JPH01131075A - Production of superconducting substance - Google Patents
Production of superconducting substanceInfo
- Publication number
- JPH01131075A JPH01131075A JP62288777A JP28877787A JPH01131075A JP H01131075 A JPH01131075 A JP H01131075A JP 62288777 A JP62288777 A JP 62288777A JP 28877787 A JP28877787 A JP 28877787A JP H01131075 A JPH01131075 A JP H01131075A
- Authority
- JP
- Japan
- Prior art keywords
- superconducting
- cooling
- raw material
- manufacturing
- rate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 17
- 239000000126 substance Substances 0.000 title abstract description 7
- 238000001816 cooling Methods 0.000 claims abstract description 32
- 239000002994 raw material Substances 0.000 claims abstract description 19
- 239000000843 powder Substances 0.000 claims abstract description 17
- 238000005245 sintering Methods 0.000 claims abstract description 13
- 239000000203 mixture Substances 0.000 claims abstract description 11
- 238000010298 pulverizing process Methods 0.000 claims abstract 3
- 239000000463 material Substances 0.000 claims description 25
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 claims description 11
- 238000002156 mixing Methods 0.000 claims description 9
- 239000005751 Copper oxide Substances 0.000 claims description 6
- 229910000431 copper oxide Inorganic materials 0.000 claims description 6
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 claims description 6
- AYJRCSIUFZENHW-DEQYMQKBSA-L barium(2+);oxomethanediolate Chemical compound [Ba+2].[O-][14C]([O-])=O AYJRCSIUFZENHW-DEQYMQKBSA-L 0.000 claims description 4
- 238000001354 calcination Methods 0.000 claims description 4
- 238000000465 moulding Methods 0.000 claims description 4
- 239000010949 copper Substances 0.000 claims description 3
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 claims description 3
- 229910052788 barium Inorganic materials 0.000 claims description 2
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 238000010586 diagram Methods 0.000 claims description 2
- BDAGIHXWWSANSR-NJFSPNSNSA-N hydroxyformaldehyde Chemical compound O[14CH]=O BDAGIHXWWSANSR-NJFSPNSNSA-N 0.000 claims description 2
- 229910000018 strontium carbonate Inorganic materials 0.000 claims description 2
- 229910052727 yttrium Inorganic materials 0.000 claims description 2
- AYJRCSIUFZENHW-UHFFFAOYSA-L barium carbonate Chemical compound [Ba+2].[O-]C([O-])=O AYJRCSIUFZENHW-UHFFFAOYSA-L 0.000 claims 2
- 239000011812 mixed powder Substances 0.000 claims 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 claims 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical group [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 7
- 239000013078 crystal Substances 0.000 abstract description 2
- 239000002887 superconductor Substances 0.000 abstract description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 14
- 238000001035 drying Methods 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 239000008188 pellet Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000011282 treatment Methods 0.000 description 2
- 229910009203 Y-Ba-Cu-O Inorganic materials 0.000 description 1
- 238000007605 air drying Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は超電導物質の製法に関し、更に詳しくは超電導
物質の従来の製法の改良に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing superconducting materials, and more particularly to improvements in conventional methods for producing superconducting materials.
周知の通り超電導物質の新しい研究が現在盛んに行われ
ており、超電導物質としてもY −Ba−Cu−O系、
La5r−CuO系、La−Ba−Cu−0系等の物質
がすでに知られている。特にY−Ba−Cu−O系超電
導物質は研究が進んでおり、実用化に向けての研究が盛
んに行われている現状にある。As is well known, new research on superconducting materials is currently being actively conducted, and superconducting materials such as Y-Ba-Cu-O,
Substances such as La5r-CuO and La-Ba-Cu-0 are already known. In particular, research on Y--Ba--Cu--O based superconducting materials is progressing, and research toward practical use is currently being actively conducted.
