JPH01317123A - Production of oxide superconductor - Google Patents

Production of oxide superconductor

Info

Publication number
JPH01317123A
JPH01317123A JP63148093A JP14809388A JPH01317123A JP H01317123 A JPH01317123 A JP H01317123A JP 63148093 A JP63148093 A JP 63148093A JP 14809388 A JP14809388 A JP 14809388A JP H01317123 A JPH01317123 A JP H01317123A
Authority
JP
Japan
Prior art keywords
hour
oxide superconductor
bismuth
mixed
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63148093A
Other languages
Japanese (ja)
Inventor
Shoichi Iwanaga
昭一 岩永
Takayoshi Sowa
曽和 孝義
Naoya Isada
尚哉 諌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63148093A priority Critical patent/JPH01317123A/en
Publication of JPH01317123A publication Critical patent/JPH01317123A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To improve uniformity of composition and structure in all over the texture and increase critical temperature of superconduction by using organic metal complex of Bi such as trimethyl-Bi or Bi-alkoxide as a raw material of Bi. CONSTITUTION:For instance, SrCOS, CaCO3 and CuO are mixed in the ratio of about 1:2:2 at the amount of metals and ethyl alcohol is added as a dispersing medium, then crushed in wet state. Next, (CH3)3Bi is added so as the ratio of amount of metal of Bi, Sr, Ca and Cu to about 2:1:2:2 and mixed. Said mixture is baked in oxygen atmosphere at about 250 deg.C for 5 hour to obtain an oxide, then further baked at about 750 deg.C for 4 hour to obtain calcined powdery superconductor. Next, said calcined powder is crushed by a mill for about 4 hour and press molded. Then said molded material is baked at about 880 deg.C for about 10 hour in air.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は酸化物超伝導体の製造方法に係り、特に、超伝
導コイル、超伝導厚膜、超伝導テープ等の製造に好適な
焼結法を用いた酸化物超伝導体の製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing an oxide superconductor, and in particular, a sintering method suitable for producing superconducting coils, superconducting thick films, superconducting tapes, etc. This invention relates to a method for manufacturing oxide superconductors using a method.

〔従来の技術〕[Conventional technology]

従来、Bi2(Ca、Sr)3Cu20xあるいはBi
1(Ca1Sr)2Cu10で代表されるBi−Ca−
3r−Cu−0系高温超伝導物質の製造は焼結法で行わ
れている。すなわち、Bi2O3+ SrCO5、Ca
CO3からなる原料粉末をらいかい機あるいはボールミ
で混合し、焼結炉で仮焼成した。しかる後、再度ボール
ミルあるいはらいかい機で粉砕し、プレス成形機を用い
て圧粉体に成形した後、焼結炉で酸素雰囲気中で焼成し
て、Bi−Ca−Sr−Cu−0系高温超伝導物質を製
造していた。
Conventionally, Bi2(Ca,Sr)3Cu20x or Bi
Bi-Ca- represented by 1(Ca1Sr)2Cu10
3r-Cu-0-based high-temperature superconducting materials are manufactured by a sintering method. That is, Bi2O3+ SrCO5, Ca
Raw material powder consisting of CO3 was mixed in a sintering machine or a ball mill, and pre-sintered in a sintering furnace. After that, it is crushed again using a ball mill or a grinder, and then formed into a green compact using a press molding machine, and then fired in an oxygen atmosphere in a sintering furnace to form a high-temperature Bi-Ca-Sr-Cu-0 system. They were manufacturing superconducting materials.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は粉末をボールミルあるいはらいかい機で
混合するため必らずしも均一に混合する□ことができず
、最終的に得られる超伝導物質の組成が不均一となり、
超伝導現象の臨界温度が低下するのみならず、いわゆる
オンセット温度とエンドポイント温度の差が拡がるとい
う欠点がある。
In the above-mentioned conventional technology, the powder is mixed using a ball mill or a sieve machine, so it is not always possible to mix the powder uniformly, resulting in non-uniform composition of the superconducting material finally obtained.
The disadvantage is that not only the critical temperature for superconducting phenomena decreases, but also the difference between the so-called onset temperature and the end point temperature widens.

本発明の目的は超伝導物質の組織全体にわたって組成、
構造が均一な酸化物超伝導体の製造方法を提供すること
にある。
The purpose of the present invention is to improve the composition of superconducting materials throughout their structure.
An object of the present invention is to provide a method for producing an oxide superconductor having a uniform structure.

