JP3123893B2 - Method for producing RE-Ba-Cu-O-based oxide superconductor - Google Patents

Method for producing RE-Ba-Cu-O-based oxide superconductor

Info

Publication number
JP3123893B2
JP3123893B2 JP07030488A JP3048895A JP3123893B2 JP 3123893 B2 JP3123893 B2 JP 3123893B2 JP 07030488 A JP07030488 A JP 07030488A JP 3048895 A JP3048895 A JP 3048895A JP 3123893 B2 JP3123893 B2 JP 3123893B2
Authority
JP
Japan
Prior art keywords
temperature
phase
seed crystal
crystal
precursor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07030488A
Other languages
Japanese (ja)
Other versions
JPH08217440A (en
Inventor
和也 山口
義光 小川
秀一 小早志
秀二 吉澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Holdings Co Ltd
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Holdings Co Ltd, Dowa Mining Co Ltd filed Critical Dowa Holdings Co Ltd
Priority to JP07030488A priority Critical patent/JP3123893B2/en
Publication of JPH08217440A publication Critical patent/JPH08217440A/en
Application granted granted Critical
Publication of JP3123893B2 publication Critical patent/JP3123893B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、超電導特性、特に磁石
との磁気反発力特性及び磁束を捕捉する特性に優れたR
EーBaーCuーO系酸化物超電導体の製造方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an R type having excellent superconducting characteristics, particularly, characteristics of magnetic repulsion with a magnet and characteristics of capturing magnetic flux.
The present invention relates to a method for producing an E-Ba-Cu-O-based oxide superconductor.

【0002】[0002]

【従来の技術】REーBaーCuーO系酸化物超電導体
(REは1種もしくは2種以上の希土類金属元素)の原
料混合体(前駆体)を融点温度以上に加熱溶融した後
に、種結晶を接触させて種結晶から結晶を成長させ、R
EーBaーCuーO系酸化物超電導体を製造する方法と
しては、例えば、特開平5−193938号公報に記載
の方法が知られている。この公報に記載の方法は、種結
晶として、REBa2 Cu3 7-x 相(123相)を有
する単結晶を用いるものである。この方法は、種結晶の
「123相」を構成するRE元素と製造すべき超電導体
の「123相」を構成するRE元素とを異ならしめてそ
の組み合わせを選定することによって、種結晶の「12
3相」の生成温度が、製造すべき超電導体の「123
相」の生成温度よりも高くなるようにして、種結晶によ
る結晶成長を可能にしているものである。
2. Description of the Related Art After a raw material mixture (precursor) of a RE-Ba-Cu-O-based oxide superconductor (RE is one or more rare earth metal elements) is heated and melted to a temperature equal to or higher than a melting point temperature, a seed is prepared. A crystal is grown from a seed crystal by contacting the crystal, and R
As a method for producing an E-Ba-Cu-O-based oxide superconductor, for example, a method described in JP-A-5-193938 is known. The method described in this publication uses a single crystal having a REBa 2 Cu 3 O 7-x phase (123 phase) as a seed crystal. According to this method, the RE element constituting the “123 phase” of the seed crystal and the RE element constituting the “123 phase” of the superconductor to be produced are different from each other, and a combination thereof is selected.
The formation temperature of “three-phase” depends on the “123” of the superconductor to be manufactured.
The temperature is set to be higher than the temperature at which the "phase" is formed, thereby enabling crystal growth by the seed crystal.

【0003】[0003]

【発明が解決しようとする課題】ところで、上述の従来
の方法は、種結晶の「123相」の生成温度が製造すべ
き超電導体の「123相」の生成温度よりも高くなるよ
うに、それぞれを構成するRE元素を選定する必要があ
る。したがって、必然的にこの方法は、「123相」の
生成温度が一番高いRE元素を構成元素とする超電導体
を製造する場合には適用できない。これより高い生成温
度の「123相」を有する種結晶を用意することができ
ないからである。
By the way, the above-mentioned conventional method is so arranged that the formation temperature of the "123 phase" of the seed crystal is higher than the formation temperature of the "123 phase" of the superconductor to be manufactured. Needs to be selected. Therefore, this method is inevitably not applicable when producing a superconductor containing the RE element having the highest formation temperature of the “123 phase” as a constituent element. This is because a seed crystal having a “123 phase” having a higher formation temperature cannot be prepared.

【0004】本発明は、上述の背景のもとでなされたも
のであり、「123相」の生成温度がより高い場合にも
種結晶を用いた方法を適用可能にし、これにより、大型
でより高い磁気反発力特性を有する酸化物超電導体を歩
留まりよく製造することができるREーBaーCuーO
系酸化物超電導体の製造方法を提供することを目的とす
る。
The present invention has been made in view of the above background, and has made it possible to apply a method using a seed crystal even when the formation temperature of the “123 phase” is higher, thereby increasing the size and the size of the seed crystal. RE-Ba-Cu-O that can produce oxide superconductors having high magnetic repulsion characteristics with good yield
An object of the present invention is to provide a method for producing a system oxide superconductor.

【0005】[0005]

【課題を解決するための手段】上述の課題を解決するた
めに本発明は、RE化合物(REはYを含む1種もしく
は2種以上の希土類金属元素)、Ba化合物、Cu化合
物を、それぞれのmol%(RE,Ba,Cu)が、A
(35,25,40)、B(35,35,30)、C
(15,40,45)、D(15,30,55)の点で
囲まれる領域の組成となるように秤量混合し、次に、こ
の混合粉を900〜1500℃の温度で焼成することに
よって得た仮焼粉末を成形してペレット状の前駆体を形
成し、次に、この前駆体を990〜1300℃の範囲の
温度において、加熱して固液共存状態にした後に種結晶
接触温度にし、次に、この前駆体に、Nd1+Y Ba2-Y
CU3 7-x 相(ここでX,Yは結晶化する際の酸素分
圧によってX=0〜0.5,Y=0.1〜0.5の範囲
で変化する変数である)中にNd4 Ba2 Cu2 10
が組成比でNd1+Y Ba2-y Cu3 7-x :Nd4 Ba
2 Cu2 10=1:0.1〜1:1.5の範囲であるよ
うに分散した単結晶を種結晶として接触させ、次いで、
前記前駆体を、前記種結晶側が低温側となるようにして
5〜50℃/cmの温度勾配をつけて室温まで徐冷する
ことによって、前記種結晶を起点として該種結晶と同じ
方位を有するREーBaーCuーO系酸化物超電導体の
大きな配向した結晶を得ることを特徴とする構成とした
ものである。
In order to solve the above-mentioned problems, the present invention provides an RE compound (RE is one or more rare earth metal elements containing Y), a Ba compound, and a Cu compound. mol% (RE, Ba, Cu)
(35, 25, 40), B (35, 35, 30), C
(15, 40, 45) and D (15, 30, 55) are weighed and mixed so as to have a composition in a region surrounded by the points, and then the mixed powder is fired at a temperature of 900 to 1500 ° C. The obtained calcined powder is molded to form a pellet-shaped precursor, and then the precursor is heated at a temperature in the range of 990 to 1300 ° C. to be in a solid-liquid coexistence state, and then brought to a seed crystal contact temperature. Next, this precursor is added to Nd 1 + Y Ba 2-Y
In the CU 3 O 7-x phase (where X and Y are variables that change in the range of X = 0 to 0.5 and Y = 0.1 to 0.5 depending on the oxygen partial pressure during crystallization) Nd 4 Ba 2 Cu 2 O 10 phase in composition ratio of Nd 1 + YBa 2-y Cu 3 O 7-x : Nd 4 Ba
A single crystal dispersed as 2 Cu 2 O 10 = 1: 0.1 to 1: 1.5 is contacted as a seed crystal;
The precursor is gradually cooled to room temperature with a temperature gradient of 5 to 50 ° C./cm so that the seed crystal side is on the low temperature side, and has the same orientation as the seed crystal starting from the seed crystal. The structure is characterized in that a large oriented crystal of the RE-Ba-Cu-O-based oxide superconductor is obtained.