これ等超電導物質の従来の通常の製法をY−Ba−Cu
−O系を代表例として示せば、第2図に示す通りである
。即ち先ず原料粉末、通常は酸化イツトリウム、酸化銅
、及び炭酸バリウムの各粉末を所定量混合する。混合に
際しては水分の共存を出来るだけ防ぐためにエタノール
の如きアルコールを添加して湿式混合する。乾燥後必要
に応し再度混合し、乾燥した後、加圧成形して通常粒状
またはペレット状となす。次いでこれを900℃前後で
仮焼し、冷却後粉砕し、該粉砕物を湿式混合する。次い
で乾燥後加圧成形し、焼結を行う。The conventional manufacturing method for these superconducting materials is Y-Ba-Cu.
A representative example of the -O system is shown in FIG. That is, first, raw material powders, usually powders of yttrium oxide, copper oxide, and barium carbonate, are mixed in predetermined amounts. During mixing, an alcohol such as ethanol is added and wet mixing is performed to prevent the coexistence of water as much as possible. After drying, the mixture is mixed again if necessary, and after drying, it is press-molded and usually made into granules or pellets. Next, this is calcined at around 900° C., cooled and pulverized, and the pulverized product is wet-mixed. Then, after drying, it is press-molded and sintered.
本発明者らは、従来からこの種超電導物質の製法につい
て鋭意研究を続けて来たが、この研究に於いてこの種超
電導物質を製造する際、特に焼結物を冷却する際の条件
の変動により得られる超電導物質の特性が大きく変化す
ることを見出した。The present inventors have been conducting intensive research on the manufacturing method of this type of superconducting material, and in this research, we have investigated the fluctuations in the conditions when manufacturing this type of superconducting material, especially when cooling the sintered material. We have found that the properties of the superconducting materials obtained by this method vary greatly.
従って本発明が解決しようとする問題点は、焼結物を冷
却する際の適正な冷却速度を設定し、惹いては超電導物
質の特性を向上せしめることである。Therefore, the problem to be solved by the present invention is to set an appropriate cooling rate when cooling a sintered product, thereby improving the properties of the superconducting material.
この問題点は焼結物を冷却するに際し、その冷却速度と
して焼結温度から400℃までの間を10〜b
/hr、特に好ましくは30〜b
ことにより解決される。This problem can be solved by cooling the sintered product at a cooling rate of 10 to 400°C, particularly preferably 30 to 400°C.
本発明に於いては焼結後の冷却に際し、焼結温度から4
00℃までの冷却帯に於いてその冷却速度を上記特定の
速度として冷却する。このような特定温度域に於いて、
特定の冷却速度で冷却することにより得られる超電導物
質の超電導特性が著しく優れたものとなる。In the present invention, when cooling after sintering, the sintering temperature is
In the cooling zone up to 00°C, the cooling rate is set to the above-mentioned specific rate. In such a specific temperature range,
By cooling at a specific cooling rate, the superconducting properties of the superconducting material obtained are significantly improved.
この際、上記冷却速度が10℃/hrに達しない場合に
は結晶構造に変化が生じ易く、惹いては優れた超電導特
性が得難くなる。また逆に200℃/hrより大きくな
ると、得られる超電導体に大きなりランクが生じ、惹い
てやはり超電導特性が低下する。At this time, if the cooling rate does not reach 10° C./hr, the crystal structure tends to change, making it difficult to obtain excellent superconducting properties. On the other hand, if the heating rate exceeds 200° C./hr, the superconductor obtained will have a large rank, which will lead to a decrease in superconducting properties.
またこのような特定の冷却速度で冷却する温度域は焼結
温度から400℃までの間であり、この温度域で上記冷
却速度で冷却することが必要である。向上記温度域で上
記冷却速度で冷却するかぎり、400℃よりも低い温度
域で上記冷却速度で冷却しても勿論良い。Further, the temperature range for cooling at such a specific cooling rate is from the sintering temperature to 400°C, and it is necessary to cool at the above-mentioned cooling rate in this temperature range. As long as cooling is performed at the above-mentioned cooling rate in the above-mentioned temperature range, it is of course possible to perform cooling at the above-mentioned cooling rate in a temperature range lower than 400°C.
