JPH01176268A - Production of high-temperature superconductor - Google Patents

Production of high-temperature superconductor

Info

Publication number
JPH01176268A
JPH01176268A JP62334033A JP33403387A JPH01176268A JP H01176268 A JPH01176268 A JP H01176268A JP 62334033 A JP62334033 A JP 62334033A JP 33403387 A JP33403387 A JP 33403387A JP H01176268 A JPH01176268 A JP H01176268A
Authority
JP
Japan
Prior art keywords
atmosphere
partial pressure
oxygen partial
calcination
superconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62334033A
Other languages
Japanese (ja)
Inventor
Seiji Kaminami
誠治 神波
Yasushi Kato
靖 加藤
Kiyoshi Iwai
清 岩井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP62334033A priority Critical patent/JPH01176268A/en
Publication of JPH01176268A publication Critical patent/JPH01176268A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To obtain the title superconductor of enhanced critical temperature and critical current density, by calcination and annealing under an oxygen partial pressure higher than that in the natural atmosphere. CONSTITUTION:First, mixed powder comprising rare earth element oxide, alkaline earth metal oxide and CuO is calcined under an oxygen partial pressure higher than that in the natural atmosphere by 0.2-1.0atm. followed by grinding to prepare calcined powder. Secondly, this powder is spiked with an organic binder to perform press forming followed by calcination under an oxygen partial pressure higher than that in the natural atmosphere by 0.2-1.0atm. Finally, the resultant product is annealed in the same oxygen atmosphere as that for the above-mentioned calcination, thus obtaining the Re-M-Cu-O-based oxide (Re is rare earth element; M is alkaline earth metal) high-temperature superconductor.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は高温超伝導体の製造方法、特に、金属酸化物か
らなり、液体窒素温度で超伝導を示す高温超伝導体の製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing a high temperature superconductor, and more particularly, to a method for manufacturing a high temperature superconductor that is made of a metal oxide and exhibits superconductivity at liquid nitrogen temperature.

(従来の技術) 一般に、酸化物超伝導体、例えば、Re−M−Cu−0
系酸化物(但し、Reは少なくとも一種の希土類元素、
Mは少なくとも一種のアルカリ土金属を表す。)からな
る超伝導体は、原料粉末を所定の割合で配合した混合粉
末を自然雰囲気中で仮焼し、その仮焼粉末を造粒して成
型した後、焼成し、得られた焼結体をアニール処理する
ことによって製造され、必要に応じて、電極の焼き付け
が行われている。
(Prior Art) Generally, oxide superconductors, such as Re-M-Cu-0
system oxide (however, Re is at least one rare earth element,
M represents at least one alkaline earth metal. ) is made by calcining a mixed powder of raw material powders in a predetermined ratio in a natural atmosphere, granulating the calcined powder, molding it, and then firing it to produce a sintered body. The electrodes are manufactured by annealing, and the electrodes are baked if necessary.

(発明が解決しようとする問題点) しかしながら、従来の方法では、超伝導体の特異な結晶
構造のため製造が困難で、不完全なものしか得られず、
しかも特性にバラツキを生じ易いという問題があった。
(Problems to be solved by the invention) However, with conventional methods, manufacturing is difficult due to the unique crystal structure of superconductors, and only incomplete products can be obtained.
Moreover, there was a problem that variations in characteristics were likely to occur.

この問題について研究した結果、従来の方法では、仮焼
、焼成、アニール処理、電極焼き付けなど総ての熱処理
が通常のセラミックスと同様、自然雰囲気中で行われる
ことに起因するものであることが明らかとなった。
As a result of researching this problem, it became clear that in conventional methods, all heat treatments such as calcination, firing, annealing, and electrode baking are performed in a natural atmosphere, just like in ordinary ceramics. It became.

従って、本発明は、安定した高特性の酸化物超伝導体を
製造することができる方法を得ることを目的とするもの
である。
Therefore, an object of the present invention is to obtain a method capable of producing an oxide superconductor with stable and high properties.

(問題点を解決するための手段) 本発明は、前記問題点を解決するための手段として、少
なくとも焼成処理とアニール処理とを含む複数の熱処理
工程からなる高温超伝導体の製造方法において、前記焼
成も理とアニール処理とをそれぞれ雰囲気中の酸素分圧
が自然雰囲気中よりも高い高酸素分圧下で行うようにし
たものである。
(Means for Solving the Problems) As a means for solving the problems described above, the present invention provides a method for producing a high temperature superconductor comprising a plurality of heat treatment steps including at least a calcination treatment and an annealing treatment. The firing process and annealing process are each performed under a high oxygen partial pressure in the atmosphere, which is higher than that in the natural atmosphere.