【0006】[0006]

【作用】上記構成において、上記所定の組成の前駆体に
所定の処理を加えた後に種結晶温度にし、これに接触さ
せる種結晶として、Nd1+Y Ba2-Y CU3 7-x
(ここでX,Yは結晶化する際の酸素分圧によってX=
0〜0.5,Y=0.1〜0.5の範囲で変化する変数
である)中にNd4 Ba2 Cu2 10相が組成比でNd
1+Y Ba2-y Cu3 7-x :Nd4 Ba2 Cu2 10
1:0.1〜1:1.5の範囲であるように分散した単
結晶を用いるようにしたことにより、例えば、「123
相」の生成温度が比較的高い場合であるRE元素がSm
である場合においても、種結晶による結晶成長を行って
該種結晶と同じ方位を有するREーBaーCuーO系酸
化物超電導体の大きな配向した結晶を得ることが可能に
なり、これにより、超電導特性、特に磁石との磁気反発
力特性及び磁束を捕捉する特性に優れたREーBaーC
uーO系酸化物超電導を得ることが可能になった。
In the above structure, the precursor having the predetermined composition is subjected to a predetermined treatment and then brought to a seed crystal temperature, and the Nd 1 + Y Ba 2-Y CU 3 O 7-x phase is used as a seed crystal to be brought into contact with the precursor. (Where X and Y depend on the oxygen partial pressure at the time of crystallization.
0-0.5, Y = 0.1-0.5) Nd 4 Ba 2 Cu 2 O 10 phase contains Nd in composition ratio
1 + Y Ba 2-y Cu 3 O 7-x: Nd 4 Ba 2 Cu 2 O 10 =
By using single crystals dispersed to be in the range of 1: 0.1 to 1: 1.5, for example, “123”
When the formation temperature of the “phase” is relatively high, the RE element is Sm.
In this case, it is possible to obtain a large oriented crystal of the RE—Ba—Cu—O-based oxide superconductor having the same orientation as the seed crystal by performing crystal growth using the seed crystal. RE-Ba-C with excellent superconducting properties, especially the properties of magnetic repulsion with magnets and of capturing magnetic flux
It has become possible to obtain uO-based oxide superconductivity.

【0007】これは、まず、種結晶として、「123
相」自体を有する単結晶を用いる代わりに、「123
相」の結晶構造と類似する結晶構造を有するNd1+Y
2-Y CU3 7-x 相を有する単結晶を用いるようにし
たことによる。このNd1+Y Ba2-Y CU3 7-x
が、種結晶としては「123相」と等価の働きをし、
「123相」の種結晶の代わりに用いることができる点
は本発明者が見出だしたものである。しかも、このNd
1+Y Ba2-Y CU3 7-x 相中にNd4 Ba2 Cu2
10相中を分散する形態で存在させると、その生成温度
が、両相の組成比に依存し、その組成比を選択すること
によって、製造目的の超電導体のRE元素として仮にS
mを選定したとしてもその「123相」の生成温度より
も種結晶たるNd1+ Y Ba2-Y CU3 7-x 相の生成温
度を高くすることができる。
[0007] First, as a seed crystal, "123"
Instead of using a single crystal having the “phase” itself, “123”
Nd 1 + Y B having a crystal structure similar to that of “phase”
This is because a single crystal having a 2-Y CU 3 O 7-x phase was used. The Nd 1 + Y Ba 2-Y CU 3 O 7-x phase functions as a seed crystal and has a function equivalent to “123 phase”.
The fact that the present invention can be used in place of the “123 phase” seed crystal has been found by the present inventors. And this Nd
Nd 4 Ba 2 Cu 2 O in 1 + Y Ba 2-Y CU 3 O 7-x phase
If it is present in a dispersed form in the 10 phases, its formation temperature depends on the composition ratio of both phases, and by selecting the composition ratio, it is assumed that S is temporarily used as the RE element of the superconductor to be manufactured.
Even if selected m can increase the production temperature of the seed crystal serving Nd 1+ Y Ba 2-Y CU 3 O 7-x phase than generating temperature of the "123 phase".

【0008】図1は、Nd1+Y Ba2-Y CU3 7-x
中にNd4 Ba2 Cu2 10相が分散した単結晶におけ
るNd元素、Ba元素、Cu元素の組成mol比を三角
座標で示したものである。
FIG. 1 shows the composition mol of Nd, Ba and Cu elements in a single crystal in which Nd 4 Ba 2 Cu 2 O 10 phase is dispersed in Nd 1 + YBa 2 -Y CU 3 O 7 -x phase. The ratio is shown in triangular coordinates.

【0009】また、図2は、図1でNd元素、Ba元
素、Cu元素の組成mol比{Nd:Ba:Cu}が
{1.1:1.9:3.0}である点aから、{4:
2:2}である点bへ組成比を変えていったときの、N
1+Y Ba2-y Cu3 7-x 相の生成温度の変化を示し
たものである。なお、この測定は示唆熱分析装置によっ
て行った。
FIG. 2 is a graph showing a point a where the composition molar ratio {Nd: Ba: Cu} of Nd, Ba and Cu in FIG. 1 is {1.1: 1.9: 3.0}. , $ 4:
When the composition ratio was changed to the point b of 2: 2}, N
It is a graph showing a change in the formation temperature of the d 1 + Y Ba 2-y Cu 3 O 7-x phase. In addition, this measurement was performed by the suggestive thermal analyzer.

【0010】図2から明らかなように、組成比が{4:
2:2}側に少しずれると、Nd1+ Y Ba2-y Cu3
7-x 相の生成温度が急激に上昇し、NdO1.5 のmol
%が22%のところで急激な増大が止まって緩やかな増
大曲線に変化している。NdO1.5 のmol%が22%
の点におけるNd1+Y Ba2-y Cu3 7-x 相の生成温
度は1130℃以上であり、RE元素がSmやNdであ
る場合の「123相」の生成温度よりも十分に高い。こ
の点は、図1におけるc点(Y=0.1の場合)及びd
点(Y=0.5の場合)に相当し、Nd1+Y Ba2-y
3 7-x 相中にNd4 Ba2 Cu2 10相が分散した
形態では、両者の組成比がNd1+Y Ba2-y Cu3
7-x :Nd4 Ba2 Cu2 10=1:0.1の場合のと
きである。したがって、この場合におけるNd4 Ba2
Cu2 10の組成比が0.1以上であれば、十分に高い
生成温度を確保することができる。
As apparent from FIG. 2, the composition ratio is Δ4:
2: When slightly shifted to the 2 side, Nd 1+ Y Ba 2-y Cu 3 O
The formation temperature of the 7-x phase sharply increased, and NdO 1.5 mol
When the% is 22%, the rapid increase stops and changes to a gradual increase curve. 22% mol% of NdO 1.5
, The formation temperature of the Nd 1 + Y Ba 2-y Cu 3 O 7-x phase is 1130 ° C. or higher, which is sufficiently higher than the formation temperature of the “123 phase” when the RE element is Sm or Nd. . This point corresponds to the point c (in the case of Y = 0.1) and d in FIG.
Nd 1 + Y Ba 2-y C
In the form in which the Nd 4 Ba 2 Cu 2 O 10 phase is dispersed in the u 3 O 7-x phase, the composition ratio of the two is Nd 1 + YBa 2-y Cu 3 O
7-x : Nd 4 Ba 2 Cu 2 O 10 = 1: 0.1. Therefore, in this case, Nd 4 Ba 2
If the composition ratio of Cu 2 O 10 is 0.1 or more, a sufficiently high formation temperature can be secured.

【0011】一方、Nd4 Ba2 Cu2 10の組成比を
0.1以上で増大させていくと、生成温度はさらに漸増
するが、1.5以上にすると、Nd4 Ba2 Cu2 10
相が多くなり過ぎて、種結晶と同じ方位に配向させるこ
とが困難になることがわかった。したがって、Nd4
2 Cu2 10の組成比は1.5以下でなければならな
い。この組成比の場合は、図1におけるf点(Y=0.
1の場合)及びe点(Y=0.5の場合)に相当する。
Meanwhile, when the Nd 4 Ba 2 Cu 2 O composition ratio of 10 to gradually increase in 0.1 above, generation temperature is further increasing, when 1.5 or more, Nd 4 Ba 2 Cu 2 O Ten
It was found that the number of phases was too large and it was difficult to orient in the same direction as the seed crystal. Therefore, Nd 4 B
The composition ratio of a 2 Cu 2 O 10 must be 1.5 or less. In the case of this composition ratio, the point f (Y = 0.
1) and point e (when Y = 0.5).