以下に本発明法を工程順に説明する。The method of the present invention will be explained below in order of steps.
先ず原料粉末を調製する。原料としては、所望する超電
導物質の種類に応じて適宜に原料を選択する。たとえば
Y−Ba−CuO系の場合には酸化イツトリウム、炭酸
バリウム、酸化銅を使用し、またLa−3r−Cu−0
系の場合には酸化ランタン、炭酸ストロンチュウム、酸
化銅を使用する。またLa−Ba−Cu−0系の場合に
は酸化ランタン、炭酸バリウム、酸化銅を使用する。こ
れ等原料粉末は所望する組成配合比で混合するが、たと
えばY−Ba−Cu−0系の場合には得られる目的物超
電導物質の組成が第1図に示すようになるように予めこ
れ等原料を配合する。First, a raw material powder is prepared. The raw material is appropriately selected depending on the type of the desired superconducting substance. For example, in the case of Y-Ba-CuO, yttrium oxide, barium carbonate, copper oxide are used, and La-3r-Cu-0
For systems, lanthanum oxide, strontium carbonate, and copper oxide are used. In the case of La-Ba-Cu-0 type, lanthanum oxide, barium carbonate, and copper oxide are used. These raw material powders are mixed in a desired composition ratio. For example, in the case of Y-Ba-Cu-0 system, these powders are mixed in advance so that the composition of the target superconducting material obtained is as shown in Figure 1. Mix raw materials.
この原料粉末は次いで混合されるが、この際の混合は通
常湿式で行われ、水板外の液体たとえばエタノール等の
アルコールを加えて行う。その理由は、水の共存は望ま
しくないという理由に基づく。湿式混合物は自然乾燥で
も良く、また150℃前後以下の温度で加熱しても良い
。必要に応じてこの乾燥物に上記液体を加えて再度湿式
混合を繰返し行う。繰返し行うことにより各成分をより
均一に混合でき原料粉末の粒度を調整し、成形時の最適
充填粒度が得やすくなる効果がある。The raw material powders are then mixed, and this mixing is usually done in a wet manner by adding a liquid outside the water plate, such as an alcohol such as ethanol. The reason is that the coexistence of water is undesirable. The wet mixture may be air-dried or may be heated at a temperature of around 150° C. or lower. If necessary, the above-mentioned liquid is added to this dried product and wet mixing is repeated again. By repeating the process, each component can be mixed more uniformly, the particle size of the raw material powder can be adjusted, and the optimum filling particle size during molding can be easily obtained.
次いで上記原料粉末を加圧成形し、必要に応じ乾燥後成
形体を仮焼する。尚加圧成形に際しては原料粉末中のア
ルコール等を除去することが望ましくこのため通常乾燥
する。加圧成形は通常ペレソト状に成形するがその形状
は、ペレットに限定されるものではなく、仮焼し易い形
状であれば良い。ここに得た成形体を次いで仮焼する。Next, the raw material powder is pressure molded, and if necessary, after drying, the molded product is calcined. Note that during pressure molding, it is desirable to remove alcohol, etc. from the raw material powder, and for this reason, it is usually dried. Pressure molding is usually performed in the form of pellets, but the shape is not limited to pellets and may be any shape that can be easily calcined. The molded body obtained here is then calcined.
この仮焼は、高温下での反応拡散により各成分を分子レ
ベルで均一に混合する目的で行われ、使用する原料粉末
の種類並びに配合割合に応じて適宜に温度が決定され、
たとえばY−Ba−Cu−0系の場合は通常800℃以
上、好ましくは850〜950°C1特には900℃前
後が好ましい。仮焼の時間は温度にもよるが通常6〜4
8時間、好ましくは12〜24時間程度である。This calcination is performed for the purpose of uniformly mixing each component at the molecular level by reaction diffusion at high temperatures, and the temperature is determined as appropriate depending on the type and blending ratio of the raw material powder used.
