JPH05279191A - Production of oxide superconductor single crystal - Google Patents

Production of oxide superconductor single crystal

Info

Publication number
JPH05279191A
JPH05279191A JP4100203A JP10020392A JPH05279191A JP H05279191 A JPH05279191 A JP H05279191A JP 4100203 A JP4100203 A JP 4100203A JP 10020392 A JP10020392 A JP 10020392A JP H05279191 A JPH05279191 A JP H05279191A
Authority
JP
Japan
Prior art keywords
single crystal
oxide
kcl
flux
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4100203A
Other languages
Japanese (ja)
Inventor
Takashi Masako
隆志 眞子
Yuichi Shimakawa
祐一 島川
Yoshimi Kubo
佳実 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP4100203A priority Critical patent/JPH05279191A/en
Publication of JPH05279191A publication Critical patent/JPH05279191A/en
Pending legal-status Critical Current

Links

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To enable the growth of a large-sized single crystal of a Tl-based oxide superconductor by using a KCl/LiCl eutectic flux having low melting point and growing a single crystal by stationary slow-cooling process. CONSTITUTION:A KCl/LiCl eutectic flux having low melting point is used as a flux. A powdery mixture having a composition falling within the range expressed by formula I (2<=x<=500; 0.05<=y<=1; (n) is 1-3) or formula II is prepared by using high-purity thallium oxide, barium oxide, calcium oxide, cupric oxide, potassium chloride and lithium chloride as starting raw materials. The powdery mixture is melted at 500-950 deg.C and slowly cooled by stationary slow- cooling process at a cooling rate of <=10 deg.C/hr to obtain the objective oxide superconductor single crystal expressed by the formula Tl2Ba2Can-1CunO6 ((n) is 1-3).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、各種の超伝導応用装置
や超伝導素子に使用される酸化物超伝導材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an oxide superconducting material used in various superconducting devices and superconducting devices.

【0002】[0002]

【従来の技術】金属・合金系超伝導材料、化合物超伝導
材料は、ジョセフソン素子や超伝導マグネットの線材と
して既に広く利用されている。ジョセフソン接合はその
磁場に対する高い感度のためSQUIDを初めとする精
密計測に応用されているほか、その高速性から電子計算
機への応用が期待されている。また、通常導体では得ら
れないような高磁場を発生できる超伝導マグネットは、
NMR−CTなどの医療機器や浮上型リニアモーターカ
ー等にも応用されている。超伝導体の応用を考えた場
合、超伝導転移温度(Tc)はできる限り高いことが望
まれる。金属・合金系超伝導体や化合物系超伝導体は、
冷媒として高価で希少な液体ヘリウムを用いなければな
らず、このことがこれらの超伝導体の広い分野への応用
を妨げる一因となっている。この点では銅酸化物系超伝
導体は、従来の超伝導体よりもはるかに優れており、1
987年にBa−Y−Cu−O系超伝導体が発見されて
以来、Bi−Sr−Ca−Cu−O系、Tl−Ba−C
a−Cu−O系などの液体窒素温度を越えるTcをもつ
超伝導体が相次いで発見されている。これらの酸化物超
伝導体が実用化されれば、今まで考えられなかったよう
な分野にまでその応用の可能性が広がるとして、現在も
研究開発が盛んに行われている。
2. Description of the Related Art Metal / alloy type superconducting materials and compound superconducting materials have already been widely used as wire rods for Josephson devices and superconducting magnets. The Josephson junction has been applied to precision measurement including SQUID because of its high sensitivity to a magnetic field, and is expected to be applied to an electronic computer because of its high speed. In addition, a superconducting magnet that can generate a high magnetic field that cannot be obtained with a normal conductor is
It is also applied to medical equipment such as NMR-CT and floating linear motor cars. Considering the application of superconductors, the superconducting transition temperature (Tc) is desired to be as high as possible. Metal / alloy superconductors and compound superconductors
Liquid helium, which is expensive and rare, must be used as a refrigerant, which is one of the factors that hinder the application of these superconductors to a wide range of fields. In this respect, copper oxide-based superconductors are far superior to conventional superconductors.
Since the Ba-Y-Cu-O system superconductor was discovered in 987, Bi-Sr-Ca-Cu-O system, Tl-Ba-C system
Superconductors having a Tc above the liquid nitrogen temperature such as a-Cu-O system have been discovered one after another. If these oxide superconductors are put into practical use, the possibility of their application will be expanded to fields that were previously unthinkable, and research and development are still being actively conducted.