【0012】よって、Nd1+Y Ba2-y Cu3 7-x
中にNd4 Ba2 Cu2 10相が組成比でNd1+Y Ba
2-y Cu3 7-x :Nd4 Ba2 Cu2 10=1:0.
1〜1:1.5の範囲であるように分散した単結晶を種
結晶として用いることによって、RE元素としてSmや
Ndを用いているためにその「123相」が生成する温
度の高い超電導体でも、種結晶を基点として該種結晶と
同じ方位を有するREーBaーCuーO系酸化物超電導
体の大きな配向した結晶を製造することが可能であるこ
とがわかる。なお、図1に示されるように、Nd1+Y
2-y Cu3 7-x :Nd4 Ba2 Cu2 10=1:
0.1〜1:1.5の範囲は、図1のcdefで囲まれ
る領域である。
Accordingly, the Nd 1 + Y Ba 2 -y Cu 3 O 7 -x phase contains the Nd 4 Ba 2 Cu 2 O 10 phase in the composition ratio of Nd 1 + Y Ba 2
2-y Cu 3 O 7- x: Nd 4 Ba 2 Cu 2 O 10 = 1: 0.
By using a single crystal dispersed as a seed crystal in a range of 1-1: 1.5 as a seed crystal, a superconductor having a high temperature at which the “123 phase” is generated because Sm or Nd is used as an RE element However, it can be seen that it is possible to produce a large oriented crystal of an RE-Ba-Cu-O-based oxide superconductor having the same orientation as the seed crystal with the seed crystal as a base point. As shown in FIG. 1, Nd 1 + Y B
a 2-y Cu 3 O 7-x : Nd 4 Ba 2 Cu 2 O 10 = 1
The range of 0.1 to 1: 1.5 is a region surrounded by cdef in FIG.

【0013】また、製造目的たる超電導体の組成は、そ
れぞれmol%(RE,Ba,Cu)がA(35,2
5,40)、B(35,35,30)、C(15,4
0,45)、D(15,30,55)の点で囲まれる領
域とする(図3参照)。
The composition of the superconductor to be manufactured is such that mol% (RE, Ba, Cu) is A (35, 2).
5, 40), B (35, 35, 30), C (15, 4)
0, 45) and D (15, 30, 55) (see FIG. 3).

【0014】これは、REが35%以上ではRE2 Ba
1 Cu1 5 相が凝集粗大化するため特性が悪くなり、
15%以下ではBaやCu化合物の不純物相が析出する
ためである。また、ADの線よりBaを少なくするとC
u化合物の不純物が多く析出し、BCの線よりBaを多
くするとBa化合物の不純物相が多く析出して特性を著
しく劣化させるためである。
This is because when the RE is 35% or more, RE 2 Ba
Since the 1 Cu 1 O 5 phase is agglomerated and coarse, the properties are deteriorated.
If the content is 15% or less, an impurity phase of Ba or Cu compound is precipitated. If Ba is smaller than the line of AD, C
This is because a large amount of impurities of the u compound are precipitated, and if the amount of Ba is larger than that of the BC line, a large amount of the impurity phase of the Ba compound is precipitated to significantly deteriorate the characteristics.

【0015】仮焼成温度を900〜1500℃としたの
は、900℃以下ではカーボン等の出発原料中にある不
必要な元素が残り、溶融結晶化後の試料の特性を悪くす
るためである。また、1500℃以上では原料を入れる
と容器との反応が激しくなり、不純物の混入が多く起こ
るため、1500℃以下とした。
The reason why the calcination temperature is set to 900 to 1500 ° C. is that if the temperature is 900 ° C. or lower, unnecessary elements such as carbon remain in the starting material, which deteriorates the properties of the sample after melt crystallization. At a temperature of 1500 ° C. or higher, the reaction with the container becomes violent when the raw materials are charged, and impurities are often mixed.

【0016】溶融温度を990〜1300℃としたの
は、990℃以下では溶融が不十分となり、結晶粒界が
残り、1300℃以上ではRE2 Ba1 Cu1 5 相の
凝集粗大化が起こるためである。
The reason for setting the melting temperature to 990 to 1300 ° C. is that melting is insufficient at 990 ° C. or lower, crystal grain boundaries remain, and at 1300 ° C. or higher, the RE 2 Ba 1 Cu 1 O 5 phase is coarsened. That's why.

【0017】温度勾配を5〜50℃/cmとしたのは、
5℃以下では種結晶との接触部以外の点からの結晶の核
発生がおこりやすくなるためであり、50℃以上では種
結晶と反対側の試料温度が高くなり過ぎて、形状を保て
なくなるためである。なお、徐冷速度は、0.5〜5℃
/hrとすることが望ましい。0.5℃以下では生産性
が悪く、5℃以上では結晶成長が追い付かなくなって不
純物が析出し易くなるからである。
The reason why the temperature gradient is set to 5 to 50 ° C./cm is as follows.
At 5 ° C. or lower, nucleation of crystals from points other than the contact portion with the seed crystal tends to occur. At 50 ° C. or higher, the sample temperature on the side opposite to the seed crystal becomes too high, and the shape cannot be maintained. That's why. Note that the slow cooling rate is 0.5 to 5 ° C.
/ Hr is desirable. If the temperature is 0.5 ° C. or less, the productivity is poor, and if the temperature is 5 ° C. or more, the crystal growth cannot catch up and impurities are easily precipitated.

【0018】[0018]

【実施例】実施例1 この実施例は、種結晶として、Nd1+Y Ba2-y Cu3
7-x 相中にNd4 Ba2 Cu2 10相が組成比で1:
0.1であるように分散した単結晶を用いて、組成がY
1.8 Ba2.4 Cu3.4 7-x である酸化物超伝導体の配
向結晶を製造する例である。なお、秤量の際にはYを
0.2と仮定した。
EXAMPLE 1 In this example, Nd 1 + Y Ba 2-y Cu 3 was used as a seed crystal.
Nd 4 Ba 2 Cu 2 O 10 phase in O 7 -x phase in composition ratio of 1:
Using a single crystal dispersed to be 0.1, the composition is Y
This is an example of producing an oriented crystal of an oxide superconductor of 1.8 Ba 2.4 Cu 3.4 O 7-x . In the weighing, Y was assumed to be 0.2.

【0019】まず、種結晶を次のようにして作成する。First, a seed crystal is prepared as follows.

【0020】Nd1+Y Ba2-Y CU3 7-x 相とNd4
Ba2 Cu2 10相とが組成比でNd1+Y Ba2-y Cu
3 7-x :Nd4 Ba2 Cu2 10=1:0.1である
ように(組成;Nd1.6 Ba2 Cu3.2 8.1-X )、N
2 3 、BaCO3 、CuOの各原料粉末をモル比で
Nd:Ba:Cu=16:20:32になるように秤量
した後、BaCO3 、CuOのみをPt坩堝中で、95
0℃にて24時間焼成してBaCuO2 とCuOの仮焼
粉を得た(モル比でBaCuO2 :CuO=20:3
2)。
Nd 1 + Y Ba 2-Y CU 3 O 7-x phase and Nd 4
The composition ratio of Ba 2 Cu 2 O 10 to Nd 1 + Y Ba 2-y Cu
In order that 3 O 7-x : Nd 4 Ba 2 Cu 2 O 10 = 1: 0.1 (composition: Nd 1.6 Ba 2 Cu 3.2 O 8.1-x ), N
After weighing each raw material powder of d 2 O 3 , BaCO 3 , and CuO in a molar ratio of Nd: Ba: Cu = 16: 20: 32, only BaCO 3 and CuO were mixed in a Pt crucible at 95%.
It was calcined at 0 ° C. for 24 hours to obtain a calcined powder of BaCuO 2 and CuO (BaCuO 2 : CuO = 20: 3 by molar ratio).
2).

【0021】この仮焼粉と予め秤量しておいたNd2
3 とを混合して、外径50mm、厚さ20mmのディス
ク状にプレス成形して成形体を得た。
The calcined powder and Nd 2 O previously weighed are
3 were mixed and press-formed into a disk having an outer diameter of 50 mm and a thickness of 20 mm to obtain a molded body.

【0022】この成形体を1200℃で半溶融状態にし
た後、試料上部温度が1100℃となるまで10℃/m
inで降温し、さらに試料上・下に15℃/cmの温度
勾配を加え、そこから1℃/hrの速度で室温まで徐冷
して結晶化を行った。
After the molded body is brought into a semi-molten state at 1200 ° C., the temperature is increased to 10 ° C./m until the upper temperature of the sample reaches 1100 ° C.
The temperature was lowered in, and a temperature gradient of 15 ° C./cm was further added above and below the sample, and then gradually cooled to room temperature at a rate of 1 ° C./hr to perform crystallization.

