JPH0733434A - Production of re1ba2cu3o7-x type oxide superconductor - Google Patents

Production of re1ba2cu3o7-x type oxide superconductor

Info

Publication number
JPH0733434A
JPH0733434A JP17925093A JP17925093A JPH0733434A JP H0733434 A JPH0733434 A JP H0733434A JP 17925093 A JP17925093 A JP 17925093A JP 17925093 A JP17925093 A JP 17925093A JP H0733434 A JPH0733434 A JP H0733434A
Authority
JP
Japan
Prior art keywords
compound
compd
oxide superconductor
mixed
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17925093A
Other languages
Japanese (ja)
Inventor
Shiyuuichi Kobayashi
秀一 小早志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority to JP17925093A priority Critical patent/JPH0733434A/en
Publication of JPH0733434A publication Critical patent/JPH0733434A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To increase critical current density by mixing a Ba compd. with a Cu compd., calcining this mixture, mixing the resulting calcined powder with an RE compd. and carrying out calcining, compacting, heating and slow cooling. CONSTITUTION:An RE compd. (RE is one or more kinds of elements selected among Y and rare earth elements), a Ba compd. and a Cu compd. are weighed so that the ratio of RE:Ba:Cu is contained in a region defined by (55:10:35), (40:40:20), (10:60:30) and (10:25:65). The Ba compd. is mixed with the Cu compd. and calcined at 800-930 deg.C. The resulting calcined powder is mixed with the RE compd. and press-compacted into a lump shape to form a compact of >=6mm thickness. This compact is half melted by heating to 1,060-1,200 deg.C and slowly cooled at 0.1-10 deg.C/hr rate to obtain the objective RE1Ba2Cu3O7-x type oxide superconductor having a structure contg. an RE2Ba1Cu1O5 phase of <=50mum diameter dispersed in an RE1Ba2Cu3O7-x phase.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、強磁場下においても高
い臨界電流密度を備えた超電導特性を示すRE1 Ba2
Cu3 O7-x 系酸化物超電導体の製造方法に関するもの
である。
The present invention relates to RE 1 Ba 2 which exhibits superconducting characteristics with a high critical current density even under a strong magnetic field.
The present invention relates to a method for producing a Cu 3 O 7- x oxide superconductor.

【0002】[0002]

【従来の技術】一般式RE1 Ba2 Cu3 7-x (ただ
し、REは、Y及び希土類金属元素からなる群から選択
された1種の元素もしくは2種以上の元素の混合物とす
る。)で表される物質を主成分とする酸化物超電導体の
製造方法としては、従来、以下のような方法があった。
2. Description of the Related Art The general formula RE 1 Ba 2 Cu 3 O 7-x (where RE is one element selected from the group consisting of Y and rare earth metal elements or a mixture of two or more elements). As a method for producing an oxide superconductor containing a substance represented by (4) as a main component, the following methods have been conventionally used.

【0003】(1) 第1に、特開平2−153803号公
報に開示されているいわゆるQMG法(Quench and Mel
t Growth法)がある。これは、RE2 3 (RE:Yを
含む希土類元素)とBaCu酸化物とを混合して得た厚
さ5mm以下の板状もしくは線状の成形体を、1000
℃〜1350℃の高温に加熱せしめて半溶融状態にした
後、200℃/hr以下の速度で徐冷するという方法で
ある。
(1) First, the so-called QMG method (Quench and Mel) disclosed in Japanese Patent Laid-Open No. 2-153803.
t Growth method). This is a mixture of RE 2 O 3 (RE: Y-containing rare earth element) and BaCu oxide, and a plate-shaped or linear molded body having a thickness of 5 mm or less
It is a method of heating to a high temperature of ℃ to 1350 ℃ to make a semi-molten state, and then gradually cooling at a rate of 200 ℃ / hr or less.

【0004】(2) 第2に、特開平4−119968号公
報に開示されているいわゆるMPMG法(Melt Powder
Melt Growth 法)がある。これはRE−Ba−Cu−O
系の原材料粉のうちのBaCO3 とCuOの粉体を混合
し、この混合物を約900℃で仮焼し、この混合物を1
000℃〜1200℃の温度範囲に加熱して溶融し、こ
の溶融物にRE2 3 もしくはRE2 BaCuO5 の粉
体を添加し、この混合体を前記の温度で所定時間保持
し、この材料を10〜1000℃/hrの冷却速度で1
000℃まで冷却し、0.2〜20℃/hrの冷却速度
で950℃間で冷却してしかる後に任意の冷却速度で室
温まで冷却するという方法である。
(2) Secondly, the so-called MPMG method (Melt Powder) disclosed in Japanese Patent Application Laid-Open No. 4-119998.
Melt Growth method). This is RE-Ba-Cu-O
BaCO 3 and CuO powders among the raw material powders of the system are mixed, and the mixture is calcined at about 900 ° C.
The mixture is heated to a temperature range of 000 ° C to 1200 ° C to be melted, RE 2 O 3 or RE 2 BaCuO 5 powder is added to this melt, and this mixture is kept at the above temperature for a predetermined time, 1 at a cooling rate of 10 to 1000 ° C./hr
It is a method of cooling to 000 ° C., cooling at 950 ° C. at a cooling rate of 0.2 to 20 ° C./hr, and then cooling to room temperature at an arbitrary cooling rate.

【0005】(3) 第3に、特開平4−231364号公
報に提案されている方法がある。
(3) Third, there is a method proposed in Japanese Patent Laid-Open No. 4-231364.

【0006】この方法は、以下、(a) から(e) に示す組
成の混合物を半溶融後、徐冷することによってRE−B
a−Cu−O系酸化物超電導体(ただし、REは、Y及
び希土類金属元素からなる群から選択された1種の元素
もしくは2種以上の元素の混合物をいう。)を作成する
という方法である。
In this method, a mixture of the compositions shown in (a) to (e) is semi-molten and then slowly cooled to obtain RE-B.
An a-Cu-O-based oxide superconductor (wherein RE means one element selected from the group consisting of Y and rare earth metal elements or a mixture of two or more elements) is prepared. is there.

【0007】(a) RE,Ba,Cuの元素のモル比(R
E:Ba:Cu)が(50:20:30)、(10:60:30)、
(20:20:60)で囲まれる領域にあること。
(A) RE, Ba, Cu element molar ratio (R
E: Ba: Cu) is (50:20:30), (10:60:30),
Be in the area surrounded by (20:20:60).

【0008】(b) REは実質的にRE2 3 として存在
すること。
(B) RE exists substantially as RE 2 O 3 .

【0009】(C) Baは実質的にBa酸化物及び/もし
くはBa−Cu複合酸化物として存在すること。
(C) Ba exists substantially as a Ba oxide and / or a Ba-Cu composite oxide.

【0010】(d) Cuは実質的にCu酸化物及び/もし
くはBa−Cu複合酸化物として存在すること。
(D) Cu substantially exists as Cu oxide and / or Ba-Cu composite oxide.

【0011】(e) Ba及びCuの少なくとも一方の元素
は、その20%以上はBaCu2 2として、かつ、そ
の20%以上はBaCuO2 として存在し、さらに、そ
の70%以上は(BaCu2 2 +BaCuO2 )とし
て存在すること。
(E) At least one element of Ba and Cu exists as BaCu 2 O 2 in an amount of 20% or more and BaCuO 2 in an amount of 20% or more, and 70% or more of the element is (BaCu 2 O 2). Exists as O 2 + BaCuO 2 ).

【0012】[0012]

【発明が解決しようとする課題】しかしながら、上述の
従来の方法には、以下のような欠点があることが判明し
た。
However, it has been found that the above-described conventional method has the following drawbacks.

【0013】(1) の方法 この方法は、比較的高臨界電流密度の酸化物超電導バル
ク材料を作製できるが、RE2 3 とBaCu酸化物と
を混合して得られた板状もしくは線状の成形体を厚さ5
mm以下としているため、1000℃から1350℃の
高温に加熱し、半溶融状態にする際に、試料をのせる基
板(Al2 3 、MgO、Pt、ZrO)等との反応が
激しく、これらの元素が不純物として試料全体に拡散
し、さらに試料の液相成分が多量に流れ出してしまい臨
界電流密度を劣化させてしまうおそれがある。
Method (1) This method can produce an oxide superconducting bulk material having a relatively high critical current density, but it is a plate-shaped or linear material obtained by mixing RE 2 O 3 and BaCu oxide. The molded body of thickness 5
Since it is less than or equal to mm, when it is heated to a high temperature of 1000 ° C. to 1350 ° C. to be in a semi-molten state, the reaction with the substrate (Al 2 O 3 , MgO, Pt, ZrO) on which the sample is placed is violent. Element may diffuse as an impurity throughout the sample, and a large amount of liquid phase component of the sample may flow out to deteriorate the critical current density.

【0014】(2) の方法 この方法も比較的高臨界電流密度の超電導体を作製する
ことができるが、混合物を100℃から1200℃の温
度範囲に加熱して溶融するため塊状に固化し、実質的に
はその後形状を整えるために、粉砕と成形工程が必要と
なり、工程的に手間がかかり、量産が非常に困難なもの
となっている。
Method (2) This method can also produce a superconductor having a relatively high critical current density, but the mixture is heated to a temperature range of 100 ° C. to 1200 ° C. to be melted and solidified into a lump, Subsequent crushing and molding steps are required to substantially adjust the shape, which requires time and effort and makes mass production very difficult.

【0015】(3) の方法 この方法も比較的高臨界電流密度の超電導体が得られる
が、単相のBaCu22 を得るのは実質的に困難であ
り、また組成的にBaCu2 2 相の多い粉体を作製す
るには溶融工程を行うか、非常に還元力の強い雰囲気で
の作製が必要となり、非常にコストがかかる。さらに2
0%以上のBaCu2 2 相が存在すると、反応性が過
度に高まり、大型の超電導体を用いて半溶融工程を行う
と、形状を保つことができない。
Method (3) This method also gives a superconductor having a relatively high critical current density, but it is substantially difficult to obtain single-phase BaCu 2 O 2 , and the composition is BaCu 2 O. To produce a powder having many two phases, it is necessary to perform a melting process or to produce in an atmosphere with a very strong reducing power, which is very expensive. 2 more
When 0% or more of BaCu 2 O 2 phase is present, the reactivity is excessively increased, and the shape cannot be maintained when the semi-melting step is performed using a large superconductor.

【0016】本発明は、上述の背景のもとでなされたも
のであり、大型でより高い臨界電流密度を有するRE1
Ba2 Cu3 7-x 系酸化物超電導体をより簡便に再現
性よく製造することができるRE1 Ba2 Cu3 7-x
系酸化物超電導体の製造方法を提供することを目的とす
る。
The present invention was made in the context of the above background and is a large RE 1 having a higher critical current density.
Ba 2 Cu 3 O 7-x based oxide superconductor may more easily reproducible and can be produced RE 1 Ba 2 Cu 3 O 7 -x
An object of the present invention is to provide a method for producing a system oxide superconductor.

【0017】[0017]

【課題を解決するための手段】上述の課題を解決するた
めに本発明にかかるRE1 Ba2 Cu3 7-x 系酸化物
超電導体の製造方法は、 (構成1) 一般式RE1 Ba2 Cu3 7-x (ただ
し、REは、Y及び希土類金属元素からなる群から選択
された1種もしくは2種以上の元素の混合物とする。)
で表される物質を主成分とするRE1 Ba2 Cu3
7-x 系酸化物超電導体の製造方法であって、RE化合
物、Ba化合物及びCu化合物を、RE,Ba,Cuの
モル比において、(RE:Ba:Cu)が(55:10:3
5)、(40:40:20)、(10:60:30)、(10:25:6
5)で囲まれる領域内に含まれるように秤量する秤量工
程と、前記秤量した各化合物のうちBa化合物とCu化
合物とを取り出して混合し、800〜930℃で仮焼成
してBaCuO2 とCuOの仮焼粉を得る仮焼成工程
と、前記仮焼粉と前記RE化合物とを混合して厚さ6m
m以上の塊状にプレス成形して成形体を得る成形工程
と、この成形体を1060〜1200℃の温度に加熱せ
しめて半溶融状態にする加熱工程と、この半溶融状態の
成形体を0.1℃〜10℃/hrの速度で徐冷する徐冷
工程とを有し、RE1 Ba2 Cu3 7-x 相中に直径5
0ミクロン以下のRE2 Ba1 Cu15 相が分散した
組織を有するRE1 Ba2 Cu3 7-x 系酸化物超電導
体を得ることを特徴とした構成とし、この構成1の態様
として、 (構成2) 構成1のRE1 Ba2 Cu3 7-x 系酸化
物超電導体の製造方法において、前記仮焼工程が、Ba
化合物とCu化合物との混合粉を、Pt、MgOもしく
はZrO基板上で930〜960℃で仮焼成してカーボ
ンの含有料を1.0重量%以下にしたBaCuO2 とC
uOの仮焼粉を得るものであることを特徴とした構成と
したものである。
[MEANS FOR SOLVING THE PROBLEMS] In order to solve the above-mentioned problems, a method for producing an RE 1 Ba 2 Cu 3 O 7-x oxide superconductor according to the present invention is as follows: (Structure 1) General formula RE 1 Ba 2 Cu 3 O 7-x (However, RE is one or a mixture of two or more elements selected from the group consisting of Y and rare earth metal elements.)
RE 1 Ba 2 Cu 3 O containing the substance represented by
A method for producing a 7-x- based oxide superconductor, wherein (RE: Ba: Cu) is (55: 10: 3) in a molar ratio of RE, Ba and Cu compounds.
5), (40:40:20), (10:60:30), (10: 25: 6)
5) A weighing step of weighing so as to be included in a region surrounded by 5), a Ba compound and a Cu compound among the weighed compounds are taken out and mixed, and calcined at 800 to 930 ° C. to form BaCuO 2 and CuO. Calcining step for obtaining a calcined powder of, and mixing the calcined powder and the RE compound with a thickness of 6 m
The molding step of press-molding into a lump of m or more to obtain a molded body, the heating step of heating the molded body to a temperature of 1060 to 1200 ° C. to bring it into a semi-molten state, and the molded body in the semi-molten state of 0. And a gradual cooling step of gradual cooling at a rate of 1 ° C. to 10 ° C./hr, with a diameter of 5 in the RE 1 Ba 2 Cu 3 O 7-x phase.
A structure characterized by obtaining a RE 1 Ba 2 Cu 3 O 7-x oxide superconductor having a structure in which a RE 2 Ba 1 Cu 1 O 5 phase of 0 micron or less is dispersed. (Structure 2) In the method for manufacturing an RE 1 Ba 2 Cu 3 O 7-x oxide superconductor according to Structure 1, the calcination step is Ba
BaCuO 2 and C in which a mixed powder of a compound and a Cu compound is pre-baked at 930 to 960 ° C. on a Pt, MgO or ZrO substrate so that a carbon content is 1.0 wt% or less.
The constitution is characterized in that a calcined powder of uO is obtained.

【0018】[0018]

【作用】上述の構成1によれば、RE2 Ba1 Cu1
5 がRE1 Ba2 Cu3 7-x相(以下、123相とい
う)中に微細に分散された結晶よりなるR1 Ba2 Cu
3 7-x 系の大型酸化物超電導体であって、より高い臨
界電流密度を有するものをより簡便に再現性よく製造す
ることが可能となった。
According to the above-mentioned structure 1, RE 2 Ba 1 Cu 1 O
5 RE 1 Ba 2 Cu 3 O 7 -x phase consisting finely dispersed crystals in (hereinafter, referred to as the 123 phase) R 1 Ba 2 Cu
It has become possible to more easily and reproducibly manufacture a 3 O 7-x- based large-sized oxide superconductor having a higher critical current density.

【0019】ここで、出発原料粉中のRE,Ba,Cu
元素の比が構成1に規定した範囲の値を有している必要
があるのは次の理由からである。
Here, RE, Ba, Cu in the starting raw material powder
The ratio of elements needs to have a value within the range specified in Configuration 1 for the following reason.

【0020】すなわち、(RE:Ba:Cu)が(55:
10:35)よりREが多くなるかもしくはBaが少なくな
ると、123相の成長が進まなくなる。(40:40:20)
よりREが多くなるか、もしくはBaが多くなると、1
23相の成長が進まなくなる。(10:60:30)よりBa
が多くなると不純物の析出が多くなり、特性を劣化させ
る。(10:25:65)よりCuが多くなると、液相成分が
多くなり溶融した際に、形状が保てなくなる。この様な
理由から(R:Ba:Cu)を(55:10:35)、(40:
40:20)、(10:60:30)、(10:25:65)で囲まれる
組成範囲にすることが必要である。
That is, (RE: Ba: Cu) is (55:
If the RE is larger or the Ba is smaller than 10:35), the 123 phase does not grow. (40:40:20)
If RE is higher or Ba is higher, 1
The growth of the 23rd phase does not progress. Ba from (10:60:30)
If the amount is large, the precipitation of impurities is large and the characteristics are deteriorated. When the amount of Cu is more than (10:25:65), the liquid phase component increases and the shape cannot be maintained when melted. For this reason, (R: Ba: Cu) is (55:10:35), (40:
40:20), (10:60:30), and (10:25:65).

【0021】また、Ba化合物とCu化合物の仮焼成温
度は、800℃以下では未反応物が残る。この場合、構
成2のように、930℃以上に設定すると超電導特性を
著しく劣化させる残留カーボンの含有量が減り、さらに
焼成時間を短時間にすることができるので好ましい。そ
の際、焼成用の基板として反応の比較的少ない、Pt、
MgOもしくはZrOを用いると基板との反応による不
純物の混入が減少し、さらに特性が向上する。なお、9
30℃以下に設定すれば基板としてAl2 3が使用で
きるためコストを下げられるという利点はある。
Further, when the calcination temperature of the Ba compound and the Cu compound is 800 ° C. or lower, unreacted substances remain. In this case, it is preferable to set the temperature to 930 ° C. or higher as in the constitution 2, because the content of the residual carbon that significantly deteriorates the superconducting property is reduced, and the firing time can be shortened. At that time, Pt, which has relatively little reaction as a substrate for firing,
When MgO or ZrO is used, the mixing of impurities due to the reaction with the substrate is reduced, and the characteristics are further improved. 9
If the temperature is set to 30 ° C. or lower, Al 2 O 3 can be used as the substrate, which has the advantage of cost reduction.

【0022】しかしながら、960℃以上にすると、溶
融してBaCu化合物が塊状に固化して基板にくっつ
き、実質的に回収率が悪くなる。またその後粉砕工程が
必要となりコストがかかる。
However, if the temperature is higher than 960 ° C., the BaCu compound melts and solidifies into a lump and sticks to the substrate, which substantially deteriorates the recovery rate. In addition, a crushing process is required after that, which is expensive.

【0023】さらに、成形体の厚さを6mm以上とした
のは、半溶融状態にした際に、試料をのせる基板(Al
2 3 、MgO、Pt、ZrO)等との反応によって劣
化しない上端部分を実質的に多く作製するためである。
Further, the thickness of the molded body is set to 6 mm or more because the substrate (Al) on which the sample is placed in the semi-molten state is used.
This is because a large amount of the upper end portion that does not deteriorate due to the reaction with 2 O 3 , MgO, Pt, ZrO, etc. is prepared.

【0024】また、半溶融温度を1060〜1200℃
にしたのは、1060℃以下では溶融が不十分で多結晶
体となってしまい、1200℃以上ではR2 Ba1 Cu
1 5 相が粗大化してしまい、著しく特性を劣化させて
しまうためである。
The semi-melting temperature is 1060 to 1200 ° C.
The reason is that the melting point is insufficient at 1060 ° C. to form a polycrystalline body, and at 1200 ° C. or higher, R 2 Ba 1 Cu is formed.
This is because the 1 O 5 phase is coarsened and the characteristics are significantly deteriorated.

【0025】さらに、徐冷速度を0.1〜10℃/hr
としたのは0.1℃/hr以下では結晶化に非常に時間
がかかりコストが上がってしまい、10℃/hr以上で
は不純物が結晶中に取り込まれてしまうためである。
Further, the slow cooling rate is 0.1 to 10 ° C./hr.
The reason is that if the temperature is 0.1 ° C./hr or less, crystallization takes a very long time and the cost increases, and if the temperature is 10 ° C./hr or more, impurities are taken into the crystal.

【0026】[0026]

【実施例】実施例12 3 、BaCO3 、CuOの各原料粉末をY:B
a:Cu=18:24:34になるように秤量した後BaCO
3 、CuOのみをアルミナ基板上において850℃で3
0時間焼成してBaCuO2 とCuOの仮焼粉を得た
(モル比で、BaCuO2 :CuO=24:10)。こ
の仮焼粉のカーボン含有量を測定したところ、1.05
重量%であった。この仮焼粉とY2 3 とを混合して外
径75mm厚さ30mmのディスク状にプレス成形し、
アルミナ基板上にのせ、1150℃で半溶融状態にした
後、1℃/hrの速度で室温まで徐冷した。
EXAMPLES Example 1 Y: B was used as a raw material powder of Y 2 O 3 , BaCO 3 , and CuO.
a: Cu = 18:24:34 and then BaCO
3 , CuO only 3 at 850 ℃ on alumina substrate
It was calcined for 0 hour to obtain a calcined powder of BaCuO 2 and CuO (molar ratio of BaCuO 2 : CuO = 24: 10). When the carbon content of this calcined powder was measured, it was 1.05.
% By weight. The calcined powder and Y 2 O 3 are mixed and press-molded into a disk shape having an outer diameter of 75 mm and a thickness of 30 mm,
It was placed on an alumina substrate, brought into a semi-molten state at 1150 ° C., and then gradually cooled to room temperature at a rate of 1 ° C./hr.

【0027】得られた試料は形状を維持し、クラックが
ほとんどなかった。また溶融後の残留カーボン量は0.
07重量%であった。
The obtained sample maintained its shape and had almost no cracks. The amount of residual carbon after melting is 0.
It was 07% by weight.

【0028】得られた試料を、上端部から下方に向かっ
て6mm毎に区切って、A,B,C,D,Eの5つの領
域に分割し、各領域において、温度77[K]、外部磁
場1[T]における臨界電流密度(Jc)を測定した結
果、並びに、各領域における拡散Alを分析した結果は
以下の通りであった。
The obtained sample was divided into 5 areas A, B, C, D, and E from the upper end portion downwardly at intervals of 6 mm, and in each area, a temperature of 77 [K], the outside The results of measuring the critical current density (Jc) in the magnetic field of 1 [T] and the results of analyzing the diffused Al in each region are as follows.

【0029】 A B C D E Jc(×104 A/cm) 1.0 1.0 0.9 0.8 0.3 拡散Al(重量%) 0.01以下 0.01以下 0.02 0.05 0.13 上記結果から明らかなように、下部6mm(領域E)は
基板のアルミナが拡散して特性の劣化が大きいが、それ
より上方部(領域A,B,C,D)はほぼ均一で十分高
い臨界電流密度を有していた。
ABCD E Jc (× 10 4 A / cm) 1.0 1.0 0.9 0.8 0.3 Diffused Al (wt%) 0.01 or less 0.01 or less 0.02 0.05 0.13 As is clear from the above results, the lower 6 mm (region E) is Although the alumina of the substrate was diffused and the characteristics were largely deteriorated, the upper part (regions A, B, C, D) was almost uniform and had a sufficiently high critical current density.

【0030】実施例2 Sm2 3 、BaO2 、CuOの各原料粉末をSm:B
a:Cu=18:24:34になるように秤量した後、BaO
2 とCuOのみをアルミナ基板上において850℃で3
0時間焼成してBaCuO2 とCuOの仮焼粉を得た
(モル比で、BaCuO2 :CuO=24:10)。こ
の仮焼粉のカーボン含有量を測定したところ、1.20
重量%であった。この仮焼粉とSm2 3 とを混合して
外径75mm厚さ30mmのディスク状にプレス成形
し、アルミナ基板上にのせ、1150℃で半溶融状態に
した後、1℃/hrの速度で室温まで徐冷した。
Example 2 Each raw material powder of Sm 2 O 3 , BaO 2 and CuO was mixed with Sm: B.
a: Cu = 18:24:34, and then weighed BaO
2 and CuO only on an alumina substrate at 850 ° C for 3
It was calcined for 0 hour to obtain a calcined powder of BaCuO 2 and CuO (molar ratio of BaCuO 2 : CuO = 24: 10). When the carbon content of this calcined powder was measured, it was 1.20.
% By weight. The calcined powder and Sm 2 O 3 are mixed and press-molded into a disk shape having an outer diameter of 75 mm and a thickness of 30 mm, placed on an alumina substrate and put in a semi-molten state at 1150 ° C., and then at a rate of 1 ° C./hr. It was gradually cooled to room temperature.

【0031】得られた試料はクラックがなく、また溶融
後のカーボン含有量は0.09重量%であった。
The obtained sample had no cracks and the carbon content after melting was 0.09% by weight.

【0032】得られた試料を、上端部から下方に向かっ
て6mm毎に区切って、A,B,C,D,Eの5つの領
域に分割し、各領域において、温度77[K]、外部磁
場1[T]における臨界電流密度(Jc)を測定した結
果、並びに、各領域における拡散Alを分析した結果は
以下の通りであった。
The obtained sample was divided into 5 areas A, B, C, D, and E from the upper end portion downwardly at intervals of 6 mm, and in each area, the temperature was 77 [K] and the outside The results of measuring the critical current density (Jc) in the magnetic field of 1 [T] and the results of analyzing the diffused Al in each region are as follows.

【0033】 A B C D E Jc(×104 A/cm) 0.9 1.0 0.9 0.6 0.3 拡散Al(重量%) 0.01以下 0.01以下 0.02 0.02 0.12 上記結果から明らかなように、下部6mm(領域E)は
基板のアルミナが拡散して特性の劣化が大きいが、それ
より上方部(領域A,B,C,D)はほぼ均一で十分高
い臨界電流密度を有していた。
ABCD E Jc (× 10 4 A / cm) 0.9 1.0 0.9 0.6 0.3 Diffused Al (wt%) 0.01 or less 0.01 or less 0.02 0.02 0.12 As is clear from the above results, the lower 6 mm (region E) is Although the alumina of the substrate was diffused and the characteristics were largely deteriorated, the upper part (regions A, B, C, D) was almost uniform and had a sufficiently high critical current density.

【0034】実施例32 3 、BaCO3 、CuOの各原料粉末をY:B
a:Cu=18:24:34になるように秤量した後、BaC
3 、CuOのみをPt基板上で950℃で2時間焼成
してBaCuO2 とCuOの仮焼粉を得た(モル比で、
BaCuO2 :CuO=24:10)。この仮焼粉のカ
ーボン含有量を測定したところ、0.40重量%であっ
た。この仮焼粉とY2 3 とを混合して外径75mm厚
さ30mmのディスク状にプレス成形し、アルミナ基板
上にのせ、1150℃で半溶融状態にした後、1℃/h
rの速度で室温まで徐冷した。
Example 3 Each raw material powder of Y 2 O 3 , BaCO 3 , and CuO was mixed with Y: B.
a: Cu = 18: 24: 34, then weighed, and then BaC
Only O 3 and CuO were baked on a Pt substrate at 950 ° C. for 2 hours to obtain a calcined powder of BaCuO 2 and CuO (in molar ratio,
BaCuO 2 : CuO = 24: 10). When the carbon content of this calcined powder was measured, it was 0.40% by weight. The calcined powder and Y 2 O 3 are mixed and press-molded into a disk shape having an outer diameter of 75 mm and a thickness of 30 mm, placed on an alumina substrate and put in a semi-molten state at 1150 ° C.
It was gradually cooled to room temperature at a rate of r.

【0035】得られた試料はクラックがなく、また溶融
後のカーボン含有量は0.02重量%と非常に低かっ
た。
The obtained sample had no cracks, and the carbon content after melting was very low at 0.02% by weight.

【0036】得られた試料を、上端部から下方に向かっ
て6mm毎に区切って、A,B,C,D,Eの5つの領
域に分割し、各領域において、温度77[K]、外部磁
場1[T]における臨界電流密度(Jc)を測定した結
果、並びに、各領域における拡散Alを分析した結果は
以下の通りであった。
The obtained sample was divided into 5 areas A, B, C, D, and E from the upper end portion downwardly at intervals of 6 mm, and in each area, the temperature was 77 [K], and the outside The results of measuring the critical current density (Jc) in the magnetic field of 1 [T] and the results of analyzing the diffused Al in each region are as follows.

【0037】 A B C D E Jc(×104 A/cm) 1.4 1.5 1.3 1.2 0.8 拡散Al(重量%) 0.01以下 0.01以下 0.01 0.04 0.11 上記結果から明らかなように、下部6mm(領域E)は
基板のアルミナが拡散して特性の劣化がやや大きいが、
それより上方部(領域A,B,C,D)はほぼ均一でか
つ実施例1〜2に比較してより高い臨界電流密度を有し
ていた。
ABCD E Jc (× 10 4 A / cm) 1.4 1.5 1.3 1.2 0.8 Diffused Al (wt%) 0.01 or less 0.01 or less 0.01 0.04 0.11 As is clear from the above results, the lower 6 mm (region E) is Alumina of the substrate diffuses and the characteristics are slightly degraded, but
The upper part (regions A, B, C, D) was almost uniform and had a higher critical current density as compared with Examples 1-2.

【0038】実施例42 3 、BaCO3 、CuOの各原料粉末をY:B
a:Cu=18:24:34になるように秤量した後、BaC
3 とCuOのみをZrO基板上で950℃で2時間焼
成してBaCuO2 とCuOの仮焼粉を得た(モル比
で、BaCuO2 :CuO=24:10)。この仮焼粉
のカーボン含有量を測定したところ、0.40重量%で
あった。この仮焼粉とY2 3 とを混合して外径75m
m厚さ30mmのディスク状にプレス成形し、アルミナ
基板上にのせ、1150℃で半溶融状態にした後、1℃
/hrの速度で室温まで徐冷した。
Example 4 Each raw material powder of Y 2 O 3 , BaCO 3 and CuO was mixed with Y: B.
a: Cu = 18: 24: 34, then weighed, and then BaC
Only O 3 and CuO were calcined on a ZrO substrate at 950 ° C. for 2 hours to obtain a calcined powder of BaCuO 2 and CuO (in molar ratio, BaCuO 2 : CuO = 24: 10). When the carbon content of this calcined powder was measured, it was 0.40% by weight. The calcined powder and Y 2 O 3 are mixed to give an outer diameter of 75 m.
m, press-molded into a disk with a thickness of 30 mm, placed on an alumina substrate, and semi-molten at 1150 ° C., then 1 ° C.
It was gradually cooled to room temperature at a rate of / hr.

【0039】得られた試料はクラックがなく、また溶融
後のカーボン含有量は0.02重量%と非常に低かっ
た。
The obtained sample had no cracks, and the carbon content after melting was very low at 0.02% by weight.

【0040】得られた試料を、上端部から下方に向かっ
て6mm毎に区切って、A,B,C,D,Eの5つの領
域に分割し、各領域において、温度77[K]、外部磁
場1[T]における臨界電流密度(Jc)を測定した結
果、並びに、各領域における拡散Alを分析した結果は
以下の通りであった。
The obtained sample was divided into 5 areas A, B, C, D, and E from the upper end portion downwardly at intervals of 6 mm, and in each area, a temperature of 77 [K], the outside The results of measuring the critical current density (Jc) in the magnetic field of 1 [T] and the results of analyzing the diffused Al in each region are as follows.

【0041】 A B C D E Jc(×104 A/cm) 1.3 1.3 1.2 1.0 0.6 拡散Al(重量%) 0.01以下 0.01以下 0.02 0.05 0.15 上記結果から明らかなように、下部6mm(領域E)は
基板のアルミナが拡散して特性の劣化がやや大きいが、
それより上方部(領域A,B,C,D)はほぼ均一でか
つ実施例1〜2に比較してより高い臨界電流密度を有し
ていた。
ABCD E Jc (× 10 4 A / cm) 1.3 1.3 1.2 1.0 0.6 Diffused Al (wt%) 0.01 or less 0.01 or less 0.02 0.05 0.15 As is clear from the above results, the lower 6 mm (region E) is Alumina of the substrate diffuses and the characteristics are slightly degraded, but
The upper part (regions A, B, C, D) was almost uniform and had a higher critical current density as compared with Examples 1-2.

【0042】比較例12 3 、BaCO3 、CuOの各原料粉末をY:B
a:Cu=18:24:34になるように秤量した後BaCO
3 、CuOのみをアルミナ基板上に置いて850℃で3
0時間焼成してBaCuO2 とCuOの仮焼粉を得た。
この仮焼粉のカーボン含有量を測定したところ、1.0
5重量%であった。この仮焼粉とY2 3とを混合して
外径75mm厚さ5mmのディスク状にプレス成形し、
アルミナ基板上にのせ、1150℃で半溶融状態にした
後、1℃/hrの速度で室温まで徐冷した。
Comparative Example 1 Y 2 O 3 , BaCO 3 , and CuO raw material powders were mixed with Y: B.
a: Cu = 18:24:34 and then BaCO
3 、 Place CuO only on the alumina substrate at 850 ℃ for 3
It was calcined for 0 hour to obtain a calcined powder of BaCuO 2 and CuO.
When the carbon content of this calcined powder was measured, it was 1.0
It was 5% by weight. The calcined powder and Y 2 O 3 are mixed and press-formed into a disk shape having an outer diameter of 75 mm and a thickness of 5 mm,
It was placed on an alumina substrate, brought into a semi-molten state at 1150 ° C., and then gradually cooled to room temperature at a rate of 1 ° C./hr.

【0043】得られたペレットはクラックはないが、溶
融後のカーボン含有量は0.05重量%と多く、また、
試料の厚さ方向のJcとアルミの拡散量は以下のような
ものであり、実施例に比較して極めて不十分であった。
The obtained pellets had no cracks, but the carbon content after melting was as high as 0.05% by weight, and
The diffusion amount of Jc and aluminum in the thickness direction of the sample was as follows, which was extremely insufficient as compared with the examples.

【0044】 上端部から下方に 上端部から下方に 1mmまでの領域 1〜5mmの領域 Jc(×104 A/cm) 1.1 0.4 拡散Al(重量%) 0.03 0.15比較例22 3 、BaCO3 、CuOの各原料粉末をY:B
a:Cu=18:24:34になるように秤量した後BaCO
3 、CuOのみを窒素中900℃で30時間焼成して約
20%のBaCu2 2 が存在し、そのほかがBaCu
2 とCuOである仮焼粉を得た。この仮焼粉のカーボ
ン含有量を測定したところ、0.50重量%であった。
この仮焼粉とY2 3 とを混合して外径75mm厚さ3
0mmのディスク状にプレス成形し、アルミナ基板上に
のせ、1150℃で半溶融状態にした後、1℃/hrの
速度で室温まで徐冷した。
Area from top to bottom 1 mm from top to bottom 1 to 5 mm area Jc (× 10 4 A / cm) 1.1 0.4 Diffused Al (wt%) 0.03 0.15 Comparative Example 2 Y 2 O 3 , BaCO 3 , CuO raw material powder Y: B
a: Cu = 18:24:34 and then BaCO
3 , CuO alone was baked in nitrogen at 900 ° C. for 30 hours, and about 20% of BaCu 2 O 2 was present.
A calcined powder of O 2 and CuO was obtained. When the carbon content of this calcined powder was measured, it was 0.50% by weight.
The calcined powder and Y 2 O 3 are mixed to give an outer diameter of 75 mm and a thickness of 3
It was press-formed into a disk shape of 0 mm, placed on an alumina substrate, brought into a semi-molten state at 1150 ° C., and then gradually cooled to room temperature at a rate of 1 ° C./hr.

【0045】得られたペレットは形状が崩れ、液相の流
だしが激しかった。また、得られた試料を、上端部から
下方に向かって6mm毎に区切って、A,B,C,D,
Eの5つの領域に分割し、各領域において、温度77
[K]、外部磁場1[T]における臨界電流密度(J
c)を測定した結果、並びに、各領域における拡散Al
を分析した結果は以下の通りであった。
The pellets obtained had a deformed shape and the liquid phase flowed out violently. In addition, the obtained sample was divided into 6 mm intervals from the upper end downward, and A, B, C, D, and
It is divided into 5 areas of E, and the temperature is 77 in each area.
[K], critical current density in external magnetic field 1 [T] (J
c) measurement result and diffused Al in each region
The results of the analysis were as follows.

【0046】 A B C D E Jc(×104 A/cm) 0.9 0.9 0.8 0.4 0.2 拡散Al(重量%) 0.03 0.05 0.04 0.11 0.18 上記結果から明らかなように、上方部においては、実施
例1に近い程度の臨海電流密度は得られたが、中間部か
ら下方にいくにしたがって特性が低下し始めるととも
に、形状の崩れが著しいために、実施例に比較して超電
導体として使用できる部分が極めて少く実用性に乏しい
ものであった。
A B C D E Jc (× 10 4 A / cm) 0.9 0.9 0.8 0.4 0.2 Diffused Al (wt%) 0.03 0.05 0.04 0.11 0.18 Although a near sea current density was obtained, the characteristics began to deteriorate from the middle part to the lower part, and the shape collapsed remarkably, so there were very few parts that could be used as superconductors compared to the examples. It was poor in practicality.

【0047】[0047]

【発明の効果】以上詳述したように、本発明は、酸化物
超電導体の製造方法の一つであるいわゆる溶融法を用
い、所定の範囲の割合に秤量したRE化合物、Ba化合
物及びCu化合物のうちBa化合物とCu化合物とを取
り出して混合し、800〜930℃で仮焼成してBaC
uO2 とCuOの仮焼粉を得、この仮焼粉をRE化合物
と混合して、厚さ6mm以上にプレス成形し、これを1
060〜1200℃の温度に加熱せしめて半溶融状態に
した後、0.1℃〜10℃/hrの速度で徐冷すること
によって、RE1 Ba2 Cu3 7-x 相中に直径50ミ
クロン以下のRE2Ba1 Cu1 5 相が分散した組織
を有し、大型でより高い臨界電流密度を有するRE1
2 Cu3 7-x 系酸化物超電導体を得ることを可能に
したものである。
As described above in detail, the present invention uses the so-called melting method, which is one of the methods for producing oxide superconductors, and measures the RE compound, the Ba compound and the Cu compound in a predetermined ratio. Among them, the Ba compound and the Cu compound are taken out, mixed, and calcined at 800 to 930 ° C. to form BaC.
A calcined powder of uO 2 and CuO was obtained, and the calcined powder was mixed with an RE compound and press-molded to a thickness of 6 mm or more.
After being heated to a temperature of 060 to 1200 ° C. to be in a semi-molten state and then gradually cooled at a rate of 0.1 ° C. to 10 ° C./hr, a diameter of 50 in the RE 1 Ba 2 Cu 3 O 7-x phase is obtained. RE 1 B having a structure in which sub-micron RE 2 Ba 1 Cu 1 O 5 phases are dispersed and having a large and higher critical current density
It is possible to obtain an a 2 Cu 3 O 7-x oxide superconductor.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 一般式RE1 Ba2 Cu3 7-x (ただ
し、REは、Y及び希土類金属元素からなる群から選択
された1種もしくは2種以上の元素の混合物とする。)
で表される物質を主成分とするRE1 Ba2 Cu3
7-x 系酸化物超電導体の製造方法であって、 RE化合物、Ba化合物及びCu化合物を、RE,B
a,Cuのモル比において、(RE:Ba:Cu)が
(55:10:35)、(40:40:20)、(10:60:30)、
(10:25:65)で囲まれる領域内に含まれるように秤量
する秤量工程と、 前記秤量した各化合物のうちBa化合物とCu化合物と
を取り出して混合し、800〜930℃で仮焼成してB
aCuO2 とCuOの仮焼粉を得る仮焼成工程と、 前記仮焼粉と前記RE化合物とを混合して厚さ6mm以
上の塊状にプレス成形して成形体を得る成形工程と、 この成形体を1060〜1200℃の温度に加熱せしめ
て半溶融状態にする加熱工程と、 この半溶融状態の成形体を0.1℃〜10℃/hrの速
度で徐冷する徐冷工程とを有し、 RE1 Ba2 Cu3 7-x 相中に直径50ミクロン以下
のRE2 Ba1 Cu15 相が分散した組織を有するR
1 Ba2 Cu3 7-x 系酸化物超電導体を得ることを
特徴としたRE1 Ba2 Cu3 7-x 系酸化物超電導体
の製造方法。
1. A general formula RE 1 Ba 2 Cu 3 O 7-x (where RE is one or a mixture of two or more elements selected from the group consisting of Y and rare earth metal elements).
RE 1 Ba 2 Cu 3 O containing the substance represented by
A method for producing a 7-x- based oxide superconductor, comprising: adding a RE compound, a Ba compound and a Cu compound to RE, B
In the molar ratio of a and Cu, (RE: Ba: Cu) is (55:10:35), (40:40:20), (10:60:30),
(10:25:65) Weighing step for weighing so as to be included in a region surrounded by (10:25:65), Ba compound and Cu compound among the weighed compounds are taken out and mixed, and calcined at 800 to 930 ° C. B
a calcination step of obtaining a calcinated powder of aCuO 2 and CuO, a molding step of mixing the calcination powder and the RE compound and press-molding into a lump having a thickness of 6 mm or more to obtain a molded body, Is heated to a temperature of 1060 to 1200 ° C. to bring it into a semi-molten state, and a slow cooling step of gradually cooling the semi-molten compact at a rate of 0.1 ° C. to 10 ° C./hr. , RE 1 Ba 2 Cu 3 O 7-x phase having a structure in which a RE 2 Ba 1 Cu 1 O 5 phase having a diameter of 50 μm or less is dispersed
A method for producing a RE 1 Ba 2 Cu 3 O 7-x based oxide superconductor characterized by obtaining an E 1 Ba 2 Cu 3 O 7-x based oxide superconductor.
【請求項2】 請求項1に記載のRE1 Ba2 Cu3
7-x 系酸化物超電導体の製造方法において、 前記仮焼成工程が、Ba化合物とCu化合物との混合粉
を、Pt、MgOもしくはZrO基板上で930〜96
0℃で仮焼成してカーボンの含有料を1.0重量%以下
にしたBaCuO2 とCuOの仮焼粉を得るものである
ことを特徴としたRE1 Ba2 Cu3 7-x 系酸化物超
電導体の製造方法。
2. The RE 1 Ba 2 Cu 3 O according to claim 1.
In the method for manufacturing a 7-x oxide superconductor, in the calcination step, a mixed powder of a Ba compound and a Cu compound is mixed with 930 to 96 on a Pt, MgO or ZrO substrate.
RE 1 Ba 2 Cu 3 O 7-x- based oxidation characterized by obtaining a calcined powder of BaCuO 2 and CuO having a carbon content of 1.0 wt% or less by calcination at 0 ° C. Method for manufacturing superconductors.
JP17925093A 1993-07-20 1993-07-20 Production of re1ba2cu3o7-x type oxide superconductor Pending JPH0733434A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17925093A JPH0733434A (en) 1993-07-20 1993-07-20 Production of re1ba2cu3o7-x type oxide superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17925093A JPH0733434A (en) 1993-07-20 1993-07-20 Production of re1ba2cu3o7-x type oxide superconductor

Publications (1)

Publication Number Publication Date
JPH0733434A true JPH0733434A (en) 1995-02-03

Family

ID=16062566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17925093A Pending JPH0733434A (en) 1993-07-20 1993-07-20 Production of re1ba2cu3o7-x type oxide superconductor

Country Status (1)

Country Link
JP (1) JPH0733434A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5849668A (en) * 1996-06-21 1998-12-15 Dowa Mining Co., Ltd. Oxide superconductor and method for manufacturing the same
US5958840A (en) * 1996-08-02 1999-09-28 Dowa Mining Co., Ltd. Oxide superconductor containing Ag and having substantially same crystal orientation, and method for manufacturing the same
US6172007B1 (en) 1996-06-21 2001-01-09 Dowa Mining Co., Ltd. Oxide superconductor
JP2013133267A (en) * 2011-12-27 2013-07-08 Fujikura Ltd Manufacturing method for target, target, and manufacturing method for oxide superconductor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5849668A (en) * 1996-06-21 1998-12-15 Dowa Mining Co., Ltd. Oxide superconductor and method for manufacturing the same
US6172007B1 (en) 1996-06-21 2001-01-09 Dowa Mining Co., Ltd. Oxide superconductor
US5958840A (en) * 1996-08-02 1999-09-28 Dowa Mining Co., Ltd. Oxide superconductor containing Ag and having substantially same crystal orientation, and method for manufacturing the same
US6103670A (en) * 1996-08-02 2000-08-15 Dowa Mining Co., Ltd. Method of manufacturing oxide superconductor containing Ag and having substantially same crystal orientation
JP2013133267A (en) * 2011-12-27 2013-07-08 Fujikura Ltd Manufacturing method for target, target, and manufacturing method for oxide superconductor

Similar Documents

Publication Publication Date Title
CN1041058A (en) The production method of high-temperature superconductor and by its formed body of forming
JPH0733434A (en) Production of re1ba2cu3o7-x type oxide superconductor
JPH02275799A (en) Oxide superconductor and its production
JP2518043B2 (en) Method for producing ceramics by melt solidification method
JP3123893B2 (en) Method for producing RE-Ba-Cu-O-based oxide superconductor
JP2545443B2 (en) Method for manufacturing oxide superconductor
JP3623829B2 (en) Method for producing RE-Ba-Cu-O-based oxide superconductor
JPH0687611A (en) Oxide superconductor and production thereof and wire rod thereof
JP2555734B2 (en) Production method of superconducting material
JP3157183B2 (en) Manufacturing method of oxide superconductor
JP3242350B2 (en) Oxide superconductor and manufacturing method thereof
JP3217660B2 (en) Manufacturing method of oxide superconductor
EP0450966A2 (en) Oxide superconductor and process for production thereof
JPH02243519A (en) Oxide superconductor and production thereof
JP2709000B2 (en) Superconductor and method of manufacturing the same
EP0321862A2 (en) Use of barium peroxide in superconducting Y1Ba2Cu3Ox and related materials
JPH05229823A (en) Production of oxide superconducting material
JPH03265561A (en) Production of high-density oxide superconductor
JPH09156925A (en) Production of rare earth elements-barium-copper-oxygen-based oxide superconductor
JPH0597440A (en) Oxide superconductor and its production
JPS63274653A (en) Production of superconductive material
JPH04124030A (en) Production of oxide superconductor
JPH11278923A (en) Oxide superconductor and its production
JPH01208358A (en) Superconducting oxide
JPH0859342A (en) Production of high temperature superconductor