JPH01131087A - Production of superconducting substance - Google Patents

Production of superconducting substance

Info

Publication number
JPH01131087A
JPH01131087A JP62288776A JP28877687A JPH01131087A JP H01131087 A JPH01131087 A JP H01131087A JP 62288776 A JP62288776 A JP 62288776A JP 28877687 A JP28877687 A JP 28877687A JP H01131087 A JPH01131087 A JP H01131087A
Authority
JP
Japan
Prior art keywords
manufacturing
raw material
calcined
powder
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62288776A
Other languages
Japanese (ja)
Inventor
Yoshinori Takada
高田 善典
Kazuhiko Sawada
和彦 澤田
Makoto Hiraoka
誠 平岡
Makoto Yoshikawa
吉川 允
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP62288776A priority Critical patent/JPH01131087A/en
Publication of JPH01131087A publication Critical patent/JPH01131087A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To produce a superconducting substance resistant to the deterioration of characteristics while preventing the reaction of a sintered material with water, by coating a calcined material and/or sintered material of a prescribed mixed raw material powder with a water-proofing material. CONSTITUTION:A mixed raw material powder is prepared by mixing Y2O3, BaCO3 and CuO or La2O3, SrCO3 or BaCO3 and CuO in wet state at a ratio to give a composition of Y, Ba and Cu falling within the hatched range of the figure. The mixed raw material powder is compression molded, dried at <=150 deg.C and calcined at <=800 deg.C for 6-48hr. The calcined material is pulverized in wet state in the presence of an alcoholic liquid and sintered under compression-molding to obtain a superconducting substance composed of the sintered material. The calcined material and/or the sintered material are coated with a water-proofing material composed of an organic material (e.g., PVC) or a metallic material.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は超電導物質の製法に関し、更に詳しくは超電導
物質の従来の製法の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing superconducting materials, and more particularly to improvements in conventional methods for producing superconducting materials.

〔従来の技術とその問題点〕[Conventional technology and its problems]

周知の通り超電導物質の新しい研究が現在盛んに行われ
ており、超電導物質としてもY−Ba−Cu−〇系、L
a−5r−Cu−0系、La−Ba−Cu−0系等の物
質がすでに知られている。特にY−Ba−Cu−0系超
電導物質は研究が進んでおり、実用化に向けての研究が
盛んに行われている現状にある。
As is well known, new research on superconducting materials is currently being actively conducted, and superconducting materials such as Y-Ba-Cu-〇 series and L
Substances such as a-5r-Cu-0 series and La-Ba-Cu-0 series are already known. In particular, research on Y-Ba-Cu-0-based superconducting materials is progressing, and research is currently being actively carried out toward practical application.

これ等超電導物質の従来の通常の製法をY −Ba−C
u−0系を代表例として示せば、第2図に示す通りであ
る。即ち先ず原料粉末、通常は酸化イツトリウム、酸化
銅、及び炭酸バリウムの各粉末を所定量混合する。混合
に際しては水分の共存を出来るだけ防ぐためにエタノー
ルの如きアルコールを添加して湿式混合する。乾燥後必
要に応じ再度混合し乾燥した後、加圧成形して通常粒状
またはペレット状となす。次いでこれを9(10°C前
後で仮焼し冷却後粉砕し、該粉砕物を湿式混合する。
The conventional manufacturing method for these superconducting materials is Y-Ba-C.
A typical example of the u-0 system is shown in FIG. That is, first, raw material powders, usually powders of yttrium oxide, copper oxide, and barium carbonate, are mixed in predetermined amounts. During mixing, an alcohol such as ethanol is added and wet mixing is performed to prevent the coexistence of water as much as possible. After drying, the mixture is mixed again if necessary, dried, and then pressure-molded to form granules or pellets. Next, this is calcined at around 9 (10°C), cooled, and then crushed, and the crushed product is wet-mixed.