【0023】これにより、Nd1+Y Ba2-Y CU3
7-x 相中にNd4 Ba2 Cu2 10相とが組成比で1:
0.1であるように分散された多結晶体が得られた(組
成;Nd1.6 Ba2 Cu3.2 8.1-X )。
Thus, Nd 1 + Y Ba 2-Y CU 3 O
The Nd 4 Ba 2 Cu 2 O 10 phase in the 7-x phase has a composition ratio of 1:
A polycrystal dispersed to be 0.1 was obtained (composition: Nd 1.6 Ba 2 Cu 3.2 O 8.1-X ).

【0024】この多結晶体から単一の結晶粒を切り出し
て種結晶を得た。
A single crystal grain was cut out from the polycrystal to obtain a seed crystal.

【0025】なお、ここで、Nd1+Y Ba2-Y CU3
7-x 相のX,Y、並びに、Y1.8 Ba2.4 Cu3.4
7-x 相のXは、結晶化する際の酸素分圧に依存してX=
0〜0.5、Y=0.1〜0.5の範囲で変化し、その
酸素分圧を正確に特定することが困難であるためにその
正確な値を特定することは困難である。しかし、種結晶
を作成する際に酸素分圧を変えてX,Yの平均値を変化
させてもその効果に変わりがないことから、このX,Y
の変動の範囲では同一の物質として扱ってもさしつかえ
ないものである。以下の実施例についても同様である。
Here, Nd 1 + Y Ba 2-Y CU 3 O
7-x phase in X, Y, and, Y 1.8 Ba 2.4 Cu 3.4 O
X in the 7-x phase depends on the oxygen partial pressure during crystallization, and X =
It changes within the range of 0 to 0.5 and Y = 0.1 to 0.5, and it is difficult to specify the oxygen partial pressure accurately, so it is difficult to specify the exact value. However, even if the average value of X and Y is changed by changing the oxygen partial pressure when forming the seed crystal, the effect remains unchanged.
Within the range of fluctuations, they may be treated as the same substance. The same applies to the following embodiments.

【0026】次に、この種結晶を用いて次のようにして
超電導体を製造する。
Next, a superconductor is manufactured using the seed crystal as follows.

【0027】Y2 3 、BaCO3 、CuOの各原料粉
末をY:Ba:Cu=18:24:34になるように秤
量した後、BaCO3 、CuOのみをPt坩堝中で、9
50℃で24時間焼成してBaCuO2 とCuOの仮焼
粉を得た(モル比でBaCuO2 :CuO=24:1
0)。
After weighing each raw material powder of Y 2 O 3 , BaCO 3 , and CuO so that Y: Ba: Cu = 18: 24: 34, only BaCO 3 and CuO are mixed in a Pt crucible in a Pt crucible.
It was calcined at 50 ° C. for 24 hours to obtain a calcined powder of BaCuO 2 and CuO (BaCuO 2 : CuO = 24: 1 by molar ratio).
0).

【0028】この仮焼粉とあらかじめ秤量しておいたY
2 3 とを混合して外径50mm厚さ20mmのディス
ク状にプレス成形して成形体を1150℃で半溶融状態
にした後、1020℃まで10℃/minで降温し、上
記種結晶を上記成形体の上部に接触させ、種結晶側が低
温になるように15℃/cmの温度勾配を加え、そこか
ら1℃/hrの速度で室温まで徐冷することによって結
晶化を行った。
This calcined powder and Y weighed in advance
2 O 3 was mixed and press-molded into a disk shape having an outer diameter of 50 mm and a thickness of 20 mm to make a compact in a semi-molten state at 1150 ° C., and then the temperature was lowered to 1020 ° C. at a rate of 10 ° C./min. The molded body was brought into contact with the upper portion, a temperature gradient of 15 ° C./cm was applied so that the temperature of the seed crystal became low, and the temperature was gradually lowered to room temperature at a rate of 1 ° C./hr to perform crystallization.

【0029】こうして、得られたYBa2 Cu3 7-x
相中にY2 Ba1 Cu1 5 相が微細に分散した結晶
は、試料全体が種結晶の結晶方位を反映し、大きな配向
した結晶となった。
The thus obtained YBa 2 Cu 3 O 7-x
The crystal in which the Y 2 Ba 1 Cu 1 O 5 phase was finely dispersed in the phase was a large oriented crystal in which the entire sample reflected the crystal orientation of the seed crystal.

【0030】この試料の超電導に転移する臨界温度(T
c)を測定したところ、90Kであった。
The critical temperature (T
It was 90K when c) was measured.

【0031】また、臨界電流密度(Jc)を振動試料型
磁力計により測定したところ、0.5Tの磁場中で最大
1.5×104 A/cm2 であった。
When the critical current density (Jc) was measured by a vibrating sample magnetometer, the maximum current was 1.5 × 10 4 A / cm 2 in a magnetic field of 0.5 T.

【0032】さらに、この試料を液体窒素で温度77K
に冷却し、外径25mm、厚さ50mmのNd系磁石
(表面最大磁束密度;0.53T)を、50mm/mi
nの速度で近づけていき、磁気反発力を測定したとこ
ろ、12Kg・fであった。
Further, this sample was heated to 77K with liquid nitrogen.
And a Nd-based magnet (outside diameter 25 mm, thickness 50 mm) (maximum surface magnetic flux density: 0.53 T) was cooled to 50 mm / mi.
When approaching at a speed of n, the magnetic repulsion was measured and found to be 12 kgf.

【0033】また、この試料に室温で5K Oe の外部磁
場を印加し、その状態で液体窒素によって温度77Kま
で冷却し、その後、上記外部磁場印加を停止し、試料表
面の磁束密度を測定して超電導状態において試料に捕捉
されている磁束密度を調べた。この測定は、図5に示し
たように、XーYステージに懸架した磁束密度検知器た
るホール素子を超電導体試料の表面に近接させ、このホ
ール素子をXーYステージによって試料の直径方向に移
動しながら各点での磁束密度を測定することによって行
った。図6はこの測定結果をグラフにして示した図であ
る。図6において、縦軸が超電導体の試料の捕捉磁束密
度(単位;KGauss)であり、横軸が測定位置(単
位;mm)であって試料の中心から測定点までの距離で
表したものである。
Further, an external magnetic field of 5 K Oe was applied to the sample at room temperature, and the sample was cooled to a temperature of 77 K with liquid nitrogen. Then, the application of the external magnetic field was stopped, and the magnetic flux density on the sample surface was measured. The magnetic flux density captured by the sample in the superconducting state was examined. In this measurement, as shown in FIG. 5, a Hall element as a magnetic flux density detector suspended on an XY stage was brought close to the surface of the superconductor sample, and this Hall element was moved in the diameter direction of the sample by the XY stage. The measurement was performed by measuring the magnetic flux density at each point while moving. FIG. 6 is a graph showing the measurement results. In FIG. 6, the vertical axis is the trapped magnetic flux density (unit: KGauss) of the sample of the superconductor, and the horizontal axis is the measurement position (unit: mm), which is represented by the distance from the center of the sample to the measurement point. is there.

【0034】実施例2 この実施例は、種結晶としてNd1+Y Ba2-y Cu3
7-x 相中にNd4 Ba2 Cu2 10相が組成比で1:
0.2であるように分散した単結晶を用いて、組成がS
1.8 Ba2.4 Cu3.4 9-x である酸化物超伝導体の
配向結晶を製造する例である。なお、秤量の際にはYを
0.2と仮定した。
Example 2 In this example, Nd 1 + Y Ba 2-y Cu 3 O was used as a seed crystal.
Nd 4 Ba 2 Cu 2 O 10 phase in the 7-x phase has a composition ratio of 1:
Using a single crystal dispersed to be 0.2, the composition is S
This is an example of producing an oriented crystal of an oxide superconductor of m 1.8 Ba 2.4 Cu 3.4 O 9-x . In the weighing, Y was assumed to be 0.2.

【0035】まず、種結晶を次のようにして作成する。First, a seed crystal is prepared as follows.