【0003】[0003]

【発明が解決しようとする課題】現在研究されている酸
化物超伝導体試料のほとんどは多結晶体である。超伝導
体の多結晶試料では、その結晶粒界に無数の超伝導の弱
結合が存在するため、望む特性をもつジョセフソン接合
を制御性よく作ることが困難である。また、多結晶体が
含んでいる各種の欠陥や不均質性が超伝導特性の安定性
に悪い影響を与えることも考えられるため、デバイスな
どへの応用には単結晶体を用いることが望ましい。静置
徐冷法による超伝導体単結晶合成法の中には、これまで
にもKClをフラックスに用いた例があるが、KClの
単体の融点が770℃と高いため限られた温度範囲でし
か結晶を育成することができない。このことは同じ組成
をもち生成温度の異なるいくつかの相を含む系におい
て、目的とする結晶だけを作ろうとするときに大きな障
害となる。そこで本発明はこのような従来の事情に鑑
み、良質で充分な大きさをもつTl系超伝導体単結晶試
料を広い温度範囲で育成する方法を提供することを目的
とする。
Most of the oxide superconductor samples currently studied are polycrystalline. In the polycrystalline sample of superconductor, it is difficult to make Josephson junctions with desired characteristics with good controllability because there are innumerable weak superconducting bonds at the grain boundaries. Further, various defects and inhomogeneities contained in the polycrystal may adversely affect the stability of the superconducting property, so that it is desirable to use the monocrystal for application to devices and the like. There is an example of using KCl as a flux in the method of synthesizing a superconductor single crystal by the stationary gradual cooling method, but since the melting point of KCl alone is as high as 770 ° C. Can't be trained. This is a major obstacle when trying to produce only the desired crystal in a system containing several phases having the same composition but different formation temperatures. In view of such conventional circumstances, it is an object of the present invention to provide a method for growing a Tl-based superconductor single crystal sample having a good quality and a sufficient size in a wide temperature range.

【0004】[0004]

【課題を解決するための手段】本発明は、Tl2Ba2
n-1Cun6(式中、nは1,2または3である。)
で表される酸化物超伝導体単結晶の製造方法において、
KClとLiClの混合物をフラックスとして用い、 Tl23+2BaO+(n−1)CaO+nCuO+x
{(1−y)KCl+yLiCl} (2≦x≦500、0.05≦y≦1,n=1,2また
は3)なる組成範囲の混合粉末、もしくは、 Tl2Ba2Can-1Cun4+2n+x{(1−y)KCl
+yLiCl} (2≦x≦500、0.05≦y≦1、n=1,2また
は3)なる組成範囲の混合粉末を、500℃〜950℃
の温度範囲で融解し、10℃/hour以下の速度で徐
冷することを特徴とする酸化物超伝導体単結晶の製造方
法である。すなわち本発明は、従来まで用いられてきた
KClフラックスの代わりに、融点の低いKCl/Li
Cl共晶フラックスを用いることにより、従来まで育成
が不可能だった500℃といった低温でのTl系単結晶
が育成できることを見い出したものである。
SUMMARY OF THE INVENTION The present invention is directed to Tl 2 Ba 2 C
a n-1 Cu n O 6 (where n is 1, 2 or 3)
In the method for producing an oxide superconductor single crystal represented by,
Using a mixture of KCl and LiCl as a flux, Tl 2 O 3 + 2BaO + (n-1) CaO + nCuO + x
{(1-y) KCl + yLiCl} (2 ≦ x ≦ 500, 0.05 ≦ y ≦ 1, n = 1, 2 or 3) mixed powder having a composition range, or Tl 2 Ba 2 Can n-1 Cu n O 4 + 2n + x {(1-y) KCl
+ YLiCl} (2 ≦ x ≦ 500, 0.05 ≦ y ≦ 1, n = 1, 2 or 3) is mixed powder at 500 ° C. to 950 ° C.
And a slow cooling at a rate of 10 ° C./hour or less, which is a method for producing an oxide superconductor single crystal. That is, according to the present invention, KCl / Li having a low melting point is used in place of the KCl flux used so far.
It has been found that the use of the Cl eutectic flux makes it possible to grow a Tl-based single crystal at a low temperature of 500 ° C., which could not be conventionally grown.

【0005】[0005]

【作用】Tl23+2BaO+CuO+20KClなる
組成の混合粉から、最高温度900℃、徐冷速度10℃
/hourで作成した単結晶は、2mm角で厚み0.0
1mm程度の大きさであった。しかるに、Tl23+2
BaO+CuO+10KCl+10LiClなる組成の
混合粉から同一条件で育成した結晶のサイズは5mm角
以上であり、85Kでシャープに超伝導へ転移した。
[Function] From the mixed powder of composition Tl 2 O 3 + 2BaO + CuO + 20KCl, the maximum temperature is 900 ° C, and the slow cooling rate is 10 ° C.
The single crystal made with / hour is 2mm square and thickness is 0.0
The size was about 1 mm. However, Tl 2 O 3 +2
The size of the crystal grown from the mixed powder of the composition BaO + CuO + 10KCl + 10LiCl under the same conditions was 5 mm square or more, and sharply transitioned to superconductivity at 85K.

