結した。得られた
焼結体を粉砕し、PbCj!zと、 T12Ba2 Cub6+XPbCl2なる一般式で、
Xについては第2表に示す配合比になるように混合した
。融解、固化、単結晶の取り出しは上記■と同様の条件
で行った。
(2) The same reagent as in (2) was used as the starting material. First Tf
203, Bad, CuO T1213a2 Cu06
After mixing and pressing, the mixture was wrapped in gold foil and sintered at 860-900'C for 3-5 hours. The obtained sintered body is crushed and PbCj! z, and the general formula T12Ba2 Cub6+XPbCl2,
Regarding X, the mixture was mixed so as to have the compounding ratio shown in Table 2. Melting, solidification, and extraction of the single crystal were carried out under the same conditions as in (1) above.

いずれの場合も、得られた単結晶の抵抗率、反磁性磁化
率の測定、および組成分析を行った。抵抗率は金線をリ
ードとする4端子法で、反磁性磁化率は5QUIDマグ
ネツトメーターでそれぞれ測定した。組成分析はEPM
Aを用いて行った。
In each case, the resistivity and diamagnetic susceptibility of the obtained single crystals were measured, and the composition was analyzed. Resistivity was measured using a four-terminal method using a gold wire as a lead, and diamagnetic susceptibility was measured using a 5QUID magnetometer. Composition analysis is done by EPM
This was done using A.

第1表および第2表に得られた単結晶の典型的な大きさ
とTcを示す。850℃を超える温度では、王!および
PbCR2の蒸発が激しくなりすぎるため、単結晶育成
に不向きである。フラックス量に比べて原料が多すぎる
と、同時に多くの場所て核生成が起きるため大きな単結
晶が得られず、原料が少なすぎても単結晶の成長が充分
性われないため、得られる単結晶は小さくなる。組成分
析から、タリウムのごく一部が鉛で置き替わっているこ
とが確かめられた。
Tables 1 and 2 show typical sizes and Tc of the single crystals obtained. At temperatures above 850℃, the king! Also, the evaporation of PbCR2 becomes too intense, making it unsuitable for single crystal growth. If the amount of raw material is too large compared to the amount of flux, nucleation will occur in many places at the same time, making it impossible to obtain a large single crystal. If the amount of raw material is too small, the growth of the single crystal will not be sufficient, resulting in a smaller single crystal. becomes smaller. Compositional analysis confirmed that a small portion of thallium was replaced by lead.

(以下余白) 第 表 第 表 実施例2 実施例1で得られた80 KのTcを持つ単結晶を第3
表に示す条件で熱処理した。酸素圧、熱処理温度を上げ
るほどTCは低くなることが確かめられた。この場合も
転移の鋭さは変化せず、それぞれの温度で全体積が超伝
導に転移することかわかった。酸素圧が1気圧のもとで
は熱処理温度、時間を変えても、Tcは変化しなかった
(Margins below) Table Table Example 2 The single crystal with Tc of 80 K obtained in Example 1 was
Heat treatment was performed under the conditions shown in the table. It was confirmed that the higher the oxygen pressure and heat treatment temperature, the lower the TC. It was found that the sharpness of the transition does not change in this case either, and that the entire volume transitions to superconductivity at each temperature. When the oxygen pressure was 1 atm, Tc did not change even if the heat treatment temperature and time were changed.

第3表 [発明の効果] 本発明の製造方法によれば、Tj!2Ba2CuO6の
良質な単結晶を得ることかでき、また、本発明の超伝導
転移温度の制御方法によると、単結晶試料のTcを連続
的に変えることができるため、超伝導材料の工業利用に
とって極めて有用なものである。
Table 3 [Effects of the Invention] According to the manufacturing method of the present invention, Tj! It is possible to obtain a high-quality single crystal of 2Ba2CuO6, and according to the method of controlling the superconducting transition temperature of the present invention, the Tc of the single crystal sample can be changed continuously, which is extremely useful for industrial use of superconducting materials. It is useful.

Claims (2)