【0036】Nd1+Y Ba2-Y CU3 7-x 相とNd4
Ba2 Cu2 10相とが組成比でNd1+Y Ba2-y Cu
3 7-x :Nd4 Ba2 Cu2 10=1:0.2である
ように(組成;Nd2.0 Ba2.2 Cu3.4 9.1 X )、
Nd2 3 、BaCO3 、CuOの各原料粉末をモル比
でNd:Ba:Cu=20:22:34になるように秤
量した後、BaCO3 、CuOのみをPt坩堝中で、9
50℃にて24時間焼成してBaCuO2 とCuOの仮
焼粉を得た(モル比でBaCuO2 :CuO=22:3
4)。
Nd 1 + Y Ba 2-Y CU 3 O 7-x phase and Nd 4
The composition ratio of Ba 2 Cu 2 O 10 to Nd 1 + Y Ba 2-y Cu
3 O 7-x : Nd 4 Ba 2 Cu 2 O 10 = 1: 0.2 (composition: Nd 2.0 Ba 2.2 Cu 3.4 O 9.1 X )
After weighing each raw material powder of Nd 2 O 3 , BaCO 3 , and CuO in a molar ratio of Nd: Ba: Cu = 20: 22: 34, only BaCO 3 and CuO were mixed in a Pt crucible in 9
It was calcined at 50 ° C. for 24 hours to obtain a calcined powder of BaCuO 2 and CuO (BaCuO 2 : CuO = 22: 3 by molar ratio).
4).

【0037】この仮焼粉と予め秤量しておいたNd2
3 とを混合して、外径50mm、厚さ20mmのディス
ク状にプレス成形して成形体を得た。
The calcined powder and Nd 2 O weighed in advance
3 were mixed and press-formed into a disk having an outer diameter of 50 mm and a thickness of 20 mm to obtain a molded body.

【0038】この成形体を1200℃で半溶融状態にし
た後、試料上部温度が1100℃となるまで10℃/m
inで降温し、さらに試料の上下に15℃/cmの温度
勾配を加え、そこから1℃/hrの速度で室温まで徐冷
して結晶化を行った。
After the molded body was made into a semi-molten state at 1200 ° C., the temperature was increased to 10 ° C./m until the upper temperature of the sample reached 1100 ° C.
Then, the temperature was lowered, and a temperature gradient of 15 ° C./cm was applied to the upper and lower portions of the sample, and the temperature was gradually cooled to room temperature at a rate of 1 ° C./hr for crystallization.

【0039】これにより、Nd1+Y Ba2-Y CU3
7-x 相中にNd4 Ba2 Cu2 10相とが組成比で1:
0.1であるように分散された多結晶体が得られた(組
成;Nd1.6 Ba2 Cu3.2 8.1-X )。
Thus, Nd 1 + Y Ba 2-Y CU 3 O
The Nd 4 Ba 2 Cu 2 O 10 phase in the 7-x phase has a composition ratio of 1:
A polycrystal dispersed to be 0.1 was obtained (composition: Nd 1.6 Ba 2 Cu 3.2 O 8.1-X ).

【0040】この多結晶体から単一の結晶粒を切り出し
て種結晶を得た。
A single crystal grain was cut out from the polycrystal to obtain a seed crystal.

【0041】次に、この種結晶を用いて次のようにして
超電導体を製造する。
Next, a superconductor is manufactured using the seed crystal as follows.

【0042】まず、Sm2 3 、BaCO3 、CuOの
各原料粉末をSm:Ba:Cu=18:24:34にな
るように秤量した後、BaCO3 、CuOのみを850
℃で30時間焼成してBaCuO2 とCuOの仮焼粉を
得た(モル比でBaCuO2:CuO=24:10)。
First, raw material powders of Sm 2 O 3 , BaCO 3 , and CuO were weighed so that Sm: Ba: Cu = 18: 24: 34, and only BaCO 3 and CuO were 850.
It was calcined at 30 ° C. for 30 hours to obtain a calcined powder of BaCuO 2 and CuO (BaCuO 2 : CuO = 24: 10 in molar ratio).

【0043】この仮焼粉とあらかじめ秤量しておいたS
2 3 及びPt粉末を0.5wt%加えて混合して、
外径50mm厚さ20mmのディスク状にプレス成形し
て成形体を作製した。
The calcined powder and S weighed in advance
0.5 wt% of m 2 O 3 and Pt powder are added and mixed,
A compact was produced by press molding into a disk having an outer diameter of 50 mm and a thickness of 20 mm.

【0044】この成形体を1200℃で半溶融状態にし
た後、1080℃まで10℃/minで降温して種結晶
接触温度にし、この上部に上記作成した種結晶成形体を
接触させ、種結晶側が低温となるように15℃/cmの
温度勾配を加え、そこから1℃/hrの速度で室温まで
徐冷することによって結晶化を行った。
After the molded body is made into a semi-molten state at 1200 ° C., the temperature is lowered to 1080 ° C. at a rate of 10 ° C./min to reach a seed crystal contact temperature. Crystallization was performed by applying a temperature gradient of 15 ° C./cm so that the temperature on the side became low, and then gradually cooling it to room temperature at a rate of 1 ° C./hr.

【0045】こうして得られたSmBa2 Cu3 7-x
相中にSm2 Ba1 Cu1 5 相が微細に分散した結晶
は、試料中で異方位の結晶が一部存在していたが、ほぼ
種結晶の結晶方位を反映し、大きな配向した結晶となっ
た。
The thus obtained SmBa 2 Cu 3 O 7-x
In the crystal in which the Sm 2 Ba 1 Cu 1 O 5 phase was finely dispersed in the phase, a crystal with a different orientation was partially present in the sample. It became.

【0046】こうして、得られたYBa2 Cu3 7-x
相中にY2 Ba1 Cu1 5 相が微細に分散した結晶
は、試料全体が種結晶の結晶方位を反映し、大きな配向
した結晶となった。
The thus obtained YBa 2 Cu 3 O 7-x
The crystal in which the Y 2 Ba 1 Cu 1 O 5 phase was finely dispersed in the phase was a large oriented crystal in which the entire sample reflected the crystal orientation of the seed crystal.

【0047】この試料の臨界温度(Tc)は92K、臨
界電流密度(Jc)は0.5Tの磁場中で最大1.75
×104 A/cm2 であった。
The sample has a critical temperature (Tc) of 92 K and a critical current density (Jc) of 1.75 at maximum in a magnetic field of 0.5 T.
× 10 4 A / cm 2 .

【0048】また、実施例1と同様にして磁気反発力を
測定したところ、11.8Kg・fであった。
When the magnetic repulsion was measured in the same manner as in Example 1, it was 11.8 kgf.

【0049】さらに、実施例1と同様にして捕捉磁束密
度分布を調べたところ、図7にグラフにして示したよう
な結果であった。
Further, when the trapped magnetic flux density distribution was examined in the same manner as in Example 1, the results were as shown in the graph of FIG.

【0050】実施例3 この実施例は、種結晶としてNd1+Y Ba2-y Cu3
7-x 相中にNd4 Ba2 Cu2 10相が組成比で1:
1.5であるように分散した単結晶を用いて、組成がN
1 Ba2 Cu3 7-x である酸化物超伝導体の配向結
晶を製造する例を示す。なお、秤量の際にはYを0.2
と仮定した。
Example 3 This example uses Nd 1 + Y Ba 2-y Cu 3 O as a seed crystal.
Nd 4 Ba 2 Cu 2 O 10 phase in the 7-x phase has a composition ratio of 1:
Using a single crystal dispersed to be 1.5, the composition is N
An example of producing an oriented crystal of an oxide superconductor which is d 1 Ba 2 Cu 3 O 7-x will be described. When weighing, set Y to 0.2.
Was assumed.

【0051】まず、種結晶を次のようにして作成する。First, a seed crystal is prepared as follows.

【0052】Nd1+Y Ba2-Y CU3 7-x 相とNd4
Ba2 Cu2 10相とが組成比でNd1+Y Ba2-y Cu
3 7-x :Nd4 Ba2 Cu2 10=1:1.5である
ように(組成;Nd7.2 Ba4.6 Cu6 22.1- X )、
Nd2 3 、BaCO3 、CuOの各原料粉末をモル比
でNd:Ba:Cu=72:48:60になるように秤
量した後、BaCO3 、CuOのみをPt坩堝中で、9
50℃にて24時間焼成してBaCuO2 とCuOの仮
焼粉を得た(モル比でBaCuO2 :CuO=48:6
0)。
Nd 1 + Y Ba 2-Y CU 3 O 7-x phase and Nd 4
The composition ratio of Ba 2 Cu 2 O 10 to Nd 1 + Y Ba 2-y Cu
3 O 7-x : Nd 4 Ba 2 Cu 2 O 10 = 1: 1.5 (composition; Nd 7.2 Ba 4.6 Cu 6 O 22.1-X )
After weighing each raw material powder of Nd 2 O 3 , BaCO 3 , and CuO in a molar ratio of Nd: Ba: Cu = 72: 48: 60, only BaCO 3 and CuO were mixed in a Pt crucible in 9
It was calcined at 50 ° C. for 24 hours to obtain a calcined powder of BaCuO 2 and CuO (BaCuO 2 : CuO = 48: 6 in molar ratio).
0).