〔課題嶌を解決するための手段〕[Means to solve the problem]

上記目的はBi2O5+ SrCO5+ CaCO3+
CuOからなる原料粉末のうち、Bi2O5にビスマス
有機金属錯体、例えば、トリメチルビスマス(CH3)
5Bi+ ビスマスアルコキシドを用いて、分散媒とし
てアルコールを用いて、残りの原料粉末ととも忙湿式混
合することによって達成される。
The above purpose is Bi2O5+ SrCO5+ CaCO3+
Among the raw material powders made of CuO, bismuth organometallic complexes such as trimethyl bismuth (CH3) are added to Bi2O5.
This is achieved by using 5Bi+ bismuth alkoxide and wet-mixing it with the remaining raw material powder using alcohol as a dispersion medium.

〔作用〕[Effect]

ビスマスを含む有機金属錯体は液体であるため、分散媒
として例えばアルコールを用いて湿式温合することによ
り、該有機金属錯体は残りの酸化物表面に均一付着する
。該混合物を乾燥した後、酸素雰囲気中で焼成すると、
該ビスマス有機金属錯体はBi2O5に変化するが、B
i2O3は残りの酸化物に比べて融点が低いため焼結の
初期過程すなわち初期の固相反応の進行を支配する。
Since the organometallic complex containing bismuth is a liquid, the organometallic complex uniformly adheres to the remaining oxide surface by wet heating using, for example, alcohol as a dispersion medium. After drying the mixture, when it is fired in an oxygen atmosphere,
The bismuth organometallic complex changes to Bi2O5, but B
Since i2O3 has a lower melting point than the remaining oxides, it dominates the initial process of sintering, that is, the progress of the initial solid phase reaction.

このときBi2O5が残りの酸化物の表面に均一に分散
されているため、Bi2Cl3が液相となって焼結にと
もなう固相反応が均一に進み、組成が−様な目的とする
組成のみを有する酸化物超伝導体が得られる。
At this time, since Bi2O5 is uniformly dispersed on the surface of the remaining oxide, Bi2Cl3 becomes a liquid phase and the solid phase reaction accompanying sintering proceeds uniformly, resulting in only the desired composition such as -. An oxide superconductor is obtained.

このため、超伝導現象を示す臨界温度が高くなるのみな
らず、いわゆるオンセット温度とエンドポイント温度の
差が小さくなり、特性のすぐれた超伝導体となる。
For this reason, not only does the critical temperature exhibiting the superconducting phenomenon become high, but the difference between the so-called onset temperature and the end point temperature becomes small, resulting in a superconductor with excellent properties.

〔実施例〕〔Example〕

以下本発明の一実施例を図面により説明する。 An embodiment of the present invention will be described below with reference to the drawings.

す々わち、SrCO5、CaCO3、CuOの原料粉末
を用いて金属量1:2:2となる割合で秤量し、これに
分散媒としてエチルアルコールを加え、ボールミルで8
時間混合した。さらにBi.S r + Cm HCu
が金属量で2:1:2:2となるように液体のトリメチ
ルビスマスを加え、2時間混合した。
That is, raw material powders of SrCO5, CaCO3, and CuO were weighed in a metal amount ratio of 1:2:2, ethyl alcohol was added as a dispersion medium, and 8% was mixed in a ball mill.
Mixed for an hour. Furthermore, Bi. S r + Cm HCu
Liquid trimethyl bismuth was added so that the metal content was 2:1:2:2, and the mixture was mixed for 2 hours.

しかるのち分散媒を蒸発せしめ、この混合物を02雰囲
気中で250℃で5時間焼成してトリメチルビスマス(
CH3)5Biを酸化ビスマスBi2O5に変え、さら
に、750℃で4時間焼成して酸化物超伝導体の仮焼粉
を得た。
Thereafter, the dispersion medium was evaporated, and the mixture was calcined at 250°C for 5 hours in an 02 atmosphere to obtain trimethyl bismuth (
CH3)5Bi was changed to bismuth oxide Bi2O5, and further calcined at 750°C for 4 hours to obtain a calcined powder of an oxide superconductor.

この仮焼粉をらいかい機で4時間粉砕し、プレス成形機
で圧粉体を成形した後、焼結炉を用いて空気中で880
℃で10時間焼成してBi2(SrCa)3Cu20x
酸化物超伝導体を得た。
This calcined powder was pulverized for 4 hours using a grinder, and after being formed into a green compact using a press molding machine, it was heated to 880°C in air using a sintering furnace.
Bi2(SrCa)3Cu20x by firing at ℃ for 10 hours
An oxide superconductor was obtained.