For example, in the case of Y-Ba-Cu-0, the temperature is usually 800°C or higher, preferably 850 to 950°C, particularly around 900°C. The calcination time depends on the temperature, but is usually 6 to 4 minutes.
It is about 8 hours, preferably about 12 to 24 hours.
而して仮焼体は再度湿式粉砕される。この際使用される
液剤は水板外の通常アルコール系のものたとえばエタノ
ールが使用され、粉砕中に出来るだけ水分が吸着しない
状態で行われる。乾燥後焼結が行われる。焼結は適宜な
金型に粉砕物を充填し必要に応じ加圧しながら粉砕物を
焼結する。この際仮焼と異なり焼結することが必要で粉
砕物が充分に焼結される温度で行われる。The calcined body is then wet-pulverized again. The liquid agent used at this time is usually an alcohol-based agent other than water, such as ethanol, and the grinding is carried out in a state where as little moisture as possible is absorbed during the grinding. After drying, sintering is performed. For sintering, a suitable mold is filled with the pulverized material, and the pulverized material is sintered while applying pressure if necessary. At this time, unlike calcination, sintering is necessary and is carried out at a temperature at which the pulverized material is sufficiently sintered.
従って焼結温度は使用する原料の種類や配合量に応じて
適宜に決定される。焼結された後、冷却する。この冷却
に際しては前記した如く焼結温度から400℃までの温
度域で10〜b
という特定の冷却速度で冷却する。Therefore, the sintering temperature is appropriately determined depending on the type and amount of raw materials used. After being sintered, it is cooled. During this cooling, as described above, the material is cooled at a specific cooling rate of 10 to 400°C in the temperature range from the sintering temperature to 400°C.
以下に実施例を示して本発明の詳細な説明する。 The present invention will be described in detail below with reference to Examples.
実施例1〜3
Yl Ba2 C:u3 oll (但し。は6〜7
)の製造:純度99.9重量%以上のY2O3、BaC
O3、及びCuOを1.Q: 3.5: 2.1
(重量比)でエタノールの共存下に乳鉢で湿式混合し、
自然乾燥後金型に粉末を充填し、圧力100kg/c+
Jでハンドプレスを用いて10φ×5龍程度のペレット
に成形し、次いで900℃で24時間大気中で仮焼し、
炉冷した。得られた焼結物をエタノール中で粉砕し、こ
れを直ちに1ケ月間RHIO%以下の雰囲気に保存した
。その後鉄製金型を用い、減圧下510kg/cfの圧
力でペレット状(上記と同サイズ)に成形し、950℃
で24時間焼結した。次いで950℃〜500℃までを
第1表に示す所定の冷却速度で冷却し、その後自然冷却
した。このものの超電導特性を第1表に示す。Examples 1 to 3 Yl Ba2 C: u3 oll (However, 6 to 7
) Production: Y2O3, BaC with a purity of 99.9% by weight or more
O3 and CuO 1. Q: 3.5: 2.1
Wet mix in a mortar in the presence of ethanol (weight ratio),
After air drying, fill the mold with powder and press 100kg/c+
J using a hand press to form pellets of about 10φ x 5mm, then calcined in the air at 900°C for 24 hours,
Furnace cooled. The obtained sintered product was pulverized in ethanol and immediately stored in an atmosphere at RHIO% or less for one month. Then, using an iron mold, it was molded into pellets (same size as above) under reduced pressure at a pressure of 510 kg/cf, and heated to 950°C.
It was sintered for 24 hours. Next, it was cooled from 950°C to 500°C at a predetermined cooling rate shown in Table 1, and then allowed to cool naturally. The superconducting properties of this material are shown in Table 1.
実施例4〜6
YQ、3 Bao、7 Cu+ Oy (yは2〜3)
の製造:実施例1に於いて原料の配合比(重量比)をY
zC1+ :BaC0z :Cu0= 1. O
: 4. 1 :2.3とし、且つ焼結時の温度を90
0℃とし、その他は実施例1と同様に処理した。このも
のの超電導特性を第2表に示す。Examples 4-6 YQ, 3 Bao, 7 Cu+ Oy (y is 2-3)
Production: In Example 1, the blending ratio (weight ratio) of raw materials was changed to Y
zC1+ :BaC0z :Cu0=1. O
: 4. 1:2.3, and the temperature during sintering was 90
The temperature was 0° C., and the other conditions were the same as in Example 1. The superconducting properties of this material are shown in Table 2.
比較例1
上記実施例1に於いて冷却速度だけを第1表に示す速度
となし、その他はすべて実施例1と同様に処理した。こ
の結果を第1表に併記する。Comparative Example 1 In Example 1 above, only the cooling rate was changed to the rate shown in Table 1, and all other treatments were carried out in the same manner as in Example 1. The results are also listed in Table 1.
比較例2
上記実施例2に於いて冷却速度だけを第2表に示す速度
となし、その他は全て実施例2と同様に処理した。この
結果を第2表に併記する。Comparative Example 2 In Example 2 above, only the cooling rate was changed to the rate shown in Table 2, and all other treatments were carried out in the same manner as in Example 2. The results are also listed in Table 2.
但し第1表及び第2表中の超電導特性の測定方法は夫々
次の通りである。However, the methods for measuring the superconducting properties in Tables 1 and 2 are as follows, respectively.
臨界温度’ O,IA/cm2の電流密度下、液体窒素
で冷却しなから4端子法により電気抵
抗の温度による変化を測定し、x−y
レコーダーにおける電気抵抗値が0と
なった時の温度である。Under a current density of critical temperature 'O, IA/cm2, without cooling with liquid nitrogen, the change in electrical resistance due to temperature is measured by the four-probe method, and the temperature at which the electrical resistance value on the x-y recorder becomes 0 is measured. It is.
しn界電流密度:パワーリードと共に液体窒素で冷却し
ながら徐々に電流値をあげ、4端
子法によりTRドロップの電流による
変化を測定し、X−Yレコーダーにお
けるTRドロップが出現したときの電
流密度である。n-field current density: Gradually increase the current value while cooling the power lead with liquid nitrogen, measure the change in TR drop due to current using the 4-terminal method, and calculate the current density when the TR drop appears in the X-Y recorder. It is.
第1表 第2表Table 1 Table 2
第1図はY、Ba、及びCuの三成分組成図であり第2
図は従来の超電導物質の製法の一例を示すフローシート
である。
(以上)
特許出願人 三菱電線工業株式会社Figure 1 is a three-component composition diagram of Y, Ba, and Cu;
The figure is a flow sheet showing an example of a conventional method for manufacturing superconducting materials. (and above) Patent applicant Mitsubishi Cable Industries, Ltd.
Claims (8)
を粉砕した後成形し、ここに得た成形体を焼結し次いで
冷却して超電導物質を製造する方法に於いて上記焼結物
の冷却に際し、その冷却を焼結温度から400℃までの
間を10〜200℃/hrの速度で行うことを特徴とす
る超電導物質の製法。(1) In the method for producing a superconducting material by mixing specified raw material powders, calcining, pulverizing and molding the calcined body, sintering the molded body obtained here, and then cooling it, the above-mentioned 1. A method for producing a superconducting material, which comprises cooling a sintered product from a sintering temperature to 400°C at a rate of 10 to 200°C/hr.
ことを特徴とする特許請求の範囲第(1)項に記載の超
電導物質の製法。(2) The method for producing a superconducting material according to claim (1), characterized in that the sintered product is cooled at a rate of 20 to 150°C/hr.
ことを特徴とする特許請求の範囲第(1)項に記載の超
電導物質の製法。(3) The method for producing a superconducting material according to claim (1), characterized in that the sintered product is cooled at a rate of 30 to 100°C/hr.
の後乾燥することを特徴とする特許請求の範囲第(1)
項乃至第(3)項のいずれかに記載の製法。(4) Claim No. (1) characterized in that when mixing the predetermined raw material powders, the mixture is wet-mixed and then dried.
The manufacturing method according to any one of Items to Items (3).
することを特徴とする特許請求の範囲第(1)項乃至第
(4)項に製法。(5) The manufacturing method according to claims (1) to (4), wherein the calcined body is wet-mixed and then dried when pulverizing the calcined body.
酸バリウムの混合粉末である特許請求の範囲第(1)項
乃至第(5)項のいずれかに記載の製法。(6) The manufacturing method according to any one of claims (1) to (5), wherein the predetermined raw material powder is a mixed powder of yttrium oxide, copper oxide, and barium carbonate.
ウム又は炭酸バリウム、及び酸化銅の混合粉末である特
許請求の範囲第(1)項乃至第(5)項のいずれかに記
載の製法。(7) The manufacturing method according to any one of claims (1) to (5), wherein the predetermined raw material powder is a mixed powder of lanthanum oxide, strontium carbonate or barium carbonate, and copper oxide.
び銅の組成が第1図に示す三成分組成図に於いて斜線で
示した範囲となるように原料粉末を配合することを特徴
とする特許請求の範囲第(1)項または第(6)項に記
載の製法。(8) A patent claim characterized in that the raw material powders are blended so that the composition of yttrium, barium, and copper of the superconducting material obtained falls within the shaded range in the ternary composition diagram shown in FIG. The manufacturing method according to scope item (1) or item (6).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62288777A JPH01131075A (en) | 1987-11-16 | 1987-11-16 | Production of superconducting substance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62288777A JPH01131075A (en) | 1987-11-16 | 1987-11-16 | Production of superconducting substance |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01131075A true JPH01131075A (en) | 1989-05-23 |
Family
ID=17734581
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62288777A Pending JPH01131075A (en) | 1987-11-16 | 1987-11-16 | Production of superconducting substance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01131075A (en) |
-
1987
- 1987-11-16 JP JP62288777A patent/JPH01131075A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR0163568B1 (en) | Method of manufactruing bismuth type oxide superconductor | |
JPH01131075A (en) | Production of superconducting substance | |
JP2677882B2 (en) | Method for producing bismuth oxide superconductor | |
JPH0193459A (en) | Production of superconducting substance | |
JP2634187B2 (en) | Method for producing thallium-based oxide superconductor | |
JP2978538B2 (en) | Superconducting material with high density crystal structure | |
JP2632543B2 (en) | Method for producing Bi-Sr-Ca-Cu-O-based superconductor | |
JP2587652B2 (en) | Production method of superconducting material | |
JPH0193460A (en) | Production of superconducting substance | |
JPS63307111A (en) | Production of electric conductor | |
JPH0692717A (en) | Production of bi based oxiee superconductor | |
JP2654460B2 (en) | Production method of superconducting material | |
JPH01131087A (en) | Production of superconducting substance | |
JPH0465319A (en) | Production of oxide superconducting material | |
JPH0259466A (en) | Oxide superconducting sintered body | |
JPH01261262A (en) | Forming of oxide superconducting substance | |
JPH01160861A (en) | Anisotropic growth of superconducting ceramic | |
JPH01278467A (en) | Production of superconductor | |
JPH02199054A (en) | Production of superconductor | |
JPH01278466A (en) | Production of superconductor | |
JPH01278458A (en) | Production of superconductor | |
JPH01176205A (en) | Production of superconducting substance | |
JPH03261647A (en) | Production of sintered y1ba2cu3o7-x oxide superconductor | |
JPH01278465A (en) | Production of superconductor | |
JPH0288456A (en) | Production of bi superconductor |