【特許請求の範囲】[Claims] (1)Tl_2Ba_2CuO_6と表される酸化物超
伝導体単結晶の製造方法において、PbCl_2をフラ
ックスとして用い、 (1)Tl_2O_3+2BaO+CuO +xPbCl_2 (3≦x≦300) なる組成範囲の混合粉末、もしくは、
(1) In the method for manufacturing an oxide superconductor single crystal expressed as Tl_2Ba_2CuO_6, PbCl_2 is used as a flux, and (1) a mixed powder having a composition range of Tl_2O_3+2BaO+CuO +xPbCl_2 (3≦x≦300), or
(2)Tl_2Ba_2CuO_6+xPbCl_2(
3≦x≦300) なる組成範囲の混合粉末を、600〜850℃の温度範
囲で融解し、10℃/hour以下の速度で徐冷するこ
とを特徴とする酸化物超伝導体単結晶の製造方法。 (2)請求項1記載の酸化物超伝導体単結晶を400気
圧までの加圧酸素下で、300〜600℃の温度範囲で
熱処理することを特徴とする酸化物超伝導体単結晶の超
伝導転移温度の制御方法。
(2) Tl_2Ba_2CuO_6+xPbCl_2(
3≦x≦300) Production of an oxide superconductor single crystal characterized by melting a mixed powder having a composition range of 600 to 850°C and slowly cooling at a rate of 10°C/hour or less. Method. (2) The oxide superconductor single crystal according to claim 1 is heat-treated in a temperature range of 300 to 600°C under pressurized oxygen up to 400 atmospheres. Method for controlling conduction transition temperature.
JP2249964A 1990-09-21 1990-09-21 Production of oxide superconductor single crystal and method for controlling superconductivity transition temperature Pending JPH04130093A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2249964A JPH04130093A (en) 1990-09-21 1990-09-21 Production of oxide superconductor single crystal and method for controlling superconductivity transition temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2249964A JPH04130093A (en) 1990-09-21 1990-09-21 Production of oxide superconductor single crystal and method for controlling superconductivity transition temperature

Publications (1)

Publication Number Publication Date
JPH04130093A true JPH04130093A (en) 1992-05-01

Family

ID=17200812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2249964A Pending JPH04130093A (en) 1990-09-21 1990-09-21 Production of oxide superconductor single crystal and method for controlling superconductivity transition temperature

Country Status (1)

Country Link
JP (1) JPH04130093A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01119579A (en) * 1987-10-30 1989-05-11 Kobe Steel Ltd Heat treatment of superconducting ceramics of composite oxide system
JPH01275435A (en) * 1988-03-21 1989-11-06 American Teleph & Telegr Co <Att> Superconductor and method for its manufacture
JPH0255298A (en) * 1988-08-19 1990-02-23 Toshiba Corp Method for growing oxide superconductor single crystal
JPH0350122A (en) * 1988-04-08 1991-03-04 Toshiba Corp Insulating composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01119579A (en) * 1987-10-30 1989-05-11 Kobe Steel Ltd Heat treatment of superconducting ceramics of composite oxide system
JPH01275435A (en) * 1988-03-21 1989-11-06 American Teleph & Telegr Co <Att> Superconductor and method for its manufacture
JPH0350122A (en) * 1988-04-08 1991-03-04 Toshiba Corp Insulating composition
JPH0255298A (en) * 1988-08-19 1990-02-23 Toshiba Corp Method for growing oxide superconductor single crystal

Similar Documents

Publication Publication Date Title
JP2672334B2 (en) Superconductor manufacturing method
JP3110451B2 (en) High critical current orientated grained Y-Ba-Cu-O superconductor and method for producing the same
US5306697A (en) Oriented grained Y-Ba-Cu-O superconductors having high critical currents and method for producing same
US8193122B2 (en) Superconductor fabrication
US6083886A (en) Method of preparing oxide superconducting bulk body
JPH04130093A (en) Production of oxide superconductor single crystal and method for controlling superconductivity transition temperature
JPH07115924B2 (en) Method for manufacturing oxide superconductor
JPH04130092A (en) Production of oxide superconductor single crystal and method for controlling superconductivity transition temperature
US5981442A (en) Neodymium-barium-copper-oxide bulk superconductor and process for producing the same
JPH04202093A (en) Production of single crystal of oxide superconductor and method for controlling superconductivity transition temperature
Babu et al. Large single grain (RE)-Ba-Cu-O superconductors with nano-phase inclusions
JP2697334B2 (en) Method for producing oxide superconductor single crystal
JP2828396B2 (en) Oxide superconductor and manufacturing method thereof
JPH03112810A (en) Production of oxide superconducting film
JP3174847B2 (en) Superconducting whisker and manufacturing method thereof
JPH01179790A (en) Production of single crystal of high temperature superconductor
JPH02243519A (en) Oxide superconductor and production thereof
JPH07187671A (en) Oxide superconductor and its production
JP3160901B2 (en) Manufacturing method of superconducting material
JPH04160062A (en) Production of superconducting material
JPH0640721A (en) Preparation of superconductive body with high critical electric current density
JPH06183730A (en) Production of oxide superconductive bulky material
JPH06187848A (en) Oxide superconducting wire and manufacture thereof
JPH0717380B2 (en) Method for producing superconducting fibrous crystal
JPH05279191A (en) Production of oxide superconductor single crystal