次いで乾燥後加圧成形し、焼結を行う。ここに得た超電
導粉砕物を適宜な形状、たとえば線材化や薄膜化(テー
プ化)して実用に供するものである。
Then, after drying, it is press-molded and sintered. The superconducting pulverized product obtained here is put into a suitable shape, such as a wire rod or a thin film (tape), for practical use.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明者らは、従来からこの種超電導物質の製法につい
て鋭意研究を続けて来たが、この研究に於いてこの種超
電導物質を製造する際に、特に仮焼体または焼結体の吸
着水分の量により得られる超電導物質の特性が大きく変
化することを見出した。たとえば焼結体たる超電導物質
としてY −Ha−Cu−0系を例として以下に説明す
る。
The present inventors have been conducting intensive research on the manufacturing method of this type of superconducting material, and in this research, when manufacturing this type of superconducting material, in particular It has been found that the properties of the superconducting material obtained vary greatly depending on the amount of . For example, Y-Ha-Cu-0 system will be explained below as an example of a superconducting material that is a sintered body.

超電導物質が吸水すると下記式如く変化し、超電導物質
が変質する。
When a superconducting material absorbs water, it changes as shown in the following formula, and the superconducting material changes in quality.

2 YBazCu30b + 3 H20→YzBaC
u o3+ 3Ba(OR)z +5CuO+!40□
従って本発明が解決しようとする問題点は、」二記水の
存在に基づく超電導物質の上記難点を解決することであ
る。
2 YBazCu30b + 3 H20→YzBaC
u o3+ 3Ba(OR)z +5CuO+! 40□
Therefore, the problem to be solved by the present invention is to solve the above-mentioned problems of superconducting materials based on the presence of water.

〔問題点を解決するための手段〕[Means for solving problems]

この問題点は仮焼体またはく及び)焼結体を防水性材料
で被覆することにより解決される。
This problem can be solved by covering the calcined or sintered body with a waterproof material.

即ち本発明は、所定原料粉末を混合し、仮焼し、次いで
該仮焼体を粉砕した後成形し、ここに得た成形体を焼結
して超電導物質を製造する方法に於いて、上記仮焼体ま
たは(及び)焼結体を防水性材料で被覆することを特徴
とする超電導物質の製法に係るものである。
That is, the present invention provides a method for producing a superconducting material by mixing predetermined raw material powders, calcining the calcined body, pulverizing the calcined body, then molding the body, and sintering the resulting molded body. The present invention relates to a method for producing a superconducting material characterized by coating a calcined body or (and) a sintered body with a waterproof material.

〔発明の作用並びに構成〕[Function and structure of the invention]

本発明に於いては、仮焼体または(及び)焼結体を防水
性材料で被覆することにより仮焼体または(及び)焼結
体と水との上記反応を防止し、惹いては超電導物質の特
性の低下を防止することが出来る。
In the present invention, the above-mentioned reaction between the calcined body and/or sintered body and water is prevented by coating the calcined body or (and) the sintered body with a waterproof material, which may lead to superconductivity. It is possible to prevent deterioration of the properties of substances.

本発明に於いて使用する防水性材料としては、有機質の
ものと無機質のものとがある。前者としては各種防水性
を有する物質からなるシートやフィルムの他に疏水性物
質で処理したシートやフィルムを例示出来る。防水性材
料としては、たとえばシリコーン系化合物や各種フッ素
樹脂を例示出来、更に詳しくはシリコーンホイル、ポリ
ジメチルシロキサン、ハロゲン化エチレンまたはプロピ
レン重合体等を例示出来る。ハロゲン化エチレン重合体
としてはテトラフルオロエチレン、モノクロロトリフル
オロエチレン、ジクロロジフルオロエチレン等の単独ま
たは他のポリマーとの共重合体を例示出来る。
Waterproof materials used in the present invention include organic materials and inorganic materials. Examples of the former include sheets and films made of various waterproof substances as well as sheets and films treated with hydrophobic substances. Examples of waterproof materials include silicone compounds and various fluororesins, and more specifically silicone foils, polydimethylsiloxane, halogenated ethylene, and propylene polymers. Examples of the halogenated ethylene polymer include tetrafluoroethylene, monochlorotrifluoroethylene, dichlorodifluoroethylene, etc. alone or in copolymers with other polymers.