【0006】[0006]

【実施例】以下、本発明の実施例について、具体的に説
明する。 実施例1 出発原料として純度99.9%以上の酸化タリウム(T
23)、酸化バリウム(BaO)、酸化カルシウム
(CaO)、酸化第二銅(CuO)、塩化カリウム(K
Cl)、塩化リチウム(LiCl)を使用し、Tl23
+2BaO+(n−l)CaO+nCuO+x{(1−
y)KCl+yLiCl}なる一般式で、n,x,yに
ついては表1に示す配合比になるように秤量、混合し、
直径20mm、深さ25mmの金坩堝に封入し、500
℃〜950℃で1〜10時間融解させたのち、1時間に
10℃以下の速度で400℃まで徐冷した。400℃か
ら室温までは1時間に100℃の割合で冷却した。単結
晶試料は、KClおよびLiClを水で洗い流すことに
よって取り出した。
EXAMPLES Examples of the present invention will be specifically described below. Example 1 As a starting material, thallium oxide (T
l 2 O 3 ), barium oxide (BaO), calcium oxide (CaO), cupric oxide (CuO), potassium chloride (K
Cl), lithium chloride (LiCl), and Tl 2 O 3
+ 2BaO + (n-1) CaO + nCuO + x {(1-
y) KCl + yLiCl}, where n, x and y are weighed and mixed so that the compounding ratios shown in Table 1 are obtained.
Enclosed in a gold crucible with a diameter of 20 mm and a depth of 25 mm, 500
After melting at 1C to 950C for 1 to 10 hours, it was gradually cooled to 400C at a rate of 10C or less per hour. From 400 ° C. to room temperature, it was cooled at a rate of 100 ° C. for 1 hour. Single crystal samples were removed by flushing KCl and LiCl with water.

【0007】実施例2 実施例1と同様の試薬を出発原料とした。初めにTl2
3,BaO,CaO,CuOをTl2Ba2Can-1Cu
n4+2nの比になるように混合し、プレスした後、金箔
で包んで860℃〜900℃で3〜5時間焼結した。得
られた焼結体を粉砕し、KCl,LiClと、Tl2
2Can-1Cun4+2n+x{(1−y)KCl+yL
iCl}なる一般式で、n,x,yについては表2に示
す配合比になるように混合した。融解、固化、単結晶の
取り出しは実施例1と同様の条件で行った。
Example 2 The same reagent as in Example 1 was used as a starting material. First Tl 2
O 3 , BaO, CaO, CuO is replaced with Tl 2 Ba 2 Can n-1 Cu
The mixture was mixed so as to have a ratio of n O 4 + 2n , pressed, and then wrapped with gold foil and sintered at 860 ° C. to 900 ° C. for 3 to 5 hours. The obtained sintered body was crushed to obtain KCl, LiCl, and Tl 2 B.
a 2 Ca n-1 Cu n O 4 + 2n + x {(1-y) KCl + yL
iCl}, and n, x, and y were mixed at the compounding ratio shown in Table 2. Melting, solidification, and taking out of the single crystal were performed under the same conditions as in Example 1.

【0008】いずれの場合も、得られた単結晶の抵抗
率、反磁性磁化率の測定、および組成分析を行った。抵
抗率は金線をリードとする4端子法で、反磁性磁化率は
SQUIDマグネトメーターでそれぞれ測定した。組成
分析はEPMAを用いて行った。
In each case, the resistivity and diamagnetic susceptibility of the obtained single crystal were measured and the composition was analyzed. The resistivity was measured by a 4-terminal method using a gold wire as a lead, and the diamagnetic susceptibility was measured by an SQUID magnetometer. The composition analysis was performed using EPMA.

【0009】表1、表2に得られた単結晶の典型的な大
きさとTcを示す。950℃以上の温度ではTl、およ
びフラックスの蒸発が激しくなりすぎるため、単結晶育
成に不向きである。yが0.4に近いほどフラックスの
融点が下がるため、育成温度を下げることができる。フ
ラックス量に比べて原料が多すぎると、同時に多くの場
所で核生成が起きるため大きな単結晶が得られず、原料
が少なすぎても単結晶の成長が充分行われないため、得
られる単結晶は小さくなる。
Tables 1 and 2 show typical sizes and Tc of the single crystals obtained. At a temperature of 950 ° C. or higher, Tl and flux vaporize excessively, which is unsuitable for single crystal growth. The closer the y is to 0.4, the lower the melting point of the flux, so the growth temperature can be lowered. If the amount of the raw material is too large compared to the amount of flux, large single crystals cannot be obtained because nucleation occurs at many places at the same time. Even if the amount of the raw material is too small, the single crystal does not grow sufficiently. Becomes smaller.