【0053】この仮焼粉と予め秤量しておいたNd2
3 とを混合して、外径50mm、厚さ20mmのディス
ク状にプレス成形して成形体を得た。
The calcined powder and Nd 2 O previously weighed
3 were mixed and press-formed into a disk having an outer diameter of 50 mm and a thickness of 20 mm to obtain a molded body.

【0054】この成形体を1200℃で半溶融状態にし
た後、試料上部温度が1100℃となるまで10℃/m
inで降温し、さらに試料の上下に15℃/cmの温度
勾配を加え、そこから1℃/hrの速度で室温まで徐冷
して結晶化を行った。
After the molded body was made into a semi-molten state at 1200 ° C., it was heated at 10 ° C./m until the upper temperature of the sample reached 1100 ° C.
Then, the temperature was lowered, and a temperature gradient of 15 ° C./cm was applied to the upper and lower portions of the sample, and the temperature was gradually cooled to room temperature at a rate of 1 ° C./hr for crystallization.

【0055】これにより、Nd1+Y Ba2-Y CU3
7-x 相中にNd4 Ba2 Cu2 10相とが組成比で1:
1.5であるように分散された多結晶体が得られた(組
成;Nd1.6 Ba2 Cu3.2 8.1-X )。
Thus, Nd 1 + Y Ba 2-Y CU 3 O
The Nd 4 Ba 2 Cu 2 O 10 phase in the 7-x phase has a composition ratio of 1:
A polycrystal dispersed to 1.5 was obtained (composition: Nd 1.6 Ba 2 Cu 3.2 O 8.1-X ).

【0056】この多結晶体から単一の結晶粒を切り出し
て種結晶を得た。
A single crystal grain was cut out from the polycrystal to obtain a seed crystal.

【0057】次に、この種結晶を用いて次のようにして
超電導体を製造する。
Next, a superconductor is manufactured using the seed crystal as follows.

【0058】Nd2 3 、BaCO3 、CuOの各原料
粉末をNd:Ba:Cu=1:2:3になるように秤量
した後、BaCO3 、CuOのみを850℃で30時間
焼成してBaCuO2 とCuOの仮焼粉を得た。(モル
比でBaCuO2 :CuO=2:1)。この仮焼粉とあ
らかじめ秤量しておいたNd2 3 及びPt粉末を0.
5wt%加えて混合して外径50mm厚さ20mmのデ
ィスク状にプレス成形して成形体を作製した。この成形
体を酸素分圧PO2=10-3atm 中1200℃で半溶融状
態にした後、1080℃まで10℃/minで降温し、
上記作成した種結晶を成形体の上部に接触させ、種結晶
側が低温となるように15℃/cmの温度勾配を加え、
そこから1℃/hrの速度で室温まで徐冷することによ
って結晶化を行った。
After weighing each raw material powder of Nd 2 O 3 , BaCO 3 and CuO so that Nd: Ba: Cu = 1: 2: 3, only BaCO 3 and CuO are calcined at 850 ° C. for 30 hours. A calcined powder of BaCuO 2 and CuO was obtained. (Molar ratio: BaCuO 2 : CuO = 2: 1). This calcined powder and Nd 2 O 3 and Pt powder weighed in advance were added to 0.1%.
5 wt% was added and mixed, and press-molded into a disk shape having an outer diameter of 50 mm and a thickness of 20 mm to produce a molded body. The molded body was semi-molten at 1200 ° C. in an oxygen partial pressure P O2 = 10 −3 atm, and then cooled to 1080 ° C. at a rate of 10 ° C./min.
The seed crystal prepared above is brought into contact with the upper part of the molded body, and a temperature gradient of 15 ° C./cm is applied so that the temperature of the seed crystal becomes low.
From there, crystallization was performed by slowly cooling to room temperature at a rate of 1 ° C / hr.

【0059】こうして得られたNd1 Ba2 Cu3
7-x 相中からなる結晶は、試料中で異方位の結晶が一部
存在していたが、種結晶下部では種結晶の結晶方位を反
映し比較的大きな結晶が得られた。
The thus obtained Nd 1 Ba 2 Cu 3 O
In the crystal composed of the 7-x phase, some crystals of different orientation existed in the sample, but a relatively large crystal was obtained below the seed crystal reflecting the crystal orientation of the seed crystal.

【0060】この試料の臨界温度(Tc)は92K、臨
界電流密度(Jc)は0.5Tの磁場中で最大0.94
×104 A/cm2 、磁気反発力は6.5Kg・fであ
り、さらに、捕捉磁束密度は次に述べる比較例と同等で
あった。
The sample has a critical temperature (Tc) of 92 K and a critical current density (Jc) of at most 0.94 in a magnetic field of 0.5 T.
× 10 4 A / cm 2 , the magnetic repulsion was 6.5 Kg · f, and the trapped magnetic flux density was equivalent to the comparative example described below.

【0061】すなわち、この実施例の試料は、上記実施
例1,2に比較するとその特性が多少劣るが、磁気反発
力に関しては比較例より優れており、従来のものに比較
すると優れたものである。
That is, the sample of this example is slightly inferior in characteristics as compared with the above examples 1 and 2, but is superior in magnetic repulsion force to the comparative example, and is superior to the conventional one. is there.

【0062】比較例 比較例として、種結晶に、Sm1 Ba2 Cu3 7-x
(123相)単結晶を用いて、組成がSm1.8 Ba2.4
Cu3.4 9-x である酸化物超伝導体の配向結晶を製造
する例を示す。
Comparative Example As a comparative example, a single crystal of Sm 1 Ba 2 Cu 3 O 7-x phase (123 phase) was used as a seed crystal, and the composition was Sm 1.8 Ba 2.4.
An example of producing an oriented crystal of an oxide superconductor of Cu 3.4 O 9-x will be described.

【0063】Sm2 3 、BaCO3 、CuOの各原料
粉末をSm:Ba:Cu=18:24:34になるよう
に秤量した後、BaCO3 、CuOのみを950℃で2
4時間焼成してBaCuO2 とCuOの仮焼粉を得た
(モル比でBaCuO2 :CuO=2:3)。この仮焼
粉とあらかじめ秤量しておいたSm2 3 及びPt粉末
を0.5wt%加えて混合して、外径50mm厚さ20
mmのディスク状にプレス成形して成形体作製した。こ
の成形体を1200℃で半溶融状態にした後、1080
℃まで10℃/minで降温し、さらに試料の上下に1
5℃/cmの温度勾配を加え、そこから1℃/hrの速
度で室温まで徐冷することによって結晶化を行った。こ
れにより、Sm1 Ba2 Cu3 7-x 相中にSm2 Ba
1 Cu1 5 相が微量分散した多結晶体が得られた。
After weighing each raw material powder of Sm 2 O 3 , BaCO 3 and CuO so that Sm: Ba: Cu = 18: 24: 34, only BaCO 3 and CuO were mixed at 950 ° C.
By calcining for 4 hours, a calcined powder of BaCuO 2 and CuO was obtained (BaCuO 2 : CuO = 2: 3 in molar ratio). The calcined powder and the previously weighed Sm 2 O 3 and Pt powders were added at 0.5 wt% and mixed to form an outer diameter of 50 mm and a thickness of 20 mm.
A molded article was prepared by press molding into a disk having a diameter of 1 mm. After making this molded body semi-molten at 1200 ° C.,
To 10 ° C at 10 ° C / min.
Crystallization was performed by applying a temperature gradient of 5 ° C./cm, and then gradually cooling it to room temperature at a rate of 1 ° C./hr. Thus, Sm 1 Ba 2 Cu 3 O 7-x phase in the Sm 2 Ba
A polycrystal in which a 1 Cu 1 O 5 phase was dispersed in a trace amount was obtained.

【0064】この多結晶体から単一の結晶粒を切り出し
て種結晶を得た。
A single crystal grain was cut out from the polycrystal to obtain a seed crystal.

【0065】次に、この種結晶を用いて次のようにして
超電導体を製造する。
Next, a superconductor is manufactured using the seed crystal as follows.