また、超伝導体には、必要に応じて、電極が形成される
が、この場合、電極焼き付け処理は雰囲気中の酸素分圧
が自然雰囲気中よりも高い高酸素分圧下で行うのが好適
である。
In addition, electrodes are formed on the superconductor as necessary, but in this case, it is preferable to perform the electrode baking process under a high oxygen partial pressure in the atmosphere, where the oxygen partial pressure is higher than that in the natural atmosphere. be.

さらに、予め仮焼された粉末を原料として使用する場合
は、仮焼工程は不要であるが、原料として酸化物、炭酸
塩その他熱処理によって酸化物となる化合物を使用する
場合、原料粉末の仮焼が行われる。この場合、仮焼工程
は自然雰囲気で行っても良いが、雰囲気中の酸素分圧が
自然雰囲気中よりも高い高酸素分圧下で行うのが好適で
ある。
Furthermore, if a pre-calcined powder is used as a raw material, the calcination step is not necessary, but if an oxide, carbonate, or other compound that becomes an oxide through heat treatment is used as a raw material, the calcination process of the raw material powder is not necessary. will be held. In this case, the calcination step may be performed in a natural atmosphere, but it is preferably performed under a high oxygen partial pressure where the oxygen partial pressure in the atmosphere is higher than that in the natural atmosphere.

また、本発明方法においては、熱あ理工程のうち少なく
とも焼成工程とアニール処理は酸素分圧が自然雰囲気中
よりも高い雰囲気、即ち、酸素分圧が0 、2気圧、好
ましくは0.3気圧を越える雰囲気中で行われるが、す
べての工程を酸素分圧が1.0、即ち、純酸素雰囲気中
で行うのが好適である。
In addition, in the method of the present invention, at least the firing step and the annealing treatment in the heat treatment step are performed in an atmosphere where the oxygen partial pressure is higher than that in the natural atmosphere, that is, the oxygen partial pressure is 0.2 atm, preferably 0.3 atm. However, it is preferable that all steps be performed in an atmosphere with an oxygen partial pressure of 1.0, that is, in a pure oxygen atmosphere.

熱処理炉としては、雰囲気制御を行うことができるもの
であれば、バッチ炉、管状炉、加圧炉など任意の炉を用
いることができる。
As the heat treatment furnace, any furnace such as a batch furnace, a tube furnace, a pressure furnace, etc. can be used as long as the atmosphere can be controlled.

前記高温超伝導体としては、Re−M−Cu−0系酸化
物(但し、Reは少なくとも一種の希土類元素、Mは少
なくとも一種のアルカリ土金属を表す。)からなる超伝
導体、具体的には、例えば、YBa、Cu、07−、が
代表的なものとして挙げられる。
The high-temperature superconductor is a superconductor made of a Re-M-Cu-0-based oxide (where Re represents at least one rare earth element and M represents at least one alkaline earth metal), specifically Typical examples include YBa, Cu, and 07-.

(作用) 本発明に従い酸化物超伝導体の製造工程に於ける熱処理
工程のうち、焼成処理とアニール処理とをそれぞれ雰囲
気中の酸素分圧が自然雰囲気中よりも高い高酸素分圧下
で行うと、焼結性を向上させ、密度および機械的強度を
向上させる。
(Function) According to the present invention, among the heat treatment steps in the manufacturing process of an oxide superconductor, the calcination treatment and the annealing treatment are each performed under a high oxygen partial pressure in the atmosphere where the oxygen partial pressure is higher than that in the natural atmosphere. , improve sinterability, improve density and mechanical strength.

(実施例) 原料としてY2O3、BaCo3およびCuOの粉末を
用い、これらの原料粉末をY:Ba:Cu−1:2:3
の割合になるように秤量して混合し、その原料粉末混合
物をアルミナ製のさやに入れ、雰囲気制御のできるバッ
チ炉を用いて、酸素と窒素からなる高酸素雰囲気中(酸
素分圧1気圧)、900℃で40時間仮焼し、粉砕した
(Example) Using powders of Y2O3, BaCo3 and CuO as raw materials, these raw powders were mixed into Y:Ba:Cu-1:2:3
Weigh and mix the raw material powder mixture in a proportion of , calcined at 900°C for 40 hours, and pulverized.