【0010】[0010]

【表1】 [Table 1]

【0011】[0011]

【表2】 [Table 2]

【0012】[0012]

【発明の効果】以上説明したように、本発明によれば良
質で大きなTl系超伝導体単結晶試料を広い温度範囲で
製造できる。
As described above, according to the present invention, a high quality and large Tl-based superconductor single crystal sample can be manufactured in a wide temperature range.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01L 39/12 ZAA 8728−4M ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location H01L 39/12 ZAA 8728-4M

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 Tl2Ba2Can-1Cun6(式中、n
は1,2または3である。)で表される酸化物超伝導体
単結晶の製造方法において、KClとLiClの混合物
をフラックスとして用い、 Tl23+2BaO+(n−1)CaO+nCuO+x
{(1−y)KCl+yLiCl} (2≦x≦500、0.05≦y≦1,n=1,2また
は3)なる組成範囲の混合粉末、もしくは、 Tl2Ba2Can-1Cun4+2n+x{(1−y)KCl
+yLiCl} (2≦x≦500、0.05≦y≦1、n=1,2また
は3)なる組成範囲の混合粉末を、500℃〜950℃
の温度範囲で融解し、10℃/hour以下の速度で徐
冷することを特徴とする酸化物超伝導体単結晶の製造方
法。
1. Tl 2 Ba 2 Ca n-1 Cu n O 6 (wherein n
Is 1, 2 or 3. ) In the method for producing an oxide superconductor single crystal represented by the formula: Tl 2 O 3 + 2BaO + (n-1) CaO + nCuO + x, using a mixture of KCl and LiCl as a flux.
{(1-y) KCl + yLiCl} (2 ≦ x ≦ 500, 0.05 ≦ y ≦ 1, n = 1, 2 or 3) mixed powder having a composition range, or Tl 2 Ba 2 Can n-1 Cu n O 4 + 2n + x {(1-y) KCl
+ YLiCl} (2 ≦ x ≦ 500, 0.05 ≦ y ≦ 1, n = 1, 2 or 3) is mixed powder at 500 ° C. to 950 ° C.
And a slow cooling at a rate of 10 ° C./hour or less, a method for producing an oxide superconductor single crystal.
JP4100203A 1992-03-27 1992-03-27 Production of oxide superconductor single crystal Pending JPH05279191A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4100203A JPH05279191A (en) 1992-03-27 1992-03-27 Production of oxide superconductor single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4100203A JPH05279191A (en) 1992-03-27 1992-03-27 Production of oxide superconductor single crystal

Publications (1)

Publication Number Publication Date
JPH05279191A true JPH05279191A (en) 1993-10-26

Family

ID=14267752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4100203A Pending JPH05279191A (en) 1992-03-27 1992-03-27 Production of oxide superconductor single crystal

Country Status (1)

Country Link
JP (1) JPH05279191A (en)

Similar Documents

Publication Publication Date Title
JP2672334B2 (en) Superconductor manufacturing method
EP0660423A2 (en) Superconductor and method of producing same
US4824826A (en) Millimeter size single crystals of superconducting YBa2 Cu3 O.sub.
JPH0567571B2 (en)
US5324712A (en) Formation of the high TC 2223 phase in BI-SR-CA-CU-O by seeding
US8193122B2 (en) Superconductor fabrication
US6083886A (en) Method of preparing oxide superconducting bulk body
JPH05279191A (en) Production of oxide superconductor single crystal
Cava et al. Superconductivity at High Temperatures Without Copper: Ba1-xKxBiO3
JP2697334B2 (en) Method for producing oxide superconductor single crystal
Schartman et al. Supersolidus Phase Investigation of the Bi‐Sr‐Ca‐Cu Oxide System in Silver Tape
US5968878A (en) Oxide superconductor and method of producing same
JPH04202093A (en) Production of single crystal of oxide superconductor and method for controlling superconductivity transition temperature
JP3123893B2 (en) Method for producing RE-Ba-Cu-O-based oxide superconductor
JP3623829B2 (en) Method for producing RE-Ba-Cu-O-based oxide superconductor
Raina et al. Thin film growth of the 2122-phase of BCSCO superconductor with high degree of crystalline perfection
JPH02275799A (en) Oxide superconductor and its production
JPH0710734B2 (en) Method for producing oxide superconductor thin film
JPH04130092A (en) Production of oxide superconductor single crystal and method for controlling superconductivity transition temperature
JPH04130093A (en) Production of oxide superconductor single crystal and method for controlling superconductivity transition temperature
US5059560A (en) Bi-Ca-Sr-Cu-Zn-O superconducting glass-ceramics
JPH05105573A (en) Production of oxide superconductor single crystal
JPH01179790A (en) Production of single crystal of high temperature superconductor
EP0241187A1 (en) A method of manufacturing a single crystal of BaPb1-xBix03
JPH0769626A (en) Metal oxide and production thereof