【0066】Sm2 3 、BaCO3 、CuOの各原料
粉末をSm:Ba:Cu=18:24:34になるよう
に秤量した後、BaCO3 、CuOのみを850℃で3
0時間焼成してBaCuO2 とCuOの仮焼粉を得た
(モル比でBaCuO2 :CuO=24:10)。この
仮焼粉とあらかじめ秤量しておいたSm2 3 及びPt
粉末を0.5wt%加えて混合して、外径50mm厚さ
20mmのディスク状にプレス成形して成形体を作製し
た。この成形体を1200℃で半溶融状態にした後、1
080℃まで10℃/minで降温し、この成形体の上
部に上記作成した種結晶を接触させ、種結晶側が低温と
なるようにして試料の上下に15℃/cmの温度勾配を
加え、そこから1℃/hrの速度で室温まで徐冷するこ
とによって結晶化を行った。
After weighing each raw material powder of Sm 2 O 3 , BaCO 3 and CuO so that Sm: Ba: Cu = 18: 24: 34, only BaCO 3 and CuO were mixed at 850 ° C.
By calcining for 0 hour, a calcined powder of BaCuO 2 and CuO was obtained (BaCuO 2 : CuO = 24: 10 in molar ratio). This calcined powder and Sm 2 O 3 and Pt weighed in advance
0.5 wt% of the powder was added and mixed, and the mixture was press-molded into a disk shape having an outer diameter of 50 mm and a thickness of 20 mm to produce a molded body. After making this molded body semi-molten at 1200 ° C.,
The temperature was lowered to 080 ° C. at a rate of 10 ° C./min. The seed crystal prepared above was brought into contact with the upper part of the molded body, and a temperature gradient of 15 ° C./cm was applied above and below the sample so that the temperature of the seed crystal was low. Crystallization was performed by gradually cooling the mixture to room temperature at a rate of 1 ° C./hr.

【0067】こうして得られたSm1 Ba2 Cu3
7-x 相中にSm2 Ba1 Cu1 5 相が微細に分散した
結晶は、種結晶が完全に溶融してしまい、多結晶体とな
ってしまっていた。
The thus obtained Sm 1 Ba 2 Cu 3 O
In the crystal in which the Sm 2 Ba 1 Cu 1 O 5 phase was finely dispersed in the 7-x phase, the seed crystal was completely melted and became a polycrystal.

【0068】この試料の臨界温度(Tc)は92K、臨
界電流密度(Jc)は0.5Tの磁場中で最大1.7×
104 A/cm2 、磁気反発力は5.5Kg・fであ
り、さらに、捕捉磁束密度分布は図8にグラフにして示
したような結果であった。
The sample has a critical temperature (Tc) of 92 K and a critical current density (Jc) of at most 1.7 × in a magnetic field of 0.5 T.
10 4 A / cm 2 , the magnetic repulsion was 5.5 Kg · f, and the distribution of trapped magnetic flux density was as shown in the graph of FIG.

【0069】すなわち、この比較例の試料は、上記実施
例1,2に比較するとその磁気反発力及び捕捉磁束密度
特性が劣り、実施例3に比較すると、臨界電流密度特性
には優れているが磁気反発力に関しては劣るものであ
る。
That is, the sample of this comparative example is inferior in magnetic repulsion force and trapped magnetic flux density characteristics as compared with the above Examples 1 and 2, and is superior in critical current density characteristics as compared with Example 3. The magnetic repulsion is inferior.

【0070】図9に実施例及び比較例の超電導特性の測
定結果をまとめて表にして示した。
FIG. 9 is a table summarizing the measurement results of the superconducting characteristics of the example and the comparative example.

【0071】[0071]

【発明の効果】以上詳述したように、本発明は、RE化
合物(REはYを含む1種もしくは2種以上の希土類金
属元素)、Ba化合物、Cu化合物を、それぞれのmo
l%(RE,Ba,Cu)が、A(35,25,4
0)、B(35,35,30)、C(15,40,4
5)、D(15,30,55)の点で囲まれる領域の組
成となるように秤量混合し、次に、この混合粉を900
〜1500℃の温度で焼成することによって得た仮焼粉
末を成形してペレット状の前駆体を形成し、次に、この
前駆体を990〜1300℃の範囲の温度において、加
熱して固液共存状態にした後に種結晶接触温度にし、次
に、この前駆体に、Nd1+Y Ba2- Y CU3 7-x
(ここでX,Yは結晶化する際の酸素分圧によってX=
0〜0.5,Y=0.1〜0.5の範囲で変化する変数
である)中にNd4 Ba2 Cu2 10相が組成比でNd
1+Y Ba2-y Cu3 7-x :Nd4 Ba2 Cu2 10
1:0.1〜1:1.5の範囲であるように分散した単
結晶を種結晶として接触させ、次いで、前記前駆体を、
前記種結晶側が低温側となるようにして5〜50℃/c
mの温度勾配をつけて1〜5℃/時間の降温速度で徐冷
することによって、前記種結晶を起点として該種結晶と
同じ方位を有するREーBaーCuーO系酸化物超電導
体の大きな配向した結晶を得ることを特徴としたもの
で、これにより、「123相」の生成温度がより高い場
合にも種結晶を用いた方法を適用可能にし、これによ
り、大型でより高い臨界電流密度特性を有する酸化物超
電導体を歩留まりよく製造することを可能としたもので
ある。
As described in detail above, the present invention relates to a method of forming an RE compound (RE is one or more rare earth metal elements containing Y), a Ba compound, and a Cu compound by using
1% (RE, Ba, Cu) is A (35, 25, 4)
0), B (35, 35, 30), C (15, 40, 4)
5), weighed and mixed so as to have a composition of a region surrounded by points D (15, 30, 55),
The calcined powder obtained by calcining at a temperature of 11500 ° C. is formed to form a pellet-shaped precursor, which is then heated at a temperature in the range of 990 to 1300 ° C. to form a solid-liquid precursor. After the coexisting state, the seed crystal contact temperature is reached, and then the precursor is added to an Nd 1 + Y Ba 2− Y CU 3 O 7-x phase (where X and Y are oxygen partial pressures during crystallization. X =
0-0.5, Y = 0.1-0.5) Nd 4 Ba 2 Cu 2 O 10 phase contains Nd in composition ratio
1 + Y Ba 2-y Cu 3 O 7-x: Nd 4 Ba 2 Cu 2 O 10 =
A single crystal dispersed to be in the range of 1: 0.1 to 1: 1.5 is contacted as a seed crystal, and then the precursor is
5 to 50 ° C./c so that the seed crystal side is the low temperature side
m, a temperature gradient of 1 to 5 ° C./hour is applied to the RE-Ba—Cu—O-based oxide superconductor having the same orientation as the seed crystal as a starting point. It is characterized by obtaining a large oriented crystal, whereby the method using the seed crystal can be applied even when the formation temperature of the “123 phase” is higher, whereby a large and higher critical current can be obtained. This enables an oxide superconductor having a density characteristic to be manufactured with good yield.

【図面の簡単な説明】[Brief description of the drawings]

【図1】Nd1+Y Ba2-Y CU3 7-x 相中にNd4
2 Cu2 10相が分散した単結晶におけるNd元素、
Ba元素、Cu元素の組成mol比を三角座標で示した
図である。
FIG. 1. Nd 4 B in Nd 1 + Y Ba 2-Y CU 3 O 7-x phase
a Nd element in a single crystal in which a 2 Cu 2 O 10 phase is dispersed,
It is the figure which showed the composition mol ratio of Ba element and Cu element by triangular coordinates.

【図2】Nd1+Y Ba2-Y CU3 7-x 相中にNd4
2 Cu2 10相が分散した単結晶における両相の存在
比の変化をNd組成で現した場合に、その存在比に対す
るNd1+Y Ba2-Y CU3 7-x 相の生成温度変化をグ
ラフで示した図である。
FIG. 2: Nd 4 B in Nd 1 + Y Ba 2 -Y CU 3 O 7-x phase
When a change in the abundance ratio of both phases in a single crystal in which a 2 Cu 2 O 10 phase is dispersed is represented by an Nd composition, formation of an Nd 1 + Y Ba 2-Y CU 3 O 7-x phase with respect to the abundance ratio It is the figure which showed the temperature change with the graph.