無機質の材料としては、代表的には金属のフィルムや箔
を例示出来る。この際の金属のフィルムや箔自体は、焼
結成いは仮焼の際に使用される成形用型とは異なり、型
として要求される高温での耐熱性、機械的強度並びに超
電導性物質製造のために要求される条件等を全く必要と
せず、唯単にこれ等焼結または仮焼体を防水する目的で
使用されるものである。従って原則として本発明で使用
する防水性材料は型として使用しないものでありこの点
に於いて明確に区別される。
Typical examples of inorganic materials include metal films and foils. In this case, the metal film or foil itself is different from the mold used for calcination, and the metal film or foil itself is different from the mold used for calcination. It does not require any conditions required for this purpose, and is used solely for the purpose of waterproofing these sintered or calcined bodies. Therefore, in principle, the waterproof material used in the present invention is not used as a mold, and is clearly distinguished in this respect.

以下に本発明法を工程順に説明する。The method of the present invention will be explained below in order of steps.

先ず原料粉末を調製する。原料としては、所望する超電
導物質の種類に応じて適宜に原料を選択する。たとえば
Y−Ba−Cu−0系の場合には、酸化イツトリウム、
炭酸バリウム、酸化銅を使用し、またLa−3r−Cu
−0系の場合には酸化ランタン、炭酸ストロンチュウム
、酸化銅を使用する。またLa−Ba−Cu−0系の場
合には酸化ランタン、炭酸バリウム、酸化銅を使用する
。これ等原料粉末は所望する組成配合比で混合するが、
たとえばY−Ba−Cu−0系の場合には得られる目的
物超電導物質の組成が第1図に示すようになるように予
めこれ等原料を配合する。
First, a raw material powder is prepared. The raw material is appropriately selected depending on the type of the desired superconducting substance. For example, in the case of Y-Ba-Cu-0, yttrium oxide,
Using barium carbonate, copper oxide, and La-3r-Cu
In the case of -0 series, lanthanum oxide, strontium carbonate, and copper oxide are used. In the case of La-Ba-Cu-0 type, lanthanum oxide, barium carbonate, and copper oxide are used. These raw material powders are mixed in the desired composition ratio,
For example, in the case of the Y-Ba-Cu-0 system, these raw materials are blended in advance so that the composition of the target superconducting material obtained is as shown in FIG.

この原料粉末は次いで混合されるが、この際の混合は通
常湿式で行われ、水辺外の液体たとえばエタノール等の
アルコールを加えて行う。これは水の共存は望ましくな
いという理由に基づく。湿式混合物は自然乾燥でも良(
、また1 50 ’c前後以下の温度で加熱しても良い
。この湿式混合を必要に応じ、再度繰返し行う。繰返し
行うことにより各成分を均一に混合出来、この乾燥物に
上記液体を加えて再度湿式混合を繰返し行う。繰返し行
うことにより原料粉末の粒度を調整し、原料粉末の粒度
を調整し、成形時の最適充填粒度が得やすくなる。
The raw material powders are then mixed, and this mixing is usually done in a wet manner by adding a liquid from outside the water, such as an alcohol such as ethanol. This is based on the reason that coexistence of water is undesirable. Wet mixtures can be air dried (
, or may be heated at a temperature of around 150'C or less. This wet mixing is repeated as necessary. By repeating this process, each component can be mixed uniformly, and the above-mentioned liquid is added to this dry product and wet mixing is repeated again. By repeating this process, the particle size of the raw material powder can be adjusted and the particle size of the raw material powder can be adjusted, making it easier to obtain the optimum filling particle size during molding.

次いで上記原料粉末を加圧成形し、必要に応じ乾燥後成
形体を仮焼する。尚加圧成形に際しては原料粉末中のア
ルコール等を除去することが望ましく、このため通常乾
燥する。加圧成形は通常ペレット状に成形するが、その
形状はペレットに限定されるものではなく、仮焼し易い
形状であれば良い。ここに得た成形体を次いで仮焼する
。この仮焼は、高温下での反応拡散により各成分を分子
レベルで均一に混合する目的で行われ、使用する原料粉
末の種類並びに配合割合に応して適宜に温度が決定され
、たとえばY−Ba−Cu−0系の場合は通常8(10
°C以上、好ましくは850〜950℃、特には9(1
0°C前後が好ましい。仮焼の時間は温度にもよるが通
常6〜48時間、好ましくは12〜24時間程度である
Next, the raw material powder is pressure molded, and if necessary, after drying, the molded product is calcined. Note that during pressure molding, it is desirable to remove alcohol, etc. from the raw material powder, and for this purpose, it is usually dried. Pressure molding is usually performed to form pellets, but the shape is not limited to pellets and may be any shape that can be easily calcined. The molded body obtained here is then calcined. This calcination is performed for the purpose of uniformly mixing each component at the molecular level by reaction diffusion at high temperatures, and the temperature is appropriately determined depending on the type and blending ratio of the raw material powder used. In the case of Ba-Cu-0 system, it is usually 8 (10
°C or higher, preferably 850 to 950 °C, especially 9 (1
Preferably it is around 0°C. The calcining time depends on the temperature, but is usually about 6 to 48 hours, preferably about 12 to 24 hours.

而して仮焼体は再度湿式粉砕される。この際使用される
液剤は水辺外の通常アルコール系のものたとえばエタノ
ールが使用され、粉砕中に出来るだけ水分が吸着しない
状態で行われる。乾燥後焼結が行われる。焼結は適宜な
金型に粉砕物を充填し、必要に応し加圧しながら粉砕物
を焼結する。
The calcined body is then wet-pulverized again. The liquid agent used at this time is usually an alcohol-based agent such as ethanol, which is not available near water, and the grinding is carried out in a state where as little moisture as possible is absorbed during the grinding. After drying, sintering is performed. For sintering, a suitable mold is filled with the pulverized material, and the pulverized material is sintered while applying pressure if necessary.

この際仮焼と異なり、焼結することが必要で粉砕物が充
分に焼結される温度で行われる。
At this time, unlike calcination, sintering is necessary and is carried out at a temperature at which the pulverized material is sufficiently sintered.

本発明に於いては焼結体は防水性材料で被覆されて保存
される。また仮焼体は次の焼結に供される間必要に応じ
防水性材料で被覆されて保存されることがある。
In the present invention, the sintered body is covered with a waterproof material and stored. Further, the calcined body may be covered with a waterproof material and stored as necessary while being subjected to the next sintering.

〔実施例〕〔Example〕

以下に実施例を示して本発明の詳細な説明する。 The present invention will be described in detail below with reference to Examples.

実施例I Y1Ba2Cu+Ox (但しXは6〜7)の製造:純
度99.9重量%以上のY2O3、BaCO3、及びC
uOを1.O:  3.5:  2.1  (重量比)
でエタノールの共存下に乳鉢で湿式混合し、自然乾燥後
金型に粉末を充填し、圧力1(10kg/cJでハンド
プレスを用いて10φX 5 vsm程度のペレットに
成形し、次いで9(10 ”Cで24時間大気中で仮焼
し、炉冷した。得られた仮焼物をエタノール中で粉砕し
、その後直ちに鉄製金型を用い、減圧下510kg/c
Jの圧力でペレット(上記と同サイズ)状に成形し95
0℃で24時間焼結した。焼結物はポリモノクロロトリ
フルオロエチレン製フィルムで包み3ケ月間保存した。
Example I Production of Y1Ba2Cu+Ox (where X is 6 to 7): Y2O3, BaCO3, and C with a purity of 99.9% by weight or more
uO 1. O: 3.5: 2.1 (weight ratio)
The powder was wet mixed in a mortar in the presence of ethanol, and after air drying, the powder was filled into a mold and molded into pellets of about 10φ x 5 vsm using a hand press at a pressure of 1 (10 kg/cJ), and then 9 (10 ” The calcined product was calcined in the atmosphere for 24 hours at C and cooled in a furnace.The resulting calcined product was crushed in ethanol, and immediately thereafter, using an iron mold, it was heated to 510 kg/cm under reduced pressure.
Form into pellets (same size as above) at a pressure of 95
Sintering was performed at 0°C for 24 hours. The sintered product was wrapped in a polymonochlorotrifluoroethylene film and stored for 3 months.

次いでこれを粉砕し、超電導点を測定した。測定結果は
臨界温度93K、液体窒素中(77K)で測定された臨
界電流密度270A/cm2であツタ。
Next, this was crushed and the superconducting point was measured. The measurement results were a critical temperature of 93K and a critical current density of 270A/cm2 measured in liquid nitrogen (77K).

実施例2 Yo、a Bao、7 Cu、 oy(yは2〜3)の
製造:実施例1に於いて原料の配合比をY203:Ba
C(h  :CuO=1.  O: 4.  L : 
2. 3とし、且つ焼結時の温度を9(10℃とし、焼
結物はポリモノクロロトリフルオロエチレン製フィルム
で包み3ケ月間保存した。次いでこれを粉砕し、超電導
点を測定した。測定結果は臨界温度92K、液体窒素中
(77K)で測定された臨界電流密度25〇八/cm”
であった。
Example 2 Production of Yo, a Bao, 7 Cu, oy (y is 2 to 3): In Example 1, the blending ratio of raw materials was changed to Y203:Ba
C(h:CuO=1.O: 4.L:
2. 3, and the temperature during sintering was 9 (10 °C), and the sintered product was wrapped in a polymonochlorotrifluoroethylene film and stored for 3 months.Then, it was crushed and the superconducting point was measured.The measurement results are Critical temperature 92K, critical current density measured in liquid nitrogen (77K) 2508/cm”
Met.

比較例1及び2 実施例1及び2に於いて焼結物をそのまま大気中で3ケ
月間放置した後粉砕し超電導点を測定した。これ等の測
定結果は、夫々臨界温度79K、78にであり、液体窒
素中(77K)で測定された臨界電流密度13 A/c
m2.7 A/cm2であった。
Comparative Examples 1 and 2 In Examples 1 and 2, the sintered products were left as they were in the atmosphere for 3 months, and then pulverized and the superconducting point was measured. These measurements have a critical temperature of 79 K and 78 K, respectively, and a critical current density of 13 A/c measured in liquid nitrogen (77 K).
m2.7 A/cm2.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はY、Ba及びCuの三成分系組成図であり第2
図は従来の超電導物質の製法の一例を示すフローシート
である。 (以上) 特許出願人  三菱電線工業株式会社
Figure 1 is a ternary composition diagram of Y, Ba and Cu;
The figure is a flow sheet showing an example of a conventional method for manufacturing superconducting materials. (and above) Patent applicant Mitsubishi Cable Industries, Ltd.

Claims (10)

【特許請求の範囲】[Claims] (1)所定原料粉末を混合し、仮焼し、次いで該仮焼体
を粉砕した後成形し、ここに得た成形体を焼結して超電
導物質を製造する方法に於いて上記仮焼体または(及び
)焼結体を防水性材料で被覆することを特徴とする超電
導物質の製法。
(1) In a method for producing a superconducting material by mixing predetermined raw material powders, calcining the calcined body, pulverizing the calcined body, and then molding the calcined body, and sintering the obtained molded body, the above-mentioned calcined body or (and) a method for producing a superconducting material, which comprises coating a sintered body with a waterproof material.
(2)上記防水性材料が有機質材料である特許請求の範
囲第(1)項に記載の製法。
(2) The manufacturing method according to claim (1), wherein the waterproof material is an organic material.
(3)上記防水性材料が金属質材料である特許請求の範
囲第(1)項に記載の製法。
(3) The manufacturing method according to claim (1), wherein the waterproof material is a metallic material.
(4)有機質材料がハロゲン化ポリマーである特許請求
の範囲第(2)項に記載の製法。
(4) The manufacturing method according to claim (2), wherein the organic material is a halogenated polymer.
(5)ハロゲン化ポリマーがポリ塩化ビニリデン、ポリ
フッ化ビニリデン、クロロスルホン化ポリエチレン、ポ
リモノクロロトリフルオロエチレン、テトラフルオロエ
チレン、トリフルオロエチレン、ポリフッ化ビニルであ
る特許請求の範囲第(4)項に記載の製法。
(5) Claim 4, wherein the halogenated polymer is polyvinylidene chloride, polyvinylidene fluoride, chlorosulfonated polyethylene, polymonochlorotrifluoroethylene, tetrafluoroethylene, trifluoroethylene, or polyvinyl fluoride. manufacturing method.
(6)所定原料粉末の混合に際し、これを湿式混合し、
その後乾燥することを特徴とする特許請求の範囲第(1
)項に記載の製法。
(6) When mixing the specified raw material powder, wet-mix it,
Claim No. 1 (1) characterized in that it is then dried.
The manufacturing method described in ).
(7)仮焼体を粉砕するに際し、湿式混合し、その後乾
燥することを特徴とする特許請求の範囲第(1)項また
は第(2)項に記載の製法。
(7) The manufacturing method according to claim (1) or (2), wherein the calcined body is wet-mixed and then dried when pulverizing the calcined body.
(8)所定原料粉末が酸化イットリウム、酸化銅、及び
炭酸バリウムの混合粉末である特許請求の範囲第(1)
項乃至第(3)項のいずれかに記載の製法。
(8) Claim No. 1, wherein the predetermined raw material powder is a mixed powder of yttrium oxide, copper oxide, and barium carbonate.
The manufacturing method according to any one of Items to Items (3).
(9)所定原料粉末が酸化ランタン、炭酸ストロンチュ
ウム又は炭酸バリウム、及び酸化銅粉末の混合粉末であ
る特許請求の範囲第(1)項乃至第(3)項のいずれか
に記載の製法。
(9) The manufacturing method according to any one of claims (1) to (3), wherein the predetermined raw material powder is a mixed powder of lanthanum oxide, strontium carbonate or barium carbonate, and copper oxide powder.
(10)得られる超電導物質のイットリウム、バリウム
及び銅の組成が第1図に示す三成分組成図に於いて斜線
で示した範囲となるように原料粉末を配合することを特
徴とする特許請求の範囲第(1)項または第(4)項に
記載の製法。
(10) The raw material powders are blended so that the composition of yttrium, barium, and copper of the obtained superconducting material falls within the shaded range in the ternary composition diagram shown in FIG. The manufacturing method according to scope item (1) or item (4).
JP62288776A 1987-11-16 1987-11-16 Production of superconducting substance Pending JPH01131087A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62288776A JPH01131087A (en) 1987-11-16 1987-11-16 Production of superconducting substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62288776A JPH01131087A (en) 1987-11-16 1987-11-16 Production of superconducting substance

Publications (1)

Publication Number Publication Date
JPH01131087A true JPH01131087A (en) 1989-05-23

Family

ID=17734569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62288776A Pending JPH01131087A (en) 1987-11-16 1987-11-16 Production of superconducting substance

Country Status (1)

Country Link
JP (1) JPH01131087A (en)

Similar Documents

Publication Publication Date Title
JPH06500426A (en) Method for forming high temperature oxide superconductor tape
JPH01131087A (en) Production of superconducting substance
JP2587651B2 (en) Production method of superconducting material
JPH0251468A (en) Production of yttrium-barium-copper oxide powder and superconducting yttrium-barium-copper oxide sintered body
JPH0345301A (en) Manufacture of oxide superconductive tape wire
JP2587652B2 (en) Production method of superconducting material
JPH0193465A (en) Method and composition for forming superconductive ceramic and superconductive products
JP2585020B2 (en) Production method of superconducting material
JP4617493B2 (en) Oxide superconducting synthetic powder and manufacturing method thereof
JPH01131075A (en) Production of superconducting substance
JP2654460B2 (en) Production method of superconducting material
JPH03156811A (en) Manufacture of ceramic superconductive conductor
JP2634187B2 (en) Method for producing thallium-based oxide superconductor
JPH0193459A (en) Production of superconducting substance
US5229035A (en) Bi-Pb-Sr-Ca-Cu-O system superconductors
JPH01130429A (en) Manufacture of superconductive material
JP2632543B2 (en) Method for producing Bi-Sr-Ca-Cu-O-based superconductor
JP2866484B2 (en) Manufacturing method of oxide superconductor
JPH0193460A (en) Production of superconducting substance
JP2675998B2 (en) Manufacturing method of highly-oriented sintered compact with high grain orientation
JPH01264930A (en) Production of oxide superconductor and applied product of said oxide superconductor
JP2556096B2 (en) Superconductor manufacturing method
JP2969221B2 (en) Manufacturing method of oxide superconductor
JP2904348B2 (en) Method for manufacturing compound superconducting wire
JPH01176205A (en) Production of superconducting substance