JP2587651B2 - Production method of superconducting material - Google Patents

Production method of superconducting material

Info

Publication number
JP2587651B2
JP2587651B2 JP62233249A JP23324987A JP2587651B2 JP 2587651 B2 JP2587651 B2 JP 2587651B2 JP 62233249 A JP62233249 A JP 62233249A JP 23324987 A JP23324987 A JP 23324987A JP 2587651 B2 JP2587651 B2 JP 2587651B2
Authority
JP
Japan
Prior art keywords
raw material
superconducting
liquid medium
material powder
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62233249A
Other languages
Japanese (ja)
Other versions
JPS6476948A (en
Inventor
善典 高田
和彦 澤田
誠 平岡
允 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP62233249A priority Critical patent/JP2587651B2/en
Publication of JPS6476948A publication Critical patent/JPS6476948A/en
Application granted granted Critical
Publication of JP2587651B2 publication Critical patent/JP2587651B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は超電導物質の製法に関し、更に詳しくは超電
導物質の従来の製法の改良に関する。
Description: FIELD OF THE INVENTION The present invention relates to a method for producing a superconducting material, and more particularly to an improvement on a conventional method for producing a superconducting material.

〔従来の技術とその問題点〕[Conventional technology and its problems]

周知の通り超電導物質の新しい研究が現在盛んに行わ
れており、超電導物質としてもY−Ba−Cu−O系、La−
Sr−Cu−O系、La−Ba−Cu−O系等の物質がすでに知ら
れている。特にY−Ba−Cu−O系超電導物質は研究が進
んでおり、実用化に向けての研究が盛んに行われている
現状にある。
As is well known, new research on superconducting materials is currently being actively conducted, and Y-Ba-Cu-O-based and La-
Substances such as Sr—Cu—O and La—Ba—Cu—O are already known. In particular, research is progressing on Y-Ba-Cu-O-based superconducting materials, and research for practical use is being actively conducted.

これ等超電導物質の従来の通常の製法をY−Ba−Cu−
O系を代表例として示せば、第2図に示す通りである。
即ち先ず原料粉末、通常は酸化イットリウム、酸化銅、
及び炭酸バリウムの各粉末を所定量混合する。混合に際
しては水分の共存を出来るだけ防ぐためにエタノールの
如きアルコールを添加して湿式混合する。乾燥後必要に
応じ再度混合し、乾燥した後、加圧成形して通常粒状ま
たはペレット状となす。次いでこれを900℃前後で仮焼
し、冷却後粉砕し、該粉砕物を湿式混合する。次いで乾
燥後加圧成形し、焼結を行う。
The conventional ordinary method for producing these superconducting materials is described as Y-Ba-Cu-
FIG. 2 shows an O system as a representative example.
That is, first the raw material powder, usually yttrium oxide, copper oxide,
And a predetermined amount of each powder of barium carbonate. In mixing, an alcohol such as ethanol is added and wet-mixed in order to prevent coexistence of water as much as possible. After drying, the mixture is mixed again if necessary, dried, and then subjected to pressure molding to form granules or pellets. Next, this is calcined at about 900 ° C., cooled and then pulverized, and the pulverized material is wet-mixed. Then, after drying, it is pressed and sintered.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

本発明者らは、従来からこの種超電導物質の製法につ
いて鋭意研究を続けて来たが、この研究に於いてこの種
超電導物質を製造する際、特に仮焼体またはその粉砕物
の吸着水分の量により得られる超電導物質の特性が大き
く変化することを見出した。更に研究を進めるうちに、
上記仮焼体またはその粉砕物の吸着水分が少なくなれば
なる程、得られる超電導物質の超電導転移温度が高くな
ることを見出した。これについて更に詳しく説明する
と、第3図に示す通り、得られる実際の超電導物質の抵
抗値は実線で示す通りに低下し、抵抗値が0になる温度
は矢印Aで示す通りなだらかな曲線となる。この曲線部
分と長くなればなる程抵抗が0になる温度は低下するの
で望ましくなく、出来るだけこの曲線部分が短いことが
好ましい。以下この曲線部分を“すそ引き”と定義す
る。即ち仮焼体またはその粉砕物の吸着水分が多ければ
多い程“すそ引き”が長くなることが判明した。従って
本発明が解決しようとする問題点はこの“すそ引き”現
象を生じないようにするか、または出来るだけ短くする
ことである。
The present inventors have been enthusiastically studying the method for producing this kind of superconducting material, but in this study, when producing this kind of superconducting material, particularly when the adsorbed moisture of the calcined body or its pulverized material is reduced. It has been found that the properties of the obtained superconducting material vary greatly depending on the amount. As we continue our research,
It has been found that the lower the adsorbed water content of the calcined body or its pulverized material, the higher the superconducting transition temperature of the obtained superconducting substance. More specifically, as shown in FIG. 3, the actual resistance of the obtained superconducting material decreases as shown by the solid line, and the temperature at which the resistance becomes 0 becomes a gentle curve as shown by arrow A. . The longer the length of the curve, the lower the temperature at which the resistance becomes zero, which is undesirable. Therefore, it is preferable that the length of the curve be as short as possible. Hereinafter, this curved portion is defined as “tail pull”. In other words, it was found that the more the adsorbed moisture of the calcined body or its pulverized material, the longer the "tail pull". The problem to be solved by the present invention is therefore to avoid this "tailing" phenomenon or to make it as short as possible.