【図3】製造目的たる超電導体のNd元素、Ba元素、
Cu元素の組成mol比を三角座標で示した図である。
FIG. 3 shows the Nd element, Ba element,
FIG. 3 is a diagram showing the composition mol ratio of Cu element in triangular coordinates.

【図4】種結晶を用いて結晶成長させる様子を示した図
である。
FIG. 4 is a diagram showing a state of crystal growth using a seed crystal.

【図5】捕捉磁束密度分布の測定の様子を示す図であ
る。
FIG. 5 is a diagram showing a state of measurement of a trapped magnetic flux density distribution.

【図6】実施例1の方法で製造した超電導体の捕捉磁束
密度分布の測定結果をグラフで示した図である。
FIG. 6 is a graph showing a measurement result of a trapped magnetic flux density distribution of the superconductor manufactured by the method of Example 1.

【図7】実施例2の方法で製造した超電導体の捕捉磁束
密度分布の測定結果をグラフで示した図である。
FIG. 7 is a graph showing a measurement result of a trapped magnetic flux density distribution of a superconductor manufactured by the method of Example 2.

【図8】比較例の方法で製造した超電導体の捕捉磁束密
度分布の測定結果をグラフで示した図である。
FIG. 8 is a graph showing a measurement result of a trapped magnetic flux density distribution of a superconductor manufactured by a method of a comparative example.

【図9】実施例及び比較例の超電導特性の測定結果をま
とめて表にして示した図である。
FIG. 9 is a table summarizing the measurement results of the superconducting characteristics of an example and a comparative example.

フロントページの続き (72)発明者 吉澤 秀二 東京都千代田区丸の内一丁目8番2号 同和鉱業株式会社内 (56)参考文献 特開 平5−279034(JP,A) 特開 平5−279035(JP,A) 特開 平5−279032(JP,A) (58)調査した分野(Int.Cl.7,DB名) C01G 1/00,3/00 C30B 11/14,29/22 Continuation of the front page (72) Inventor Shuji Yoshizawa 1-8-2 Marunouchi, Chiyoda-ku, Tokyo Dowa Mining Co., Ltd. (56) References JP-A-5-279034 (JP, A) JP-A-5-279035 (JP, A) JP-A-5-279032 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C01G 1 / 00,3 / 00 C30B 11 / 14,29 / 22

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 RE化合物(REはYを含む1種もしく
は2種以上の希土類金属元素)、Ba化合物、Cu化合
物を、それぞれのmol%(RE,Ba,Cu)が、A
(35,25,40)、B(35,35,30)、C
(15,40,45)、D(15,30,55)の点で
囲まれる領域の組成となるように秤量混合し、 次に、この混合粉を900〜1500℃の温度で焼成す
ることによって得た仮焼粉末を成形してペレット状の前
駆体を形成し、 次に、この前駆体を990〜1300℃の範囲の温度に
おいて、加熱して固液共存状態にした後に種結晶接触温
度にし、 次に、この前駆体に、Nd1+Y Ba2-Y CU3 7-x
(ここでX,Yは結晶化する際の酸素分圧によってX=
0〜0.5,Y=0.1〜0.5の範囲で変化する変数
である)中にNd4 Ba2 Cu2 10相が組成比でNd
1+Y Ba2-y Cu3 7-x :Nd4 Ba2 Cu2 10
1:0.1〜1:1.5の範囲であるように分散した単
結晶を種結晶として接触させ、 次いで、前記前駆体を、前記種結晶側が低温側となるよ
うにして5〜50℃/cmの温度勾配をつけて室温まで
徐冷することによって、前記種結晶を起点として該種結
晶と同じ方位を有するREーBaーCuーO系酸化物超
電導体の大きな配向した結晶を得ることを特徴とするR
EーBaーCuーO系酸化物超電導体の製造方法。
1. An RE compound (RE is one or two or more rare earth metal elements containing Y), a Ba compound, and a Cu compound, each of which contains mol% (RE, Ba, Cu) of A
(35, 25, 40), B (35, 35, 30), C
(15, 40, 45) and D (15, 30, 55) are weighed and mixed so as to have a composition in a region surrounded by the points, and then the mixed powder is fired at a temperature of 900 to 1500 ° C. The obtained calcined powder is molded to form a pellet-shaped precursor, and then the precursor is heated at a temperature in the range of 990 to 1300 ° C. to be in a solid-liquid coexistence state, and then to a seed crystal contact temperature. Next, this precursor is added to an Nd 1 + Y Ba 2-Y CU 3 O 7-x phase (where X and Y are X = Y due to the oxygen partial pressure during crystallization).
0-0.5, Y = 0.1-0.5) Nd 4 Ba 2 Cu 2 O 10 phase contains Nd in composition ratio
1 + Y Ba 2-y Cu 3 O 7-x: Nd 4 Ba 2 Cu 2 O 10 =
A single crystal dispersed so as to be in a range of 1: 0.1 to 1: 1.5 is brought into contact with a seed crystal, and then the precursor is placed at 5 to 50 ° C. so that the seed crystal side is at a low temperature side. A large oriented crystal of a RE-Ba-Cu-O-based oxide superconductor having the same orientation as the seed crystal starting from the seed crystal by gradually cooling to room temperature with a temperature gradient of / cm R characterized by
A method for producing an E-Ba-Cu-O-based oxide superconductor.
JP07030488A 1995-02-20 1995-02-20 Method for producing RE-Ba-Cu-O-based oxide superconductor Expired - Fee Related JP3123893B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07030488A JP3123893B2 (en) 1995-02-20 1995-02-20 Method for producing RE-Ba-Cu-O-based oxide superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07030488A JP3123893B2 (en) 1995-02-20 1995-02-20 Method for producing RE-Ba-Cu-O-based oxide superconductor

Publications (2)

Publication Number Publication Date
JPH08217440A JPH08217440A (en) 1996-08-27
JP3123893B2 true JP3123893B2 (en) 2001-01-15

Family

ID=12305229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07030488A Expired - Fee Related JP3123893B2 (en) 1995-02-20 1995-02-20 Method for producing RE-Ba-Cu-O-based oxide superconductor

Country Status (1)

Country Link
JP (1) JP3123893B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100694850B1 (en) * 2005-07-01 2007-03-13 학교법인 한국산업기술대학 Method for providing metal organic precursor solution and oxide superconducting film fabricated thereof
CN107621614B (en) * 2017-11-08 2023-08-01 西南交通大学 Magnetic-force testing method and device for high-temperature superconductive magnetic suspension

Also Published As

Publication number Publication date
JPH08217440A (en) 1996-08-27

Similar Documents

Publication Publication Date Title
US5149684A (en) Production of a superconductor powder having a narrow melting transition width using a controlled oxygen atmosphere
JP3123893B2 (en) Method for producing RE-Ba-Cu-O-based oxide superconductor
EP0536730A1 (en) Oxide superconducting material and method for producing the same
EP0969527B1 (en) Oxide superconductor of high critical current density
JP3123911B2 (en) Method for producing RE-Ba-Cu-O-based oxide superconductor
JP3623829B2 (en) Method for producing RE-Ba-Cu-O-based oxide superconductor
JP3217905B2 (en) Metal oxide material and method for producing the same
WO1991005087A1 (en) Single crystal oxide substrate, superconductor device produced therefrom, and producing thereof
US5525585A (en) Process for preparing YBa2 Cu3 O7-x superconductors
JP2006062896A (en) Superconducting oxide material and its manufacturing method
JPH1053415A (en) Silver-containing oxide superconductor with even crystal azimuth and its production
Babu et al. Large single grain (RE)-Ba-Cu-O superconductors with nano-phase inclusions
JPH0733434A (en) Production of re1ba2cu3o7-x type oxide superconductor
JP2828396B2 (en) Oxide superconductor and manufacturing method thereof
Liu et al. Preliminary study on forming preferential orientation in Tl-1223 bulk superconductor
JP2801806B2 (en) Metal oxide material
JP2761727B2 (en) Manufacturing method of oxide superconductor
JPH11306877A (en) Oxide bulk superconductor
JP2004203727A (en) Oxide superconductor having high critical current density
JP2838312B2 (en) Oxide superconducting material
JP3282688B2 (en) Manufacturing method of oxide superconductor
JP2001114595A (en) High temperature oxide superconductive material and method for producing the same
JP2001180932A (en) Oxide superconductor and its production method
JP2789103B2 (en) Oxide superconductor and manufacturing method thereof
JPH11180765A (en) Oxide superconductor containing silver and its production

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071027

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071027

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081027

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees