JPH05229823A - Production of oxide superconducting material - Google Patents
Production of oxide superconducting materialInfo
- Publication number
- JPH05229823A JPH05229823A JP3187092A JP3187092A JPH05229823A JP H05229823 A JPH05229823 A JP H05229823A JP 3187092 A JP3187092 A JP 3187092A JP 3187092 A JP3187092 A JP 3187092A JP H05229823 A JPH05229823 A JP H05229823A
- Authority
- JP
- Japan
- Prior art keywords
- superconducting material
- partial pressure
- oxygen partial
- atm
- molar ratio
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は Ba‐Sr‐Cu‐O 系超伝
導材料の製造方法に係り、特に、高品質の超伝導材料を
量産性良く得ることのできる酸化物超伝導材料の製造方
法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a Ba-Sr-Cu-O-based superconducting material, and more particularly to producing an oxide superconducting material capable of obtaining a high-quality superconducting material with good mass productivity Regarding the method.
【0002】[0002]
【従来の技術】BaとSrとCuとOとを主成分とする銅酸化
物超伝導材料の製造方法としては、これまでに、数万気
圧の超高圧を印加して製造する方法が知られている(例
えば、M.Takano et al. Physica C ,176(1991), p.44
1)。2. Description of the Related Art As a method for producing a copper oxide superconducting material containing Ba, Sr, Cu and O as main components, a method of applying an ultrahigh pressure of tens of thousands of atmospheric pressure has been known so far. (For example, M.Takano et al. Physica C, 176 (1991), p.44.
1).
【0003】しかしながら、この方法では数万気圧もの
高圧を印加するために、小さな試料しか製造できず、ま
た、超高圧印加のため装置操作も煩雑で量産性に乏しい
という欠点があった。また、この方法で製造された超伝
導体は低温における抵抗率の減少は認められるものの抵
抗率が完全に零にはならず、超伝導特性もあまり良いも
のではなかった。However, this method has a drawback that only a small sample can be manufactured because a high pressure of tens of thousands of atmospheric pressure is applied, and the operation of the apparatus is complicated and the mass productivity is poor due to the application of an ultrahigh pressure. Although the superconductor manufactured by this method showed a decrease in resistivity at low temperature, the resistivity did not become completely zero, and the superconductivity was not very good.
【0004】[0004]
【発明が解決しようとする課題】上記したように、従来
技術においては、高品質の Ba‐Sr‐Cu‐O 系超伝導材
料を低い量産性でしか得られないという欠点があった。As described above, the prior art has a drawback in that a high quality Ba-Sr-Cu-O 2 superconducting material can be obtained only with low mass productivity.
【0005】本発明の目的は、上記従来技術の有してい
た課題を解決して、高品質の Ba‐Sr‐Cu‐O 系超伝導
体を量産性良く製造する方法を提供することにある。An object of the present invention is to solve the problems of the prior art and to provide a method for producing a high-quality Ba-Sr-Cu-O superconductor with good mass productivity. ..
【0006】[0006]
【課題を解決するための手段】上記目的は、Ba‐Sr‐Cu
‐O 系の超伝導材料の製造において、Ba及びSrのそれぞ
れの炭酸塩、硝酸塩、シュウ酸塩と、Cu の炭酸塩、硝
酸塩、シュウ酸塩、酸化物ないしは金属 Cu とを出発原
料とし、アルカリ土類金属(BaとSr)の総和のモル比が
銅に対して2.25倍から1.1倍となるように原料組成を調
整し、混合した後、5気圧以上の酸素分圧雰囲気中で90
0℃〜1050℃の温度範囲で焼成することを特徴とする製
造方法とすること、あるいは、Ba‐Sr‐Cu‐O 系の超伝
導材料製造において、Ba及びSrのそれぞれの炭酸塩、硝
酸塩、シュウ酸塩と、Cu の炭酸塩、硝酸塩、シュウ酸
塩、酸化物ないしは金属 Cu とを出発原料とし、アルカ
リ土類金属(BaとSr)の総和のモル比が銅に対して2.25
倍から1.1倍となるよう原料組成を調整、混合した後、
空気中あるいは5気圧以下の酸素分圧雰囲気中で800℃
〜900℃の温度範囲で仮焼し、しかる後に5気圧以上の
酸素分圧雰囲気中で900℃〜1050℃の温度範囲で本焼成
することを特徴とする製造方法とすることによって達成
することができる。[Means for Solving the Problems] The above-mentioned purpose is Ba-Sr-Cu.
In the production of -O superconducting materials, the starting materials are the respective carbonates, nitrates, and oxalates of Ba and Sr, and the carbonates, nitrates, oxalates, oxides, or metallic Cu of Cu, and Adjust the raw material composition so that the total molar ratio of the earth metals (Ba and Sr) is 2.25 to 1.1 times that of copper, and after mixing, in an atmosphere with an oxygen partial pressure of at least 5 atm.
To provide a manufacturing method characterized by firing in a temperature range of 0 ℃ ~ 1050 ℃, or in the production of Ba-Sr-Cu-O-based superconducting material, the respective carbonates, nitrates of Ba and Sr, Starting material is oxalate and Cu carbonate, nitrate, oxalate, oxide or metallic Cu, and the total molar ratio of alkaline earth metals (Ba and Sr) is 2.25 to copper.
After adjusting the raw material composition and mixing so that it will be from 1.2 times to 1.1 times,
800 ° C in air or in an oxygen partial pressure atmosphere of 5 atm or less
To 900 ° C. in the temperature range, and then main firing in the temperature range of 900 ° C. to 1050 ° C. in an oxygen partial pressure atmosphere of 5 atm or more. it can.
【0007】[0007]
【作用】本発明は、アルカリ土類金属(BaとSr)の総和
のモル比が Cu に対して2.25倍から1.1倍となるように
出発原料組成を調整したことを最も主要な特徴とする。
従来の超伝導材料製造方法においてはアルカリ土類金属
の総和のモル比を Cu に対して1以下としていたのに対
して、成分中のアルカリ土類金属の割合を大幅に増加さ
せた点が異なる。The main feature of the present invention is that the starting material composition is adjusted so that the total molar ratio of the alkaline earth metals (Ba and Sr) is 2.25 to 1.1 times that of Cu.
In the conventional superconducting material manufacturing method, the total molar ratio of alkaline earth metals was set to 1 or less with respect to Cu, but the ratio of alkaline earth metals in the components was significantly increased. ..
【0008】このことにより5気圧程度の比較的低い酸
素分圧雰囲気下で超伝導材料を製造することができる。As a result, the superconducting material can be manufactured under a relatively low oxygen partial pressure atmosphere of about 5 atm.
【0009】また、本発明の第二の製造方法の特徴は、
5気圧以上の酸素分圧雰囲気下で本焼成する前に空気中
や1気圧酸素中で仮焼成し、その後本焼成を行うことに
よって焼結体を形成することにある。これによって、大
量生産を行う際に、取り扱いを簡便にすることができ
る。The second manufacturing method of the present invention is characterized in that
This is to form a sintered body by pre-baking in air or 1-atmosphere oxygen before main baking in an oxygen partial pressure atmosphere of 5 atm or more, and then performing main baking. As a result, handling can be simplified when mass production is performed.
【0010】[0010]
【実施例】以下、本発明の酸化物超伝導材料の製造方法
について実施例によって具体的に説明する。EXAMPLES Hereinafter, the method for producing the oxide superconducting material of the present invention will be specifically described with reference to Examples.
【0011】[0011]
【実施例1】BaCO3、SrCO3および CuO を出発原料とし
て、Ba:Sr:Cuのモル比を0.7:0.6:1(アルカリ土類
金属対 Cu のモル比は1.3:1)となるように秤量、混
合した後、ペレット状に成形し、5気圧の酸素中で、90
0℃で50時間焼成した。得られた焼結体の抵抗率の温度
依存性を図1に示す。この結果から約 26Kで抵抗率が
減少し始め、5Kで完全に零抵抗となることがわかる。Example 1 Starting from BaCO 3 , SrCO 3 and CuO, the molar ratio of Ba: Sr: Cu was 0.7: 0.6: 1 (the molar ratio of alkaline earth metal to Cu was 1.3: 1). Weigh and mix, and then mold into pellets,
It was baked at 0 ° C. for 50 hours. The temperature dependence of the resistivity of the obtained sintered body is shown in FIG. From this result, it can be seen that the resistivity starts to decrease at about 26K and becomes completely zero at 5K.
【0012】[0012]
【実施例2】BaCO3、SrCO3および金属 Cu を出発原料と
して、Ba:Sr:Cu のモル比が1.1:0.7:1(アルカリ
土類金属対 Cu のモル比は1.8:1)となるように秤
量、混合した。この粉体を約1 t/cm2の圧力でペレット
状に成形し、空気中 850℃の温度で50時間仮焼成し十分
反応を行わせた。次に、得られた焼結体を Ar80%、O22
0%の混合ガス中で全圧250気圧(酸素分圧50気圧)下で
1000℃の温度で50時間本焼成した。得られた焼結体の抵
抗率の温度依存性を図2に示す。図の結果から約40Kで
抵抗率が減少し始め、24Kで完全に0抵抗となることが
わかる。この焼結体の零磁場冷却時および10ガウス下の
磁場中冷却時の帯磁率の温度依存性を図3に示す。図の
結果から、24K以下の温度では磁場中冷却時においても
帯磁率が負となっており、超伝導を示すことがわかる。
また、この特性を完全反磁性と比較すると、マイスナー
体積分率は5Kでは30%以上あり、バルクの超伝導体で
あることを示している。Example 2 Starting from BaCO 3 , SrCO 3 and metallic Cu, the molar ratio of Ba: Sr: Cu is 1.1: 0.7: 1 (the molar ratio of alkaline earth metal to Cu is 1.8: 1). And weighed and mixed. This powder was formed into pellets at a pressure of about 1 t / cm 2 , and calcined in air at a temperature of 850 ° C. for 50 hours to sufficiently react. Next, the obtained sintered body was treated with Ar80% and O 2 2
At a total pressure of 250 atm (oxygen partial pressure of 50 atm) in 0% mixed gas
Main firing was performed at a temperature of 1000 ° C. for 50 hours. The temperature dependence of the resistivity of the obtained sintered body is shown in FIG. From the results in the figure, it can be seen that the resistivity starts to decrease at about 40K and becomes completely zero at 24K. FIG. 3 shows the temperature dependence of the magnetic susceptibility of this sintered body during cooling in a zero magnetic field and during cooling in a magnetic field under 10 Gauss. From the results in the figure, it can be seen that at a temperature of 24 K or less, the magnetic susceptibility is negative even during cooling in a magnetic field, and superconductivity is exhibited.
In addition, when this characteristic is compared with perfect diamagnetism, the Meissner volume fraction is 5% or more at 5K, which indicates that it is a bulk superconductor.
【0013】[0013]
【実施例3】Ba(NO3)2、Sr(NO3)2および Cu(NO3)2・3H2
O を出発原料として用い、Ba:Sr:Cuのモル比が1:
1:1(アルカリ土類金属対Cuのモル比は2:1)とな
るよう秤量、混合した。この粉体を約1t/cm2の圧力で
ペレット状に成形し、1気圧の酸素中800℃の温度で50
時間仮焼成した。得られた焼結体を粉砕、混合し、約1
t/cm2の圧力でペレット状に再成形し、Ar90%、O210%
の混合ガス中で全圧 1000気圧(酸素分圧100気圧)下
で、1050℃の温度で50時間本焼成を行った。得られた焼
結体の抵抗率の温度依存性を図4に示す。図の結果から
約28Kで抵抗率が減少し始めて約10Kで完全に零抵抗と
なることがわかる。Example 3 Ba (NO 3) 2, Sr (NO 3) 2 and Cu (NO 3) 2 · 3H 2
O 2 is used as a starting material, and the molar ratio of Ba: Sr: Cu is 1 :.
Weighed and mixed to be 1: 1 (molar ratio of alkaline earth metal to Cu is 2: 1). This powder is molded into pellets at a pressure of about 1 t / cm 2 , and it is heated at a temperature of 800 ° C in oxygen at 1 atm for 50
It was calcined for an hour. The obtained sintered body is crushed and mixed to obtain about 1
Reformed into pellets at a pressure of t / cm 2 , Ar 90%, O 2 10%
In this mixed gas, under a total pressure of 1000 atm (oxygen partial pressure of 100 atm), main firing was performed at a temperature of 1050 ° C for 50 hours. The temperature dependence of the resistivity of the obtained sintered body is shown in FIG. From the results in the figure, it can be seen that the resistivity starts to decrease at about 28K and becomes completely zero at about 10K.
【0014】[0014]
【実施例4】BaC2O4、SrC2O4および CuO を出発原料と
し、Ba:Sr:Cu のモル比が0.8:0.7:1(アルカリ土
類金属対 Cu のモル比は1.5:1)となるよう秤量、混
合した。この粉体を約1t/cm2の圧力でペレット状に成
形し、4気圧の酸素中900℃の温度で50時間仮焼成し
た。得られた焼結体を Ar80%、O220%の混合ガス中で
全圧250気圧(酸素分圧50気圧)下で、1000℃の温度で5
0時間本焼成を行った。得られた焼結体の抵抗率の温度
依存性を図5に示す。この結果から、約 35Kで抵抗率
が減少し始め、約 20Kで完全に零抵抗となっているこ
とがわかる。Example 4 Starting from BaC 2 O 4 , SrC 2 O 4 and CuO, the molar ratio of Ba: Sr: Cu is 0.8: 0.7: 1 (the molar ratio of alkaline earth metal to Cu is 1.5: 1). Weighed and mixed so that This powder was formed into pellets at a pressure of about 1 t / cm 2 and pre-baked in oxygen at 4 atm at a temperature of 900 ° C. for 50 hours. The resulting sintered body was heated at a temperature of 1000 ° C under a total pressure of 250 atm (oxygen partial pressure of 50 atm) in a mixed gas of 80% Ar and 20% O 2.
Main firing was performed for 0 hours. The temperature dependence of the resistivity of the obtained sintered body is shown in FIG. From this result, it can be seen that the resistivity starts to decrease at about 35K and becomes completely zero at about 20K.
【0015】[0015]
【発明の効果】以上述べてきたように、酸化物超伝導材
料の製造方法を本発明構成の製造方法とすることによっ
て、従来技術の有していた課題を解決して、酸素分圧5
気圧から100気圧程度の比較的低い圧力下で超伝導材料
を製造することができ、簡便で、大量生産できるという
利点が得られる。As described above, by using the manufacturing method of the oxide superconducting material as the manufacturing method of the constitution of the present invention, the problems that the prior art had are solved and the oxygen partial pressure of 5 is obtained.
The superconducting material can be produced under a relatively low pressure of about 100 atm to 100 atm, which is advantageous in that it is simple and can be mass-produced.
【0016】また、本発明の方法とすることによって、
抵抗率が完全に0となる高品質の超伝導材料を容易に製
造することができる。Further, according to the method of the present invention,
A high quality superconducting material having a resistivity of 0 can be easily manufactured.
【図1】実施例1のBa:Sr:Cu のモル比が0.7:0.6:
1の焼結体試料の抵抗率の温度依存性を示す図。FIG. 1 shows that the molar ratio of Ba: Sr: Cu in Example 1 is 0.7: 0.6:
The figure which shows the temperature dependence of the resistivity of the sintered compact sample of No. 1.
【図2】実施例2のBa:Sr:Cu のモル比が1.1:0.7:
1の焼結体試料の抵抗率の温度依存性を示す図。FIG. 2 shows a Ba: Sr: Cu molar ratio of 1.1: 0.7: in Example 2.
The figure which shows the temperature dependence of the resistivity of the sintered compact sample of No. 1.
【図3】実施例2の焼結体試料の帯磁率の温度依存性を
示す図。FIG. 3 is a diagram showing temperature dependence of magnetic susceptibility of a sintered body sample of Example 2.
【図4】実施例3のBa:Sr:Cu のモル比が1:1:1
の焼結体試料の抵抗率の温度依存性を示す図。4 is a molar ratio of Ba: Sr: Cu in Example 3 of 1: 1: 1.
FIG. 6 is a graph showing the temperature dependence of the resistivity of the sintered body sample of FIG.
【図5】実施例4のBa:Sr:Cu のモル比が0.8:0.7:
1の焼結体試料の抵抗率の温度依存性を示す図。FIG. 5: The Ba: Sr: Cu molar ratio of Example 4 is 0.8: 0.7:
The figure which shows the temperature dependence of the resistivity of the sintered compact sample of No. 1.
Claims (2)
いて、Ba及びSrのそれぞれの炭酸塩、硝酸塩、シュウ酸
塩と、Cu の炭酸塩、硝酸塩、シュウ酸塩、酸化物ない
しは金属 Cu とを出発原料とし、アルカリ土類金属(Ba
とSr)の総和のモル比が銅に対して2.25倍から1.1倍と
なるように原料組成を調整し、混合した後、5気圧以上
の酸素分圧雰囲気中で900℃〜1050℃の温度範囲で焼成
することを特徴とする酸化物超伝導材料の製造方法。1. In the production of a Ba-Sr-Cu-O-based superconducting material, Ba, Sr carbonates, nitrates, and oxalates of Cu and carbonates, nitrates, oxalates, and oxides of Cu, respectively. Or the metal Cu as the starting material and the alkaline earth metal (Ba
And Sr), the raw material composition is adjusted so that the total molar ratio is 2.25 to 1.1 times that of copper, and after mixing, the temperature range is 900 ° C to 1050 ° C in an oxygen partial pressure atmosphere of 5 atm or more. A method for producing an oxide superconducting material, which comprises firing at.
いて、Ba及びSrのそれぞれの炭酸塩、硝酸塩、シュウ酸
塩と、Cu の炭酸塩、硝酸塩、シュウ酸塩、酸化物ない
しは金属 Cu とを出発原料とし、アルカリ土類金属(Ba
とSr)の総和のモル比が銅に対して2.25倍から1.1倍と
なるように原料組成を調整し、混合した後、空気中ある
いは5気圧以下の酸素分圧雰囲気中で800℃〜900℃の温
度範囲で仮焼し、しかる後に5気圧以上の酸素分圧雰囲
気中で900℃〜1050℃の温度範囲で本焼成することを特
徴とする酸化物超伝導材料の製造方法。2. In the production of a Ba-Sr-Cu-O superconducting material, each of Ba and Sr carbonates, nitrates and oxalates, and Cu carbonates, nitrates, oxalates and oxides. Or the metal Cu as the starting material and the alkaline earth metal (Ba
And Sr), the raw material composition is adjusted so that the total molar ratio is 2.25 to 1.1 times that of copper, and after mixing, 800 ° C to 900 ° C in air or in an oxygen partial pressure atmosphere of 5 atm or less. A method for producing an oxide superconducting material, which comprises calcining in a temperature range of 1 to 5 and then performing main firing in a temperature range of 900 ° C. to 1050 ° C. in an oxygen partial pressure atmosphere of 5 atm or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3187092A JPH05229823A (en) | 1992-02-19 | 1992-02-19 | Production of oxide superconducting material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3187092A JPH05229823A (en) | 1992-02-19 | 1992-02-19 | Production of oxide superconducting material |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05229823A true JPH05229823A (en) | 1993-09-07 |
Family
ID=12343079
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3187092A Pending JPH05229823A (en) | 1992-02-19 | 1992-02-19 | Production of oxide superconducting material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05229823A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20160098412A (en) | 2013-12-16 | 2016-08-18 | 가부시키가이샤 고베 세이코쇼 | Marine steel forging |
JP2021156738A (en) * | 2020-03-27 | 2021-10-07 | 住友金属鉱山株式会社 | Method for measuring concentration distribution |
-
1992
- 1992-02-19 JP JP3187092A patent/JPH05229823A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20160098412A (en) | 2013-12-16 | 2016-08-18 | 가부시키가이샤 고베 세이코쇼 | Marine steel forging |
JP2021156738A (en) * | 2020-03-27 | 2021-10-07 | 住友金属鉱山株式会社 | Method for measuring concentration distribution |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH05229823A (en) | Production of oxide superconducting material | |
JP2555734B2 (en) | Production method of superconducting material | |
JPH0733434A (en) | Production of re1ba2cu3o7-x type oxide superconductor | |
JP2634187B2 (en) | Method for producing thallium-based oxide superconductor | |
JPH02120227A (en) | Production of bi-based oxide superconductor | |
EP0446552B1 (en) | Superconductive compounds and process for producing said compounds | |
JP4215180B2 (en) | The manufacturing method of calcining powder used for Bi type 2223 oxide superconductor manufacture, and the manufacturing method of Bi type 2223 oxide superconductor. | |
JPH09118525A (en) | Calcined powder for producing bi-containing oxide superconducting material and its production | |
JP2972869B2 (en) | Fabrication method of oxide high-temperature superconductor | |
JPH01264930A (en) | Production of oxide superconductor and applied product of said oxide superconductor | |
JPS63310766A (en) | Production of superconducting material | |
JP2698689B2 (en) | Oxide superconducting material and manufacturing method thereof | |
JP3115357B2 (en) | Manufacturing method of oxide superconducting material | |
JPH01176268A (en) | Production of high-temperature superconductor | |
JPH10101337A (en) | Calcined powder for producing bi-containing oxide superconductor | |
JPH05339008A (en) | Tl-pb oxide superconducting material and its production | |
JPH01183450A (en) | Production of formed oxide superconductor | |
JPH04124016A (en) | Oxide superconductor and its production | |
JPH02153823A (en) | Production of oxide superconductor | |
JPH01257160A (en) | High density oxide superconducting sintered body and sintering method therefor | |
JPS63277550A (en) | Synthesis of superconductive ceramic | |
JPH01317123A (en) | Production of oxide superconductor | |
JPH11139824A (en) | Calcined powder for bi-containing high temperature phase superconductor and polycrystalline body | |
JPH0412023A (en) | Oxide superconductor | |
JPH04124022A (en) | Oxide superconductor and its production |