該物質について抵抗率の温度依存性を測定した結果、第
1図1に示すよう忙超伝導現象を呈する臨界温度は1o
2に、tたオンセット温度とエンドポイント温度の差は
5にであった。
As a result of measuring the temperature dependence of resistivity of this material, the critical temperature at which busy superconductivity occurs is 1o, as shown in Figure 1.
2, the difference between the onset temperature and the endpoint temperature was 5.

一方、ビスマス原料として酸化物を用いた従来の焼結法
で、該B i−Sr−Ca−Cu−0系超伝導物質を製
造した場合、すなわち、Bi2O3+ SrCO5゜C
aCO3+CuOの原料粉末を用い、金属量で2:1:
2:2の割合になるように秤量し、分散媒としてエチル
アルコールを加え、8時間混合した。
On the other hand, when the Bi-Sr-Ca-Cu-0 based superconducting material is produced by a conventional sintering method using an oxide as a bismuth raw material, that is, Bi2O3+ SrCO5°C
Using raw material powder of aCO3+CuO, the metal content is 2:1:
The mixture was weighed so that the ratio was 2:2, ethyl alcohol was added as a dispersion medium, and the mixture was mixed for 8 hours.

しかるのち分散媒を蒸発せしめ、この混合物を焼成炉で
750℃、4時間焼成し、酸化物超伝導物質の仮焼粉を
得た。この仮焼粉を実施例と同様にらいかい機で4時間
粉砕し、プレス成形機で成形した後、焼成炉を用いて空
気中で850℃で10時間焼成し、酸化物超伝導物質を
得た。
Thereafter, the dispersion medium was evaporated, and the mixture was fired in a firing furnace at 750°C for 4 hours to obtain a calcined powder of oxide superconducting material. This calcined powder was pulverized for 4 hours using a milling machine in the same manner as in the example, then molded using a press molding machine, and then calcined in air at 850°C for 10 hours using a sintering furnace to obtain an oxide superconducting material. Ta.

該物質は第1図2に示すように臨界温度70にであり、
オンセット温度とエンドポイント温度の差は30にで実
施例に比べ太幅に特性が低下している。
The material is at a critical temperature of 70 as shown in FIG.
The difference between the onset temperature and the end point temperature is 30, and the characteristics are significantly lower than in the example.

本発明の他の実施例を説明する。すなわち、SrCO5
+  Ca(103、CuOの原料粉末を用いて金属量
で1:2:2とガる割合で秤量し、これに分散媒として
エチルアルコールを加え、ボールミルで8時間混合した
。さらに金属量でBi : Sr  :Ca:C:uが
2:1:2:2となるように液体のビスマスアルコキシ
ドを加え、2時間混合した。
Other embodiments of the present invention will be described. That is, SrCO5
+ Ca(103, CuO raw material powder was weighed at a ratio of 1:2:2 in terms of metal content, ethyl alcohol was added as a dispersion medium, and mixed for 8 hours in a ball mill.Furthermore, Bi Liquid bismuth alkoxide was added so that the ratio of :Sr:Ca:C:u was 2:1:2:2, and the mixture was mixed for 2 hours.

しかるのち、分散媒を蒸発せしめ、この混合物を02雰
囲気中で500℃で5時間焼成してビスマスアルコキシ
ドを酸化ビスマスに変え、さらに、800℃で4時間焼
成してBi2(SrCa)3Cu202の酸化物超伝導
体の仮焼粉を得た。
Thereafter, the dispersion medium was evaporated, and the mixture was calcined at 500°C for 5 hours in an 02 atmosphere to change the bismuth alkoxide to bismuth oxide, and further calcined at 800°C for 4 hours to form an oxide of Bi2(SrCa)3Cu202. A superconductor calcined powder was obtained.

との仮焼粉をらいかい機で4時間粉砕し、プレス成形機
で圧粉体を成形した後、焼結炉を用いて酸素雰囲気中で
870℃で数日間焼成して、Bi2(Sr、Ca)5C
u20xの酸化物超伝導物質を得た。
The calcined powder of Bi2(Sr, Ca)5C
A u20x oxide superconducting material was obtained.

該物質について抵抗率の温度依存性を測定した結果、オ
ンセット温度的95に1工ンドポイント温度88Kを得
た。
As a result of measuring the temperature dependence of the resistivity of the material, an onset temperature of 95 and a one-step point temperature of 88K were obtained.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、組織全体にわたって組成、構造の均一
な酸化物超伝導体が得られるので超伝導現象の臨界温度
が高くなり、液体窒素温度で動作できる。
According to the present invention, since an oxide superconductor having a uniform composition and structure can be obtained throughout the structure, the critical temperature for superconductivity phenomenon becomes high, and operation can be performed at liquid nitrogen temperature.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明および従来の焼結法で製造したBi2(
Sr、C:a)3Cu20x酸化物超伝導体の抵抗率の
温度依存性を示す図。
Figure 1 shows Bi2(
Sr, C:a) A diagram showing the temperature dependence of resistivity of a 3Cu20x oxide superconductor.