次いで、仮焼粉末に少量の有機バインダを加えて造粒し
たのち、2X0.7XO,l (c+*)の大きさに成
型し、アルミナ製のさやに入れ、前記バッチ式炉を用い
て純酸素のみからなる酸素雰囲気中(圧力1気圧)、9
40℃で10時間焼成し、この焼結体を焼成処理と同じ
酸素雰囲気中(圧力1気圧)、940℃〜室温まで降温
速度は1℃/分で5時間アニール処理して酸化物超伝導
体を得た。
Next, after adding a small amount of organic binder to the calcined powder and granulating it, it is molded into a size of 2X0.7XO,l (c++), placed in an alumina sheath, and heated with pure oxygen using the batch furnace. In an oxygen atmosphere consisting of only (pressure 1 atm), 9
The sintered body was fired at 40°C for 10 hours, and the sintered body was annealed in the same oxygen atmosphere as the firing process (pressure 1 atm) from 940°C to room temperature at a cooling rate of 1°C/min for 5 hours to form an oxide superconductor. I got it.

この酸化物超伝導体に導電性ペーストを塗布した後、乾
燥させ、酸素雰囲気中(圧力1気圧)、450℃で焼き
付けて、Ag電極を形成して試料とした。
After applying a conductive paste to this oxide superconductor, it was dried and baked at 450° C. in an oxygen atmosphere (pressure of 1 atm) to form an Ag electrode and use it as a sample.

(比較例) 実施例で調製した原料粉末をアルミナ製のさやに入れ、
バッチ式炉を用いて、自然雰囲気中900℃で40時間
仮焼し、この仮焼粉末を熱処理雰囲気を自然雰囲気とし
た以外は、実施例と全く同じ条件下で焼成、アニール処
理、および電極焼き。
(Comparative example) The raw material powder prepared in the example was placed in an alumina sheath,
The calcined powder was calcined at 900°C for 40 hours in a natural atmosphere using a batch furnace, and the calcined powder was subjected to firing, annealing, and electrode baking under the same conditions as in the example except that the natural atmosphere was used as the heat treatment atmosphere. .

付けを行い、試料とした。It was used as a sample.

前記実施例および比較例で得た酸素雰囲気超伝導体の各
試料について、物理的性質および電気的性質を測定した
。それらの結果を第1表に示す。
The physical properties and electrical properties of each sample of the oxygen atmosphere superconductor obtained in the Examples and Comparative Examples were measured. The results are shown in Table 1.

密度(g/am”)       6 、1     
5 、7抗折強度(kg/cm”) 1.OX 10’
  3.5X 10”収縮率(%)       17
     12臨界温度(K)       91  
   91転移源度域(K)       1    
  4臨界電流密度(A/mリ  120     7
0第1表の結果から明らかなように、実施例のものは、
比較例のものに比べ、密度および機械的強度が著しく向
上し、これが臨界温度および臨界電流値に多大の影響を
及ぼしている。即ち、本発明に係る超伝導体は、抵抗が
低下し始めるオンセット温度(T、、)から抵抗が0に
なるゼロ抵抗温度(Tc、)に至る転移温度域がIKと
著しく狭くなり、また臨界電流密度も120A/m”と
比較例のものの約1.7倍に向上している。
Density (g/am”) 6, 1
5, 7 Flexural strength (kg/cm") 1.OX 10'
3.5X 10” Shrinkage rate (%) 17
12 Critical temperature (K) 91
91 Metastatic source area (K) 1
4 Critical current density (A/mri 120 7
0 As is clear from the results in Table 1, the examples are as follows:
Compared to the comparative example, the density and mechanical strength are significantly improved, and this has a great effect on the critical temperature and critical current value. That is, in the superconductor according to the present invention, the transition temperature range from the onset temperature (T, ) at which the resistance begins to decrease to the zero resistance temperature (Tc,) at which the resistance becomes zero is significantly narrower than IK, and The critical current density was also improved to 120 A/m'', about 1.7 times that of the comparative example.

(発明の効果) 以上説明したように、本発明によれば、安定した高特性
の酸化物超伝導体を容易に製造でき、同じ原料を用いて
も臨界温度および臨界電流密度を向上させることができ
るなど、優れた効果が得られる。
(Effects of the Invention) As explained above, according to the present invention, it is possible to easily produce an oxide superconductor with stable and high characteristics, and it is possible to improve the critical temperature and critical current density even using the same raw materials. You can get excellent results such as:

特許出願人 株式会社 村田製作所Patent applicant: Murata Manufacturing Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] (1)少なくとも焼成処理とアニール処理とを含む複数
の熱処理工程からなる高温超伝導体の製造方法において
、前記焼成処理とアニール処理とをそれぞれ雰囲気中の
酸素分圧が自然雰囲気中よりも高い高酸素分圧下で行う
ことを特徴とする高温超伝導体の製造方法。
(1) In a method for manufacturing a high-temperature superconductor that includes a plurality of heat treatment steps including at least a calcination treatment and an annealing treatment, each of the calcination treatment and annealing treatment is performed at a temperature where the oxygen partial pressure in the atmosphere is higher than that in the natural atmosphere. A method for producing a high-temperature superconductor characterized by carrying out under oxygen partial pressure.
(2)前記熱処理工程が電極焼き付け工程を含み、該電
極焼き付け処理を雰囲気中の酸素分圧が自然雰囲気中よ
りも高い高酸素分圧下で行うことを特徴とする特許請求
の範囲第1項記載の方法。
(2) The heat treatment process includes an electrode baking process, and the electrode baking process is performed under a high oxygen partial pressure in the atmosphere that is higher than that in the natural atmosphere. the method of.
(3)前記熱処理工程が原料粉末を仮焼する仮焼工程を
含み、該仮焼工程を雰囲気中の酸素分圧が自然雰囲気中
よりも高い高酸素分圧下で行うことを特徴とする特許請
求の範囲第1項または第2項記載の方法。
(3) A patent claim characterized in that the heat treatment step includes a calcination step of calcining the raw material powder, and the calcination step is performed under a high oxygen partial pressure in the atmosphere where the oxygen partial pressure is higher than that in the natural atmosphere. The method according to item 1 or 2.
(4)前記熱処理工程の雰囲気中の酸素分圧が1である
特許請求の範囲第1項〜第3項のいづれか一項記載の方
法。
(4) The method according to any one of claims 1 to 3, wherein the oxygen partial pressure in the atmosphere in the heat treatment step is 1.
(5)前記高温超伝導体がRe−M−Cu−O系酸化物
(但し、Reは少なくとも一種の希土類元素、Mは少な
くとも一種のアルカリ土類金属を表す。)からなる超伝
導体である特許請求の範囲第1項〜第4項のいづれか一
項記載の方法。
(5) The high-temperature superconductor is a superconductor made of a Re-M-Cu-O-based oxide (where Re represents at least one rare earth element and M represents at least one alkaline earth metal). A method according to any one of claims 1 to 4.
JP62334033A 1987-12-29 1987-12-29 Production of high-temperature superconductor Pending JPH01176268A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62334033A JPH01176268A (en) 1987-12-29 1987-12-29 Production of high-temperature superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62334033A JPH01176268A (en) 1987-12-29 1987-12-29 Production of high-temperature superconductor

Publications (1)

Publication Number Publication Date
JPH01176268A true JPH01176268A (en) 1989-07-12

Family

ID=18272750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62334033A Pending JPH01176268A (en) 1987-12-29 1987-12-29 Production of high-temperature superconductor

Country Status (1)

Country Link
JP (1) JPH01176268A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010190300A (en) * 2009-02-17 2010-09-02 Mitsubishi Cable Ind Ltd Rotary shaft seal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010190300A (en) * 2009-02-17 2010-09-02 Mitsubishi Cable Ind Ltd Rotary shaft seal

Similar Documents

Publication Publication Date Title
JPH0780710B2 (en) Manufacturing method of oxide high temperature superconductor
JPH01176268A (en) Production of high-temperature superconductor
JPH0251468A (en) Production of yttrium-barium-copper oxide powder and superconducting yttrium-barium-copper oxide sintered body
KR910004862B1 (en) Target material for forming superconductive film
KR940007596B1 (en) Manufacturing method of superconducting ceramic
JPH01257160A (en) High density oxide superconducting sintered body and sintering method therefor
JP2969221B2 (en) Manufacturing method of oxide superconductor
JP2634187B2 (en) Method for producing thallium-based oxide superconductor
KR950007088B1 (en) Bi-sr-ca-cu-o section target for superconductive thin film
JP3285646B2 (en) Manufacturing method of oxide superconducting structure
JPH0518778B2 (en)
JPH02120227A (en) Production of bi-based oxide superconductor
JP3314102B2 (en) Manufacturing method of oxide superconductor
JP3164640B2 (en) Manufacturing method of oxide superconductor
JPH0431355A (en) Production of superconductive ceramics
JPH05229823A (en) Production of oxide superconducting material
JPH0431371A (en) Production of oxide superconductor
JPH01119555A (en) Production of ceramic superconducting material
JPH054803A (en) Production of oxide superconductive structure
JPH0574545B2 (en)
JPH01176270A (en) Production of oxide superconducting molding
JPH01183450A (en) Production of formed oxide superconductor
JPS63277575A (en) Production of formed article of oxide superconductor
JPH0280304A (en) Production of oxide superconducting material
JPH04243955A (en) Production of oxide superconductor