Claims (1)

【特許請求の範囲】 1、Bi−Sr−Ca−Cu−O系酸化物超伝導体の製
造において、Bi原料にビスマスの有機金属錯体を用い
たことを特徴とする酸化物超伝導体の製造方法。 2、請求項1記載において有機金属錯体としてトリメチ
ルビスマスを用いたことを特徴とする酸化物超伝導体の
製造方法。 3、請求項1記載において有機金属錯体としてトリエチ
ルビスマスを用いたことを特徴とする酸化物超伝導体の
製造方法。 4、請求項1記載において有機金属錯体としてビスマス
アルコキシドを用いたことを特徴とする酸化物超伝導体
の製造方法。 5、請求項1記載においてSr−Ca−Cu−Oの構成
原料をあらかじめ湿式混合した泥にビスマス有機金属錯
体を加えることを特徴とする酸化物超伝導体の製造方法
[Claims] 1. Production of an oxide superconductor characterized in that a bismuth organometallic complex is used as a Bi raw material in the production of a Bi-Sr-Ca-Cu-O based oxide superconductor. Method. 2. A method for producing an oxide superconductor according to claim 1, characterized in that trimethylbismuth is used as the organometallic complex. 3. A method for producing an oxide superconductor according to claim 1, characterized in that triethyl bismuth is used as the organometallic complex. 4. A method for producing an oxide superconductor according to claim 1, characterized in that bismuth alkoxide is used as the organometallic complex. 5. A method for producing an oxide superconductor according to claim 1, characterized in that the bismuth organometallic complex is added to the mud in which Sr-Ca-Cu-O constituent raw materials are wet-mixed in advance.
JP63148093A 1988-06-17 1988-06-17 Production of oxide superconductor Pending JPH01317123A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63148093A JPH01317123A (en) 1988-06-17 1988-06-17 Production of oxide superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63148093A JPH01317123A (en) 1988-06-17 1988-06-17 Production of oxide superconductor

Publications (1)

Publication Number Publication Date
JPH01317123A true JPH01317123A (en) 1989-12-21

Family

ID=15445082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63148093A Pending JPH01317123A (en) 1988-06-17 1988-06-17 Production of oxide superconductor

Country Status (1)

Country Link
JP (1) JPH01317123A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02296728A (en) * 1989-05-12 1990-12-07 Shoei Chem Ind Co Manufacture of oxide superconductor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02296728A (en) * 1989-05-12 1990-12-07 Shoei Chem Ind Co Manufacture of oxide superconductor

Similar Documents

Publication Publication Date Title
EP0302308B1 (en) Method for producing superconducting material
JPH01317123A (en) Production of oxide superconductor
JP2817048B2 (en) Method for producing Bi-Sr-Ca-Cu-O-based superconducting film by screen printing
JPH0345301A (en) Manufacture of oxide superconductive tape wire
JP2803823B2 (en) Method for producing T1-based oxide superconductor
JP3461654B2 (en) Manufacturing method of oxide superconductor
JP2634187B2 (en) Method for producing thallium-based oxide superconductor
JP2866484B2 (en) Manufacturing method of oxide superconductor
JP3338461B2 (en) Oxide superconductor and manufacturing method thereof
KR950007088B1 (en) Bi-sr-ca-cu-o section target for superconductive thin film
JPH05229823A (en) Production of oxide superconducting material
JPH03115159A (en) Production of bi-based superconductor
JP2632543B2 (en) Method for producing Bi-Sr-Ca-Cu-O-based superconductor
JPH01160861A (en) Anisotropic growth of superconducting ceramic
JPH01172208A (en) High density oxide superconducting material and its production
JPH01201060A (en) Production of superconductor
JPH02248321A (en) Oxide superconductor
JPH01176268A (en) Production of high-temperature superconductor
JP2000344525A (en) Bismuth based oxide superconducting body and calcined powder for manufacturing the same
JPH0196988A (en) Forming method for superconducting wiring
JPH07300314A (en) Preform of oxide superconductor powder and production of oxide superconducting material using said preform
JPH0259466A (en) Oxide superconducting sintered body
JPS63285811A (en) Manufacture of oxide superconductor heavy membrane
JPH01119555A (en) Production of ceramic superconducting material
JPH01131075A (en) Production of superconducting substance