〔問題点を解決するための手段〕[Means for solving the problem]

この問題点は仮焼体の粉砕物を低温で共沸して水を除
去しうる液媒で処理した後乾燥し、引き続き公知の方法
に従って処理することにより解決される。
This problem can be solved by treating the ground material of the calcined body with a liquid medium capable of removing water by azeotropic distillation at a low temperature, followed by drying and subsequent treatment according to a known method.

即ち本発明は、所定原料粉末を混合し仮焼し、次いで
該仮焼体を粉砕した後成形しここに得た成形体を焼結し
て超電導物質を製造する方法に於いて上記仮焼体の粉砕
物を低温で水と共沸して水を除去しうる液媒で処理した
後乾燥することを特徴とする超電導物質の製法に係るも
のである。
That is, the present invention relates to a method for producing a superconducting material by mixing a predetermined raw material powder, calcining, then pulverizing the calcined body, molding and sintering the obtained molded body to produce a superconducting material. The method according to claim 1, wherein the pulverized material is treated with a liquid medium capable of removing water by azeotropic distillation with water at a low temperature and then dried.

〔発明の作用並びに構成〕[Function and Configuration of the Invention]

本発明に於いては、仮焼体の粉砕物を上記した液媒で
処理することにより上記仮焼体の粉砕物中に吸着された
水分を除去することが出来、惹いては目的物超電導体物
質の“すそ引き”現象を防止または著しく少なくするこ
とが出来る。
In the present invention, it is possible to remove the water adsorbed in the pulverized material of the calcined body by treating the pulverized material of the calcined body with the above-described liquid medium, and hence, the superconductor of the target object The "tailing" phenomenon of the material can be prevented or significantly reduced.

以下に本発明法を工程順に説明する。 The method of the present invention will be described below in the order of steps.

先ず原料粉末を調製する。原料としては、所望する超
電導物質の種類に応じて適宜に原料を選択する。たとえ
ばY−Ba−Cu−O系の場合には酸化イットリウム、炭酸
バリウム、酸化銅を使用し、またLa−Sr−Cu−O系の場
合には酸化ランタン、炭酸ストロンチュウム、酸化銅を
使用する。またLa−Ba−Cu−O系の場合には酸化ランタ
ン、炭酸バリウム、酸化銅を使用する。これ等原料粉末
は所望する組成配合比で混合するが、たとえばY−Ba−
Cu−O系の場合には得られる目的物超電導物質の組成が
第1図に示すようになるように予めこれ等原料を配合す
る。
First, a raw material powder is prepared. As a raw material, a raw material is appropriately selected according to a kind of a desired superconducting substance. For example, in the case of Y-Ba-Cu-O system, yttrium oxide, barium carbonate and copper oxide are used, and in the case of La-Sr-Cu-O system, lanthanum oxide, strontium carbonate and copper oxide are used. I do. In the case of La-Ba-Cu-O system, lanthanum oxide, barium carbonate, and copper oxide are used. These raw material powders are mixed in a desired composition ratio, for example, Y-Ba-
In the case of Cu-O system, these raw materials are previously blended so that the composition of the obtained target superconducting substance is as shown in FIG.

この原料粉末は次いで混合されるが、この際の混合は
通常湿式で行われ、水以外の液体たとえばエタノール等
のアルコールを加えて行う。その理由は、水の共存は望
ましくないという理由に基づく。湿式混合物は自然乾燥
でも良く、また150℃前後以下の温度で加熱しても良
い。必要に応じてこの乾燥物に上記液媒を加えて再度湿
式混合を返し行う。繰返し行うことにより原料粉末の粒
度を調整し、成形時の最適充填粒度が得やすくなる効果
がある。
This raw material powder is then mixed, and the mixing at this time is usually performed by a wet method, and is performed by adding a liquid other than water, for example, an alcohol such as ethanol. The reason is based on the fact that coexistence of water is undesirable. The wet mixture may be naturally dried, or may be heated at a temperature of about 150 ° C. or lower. If necessary, the above liquid medium is added to the dried product, and wet mixing is repeated again. By repeating the process, the particle size of the raw material powder is adjusted, and there is an effect that the optimum filling particle size at the time of molding is easily obtained.

次いで上記原料粉末を加圧成形し、必要に応じて乾燥
後成形体を仮焼する。尚加圧成形に際しては原料粉末中
のアルコール等を除去することが望ましくこのため通常
乾燥する。加圧成形は通常ペレット状に成形するがその
形状は、ペレットに限定されるものではなく、仮焼し易
い形状であれば良い。ここに得た成形体を次いで仮焼す
る。この仮焼は、原料粉末を反応させ、超電導相を示し
得る物質を得るための目的で行われ、使用する原料粉末
の種類並びに配合割合に応じて適宜に温度が決定され、
たとえばY−Ba−Cu−O系の場合には通常800℃以上、
好ましくは850〜950℃、特には900℃前後が好ましい。
仮焼の時間は温度にもよるが通常6〜48時間、好ましく
は12〜24時間程度である。
Next, the raw material powder is subjected to pressure molding, and if necessary, after drying, the molded body is calcined. At the time of pressure molding, it is desirable to remove alcohol and the like in the raw material powder, and therefore, drying is usually performed. The pressure molding is usually performed into pellets, but the shape is not limited to the pellets, and may be any shape as long as it is easily calcined. The molded body obtained here is then calcined. This calcination is performed for the purpose of reacting the raw material powder and obtaining a substance capable of exhibiting a superconducting phase, and the temperature is appropriately determined according to the type and the mixing ratio of the raw material powder used,
For example, in the case of Y-Ba-Cu-O system, usually 800 ° C. or higher,
Preferably it is 850 to 950 ° C, especially around 900 ° C.
The calcination time is usually 6 to 48 hours, preferably about 12 to 24 hours, depending on the temperature.

仮焼体は通常湿式粉砕される。この際使用される液媒
は水以外の通常アルコール系のものたとえばエタノール
が使用され、粉砕中に出来るだけ水分が吸着しない状態
で行われる。
The calcined body is usually wet ground. The liquid medium used at this time is a normal alcohol-based medium other than water, for example, ethanol, and is used in a state in which moisture is not adsorbed as much as possible during pulverization.

本発明に於いては、この仮焼体の粉砕物を低温で水と
共沸して水を除去しうる液媒で処理することを大きな特
徴としている。この際使用される液媒としては、代表的
にはアルコール系たとえばメチルアルコール、エチルア
ルコール、ブチルアルコール等を例示出来、その他クロ
ロホルム、酢酸メチル等を例示出来る。尚低温とは、通
常98℃以下、好ましくは90℃以下、特に50℃以下程度の
温度を言うが、要は、容易に水を共沸しうる性質を有す
るものであれば良い。
The major feature of the present invention is that the ground material of the calcined body is treated with a liquid medium capable of removing water by azeotropic distillation with water at a low temperature. As the liquid medium used at this time, typically, alcohols such as methyl alcohol, ethyl alcohol, and butyl alcohol can be exemplified, and chloroform, methyl acetate, and the like can be exemplified. Note that the low temperature generally means a temperature of 98 ° C. or less, preferably 90 ° C. or less, and particularly about 50 ° C. or less.

この液媒を用いる処理としては、粉砕物を該液媒中に
浸漬する手段が代表的で最も好ましいがその他の噴霧等
の手段を施しても良い。浸漬手段が好ましい理由は次の
成形、焼結の間粉砕物をそのまま浸漬しておけば良く、
この間の期間が長くなっても粉砕物の再吸水が有効に防
止出来ることに基づく。
As the treatment using the liquid medium, a means for immersing the pulverized material in the liquid medium is typical and most preferable, but other means such as spraying may be applied. The reason why the immersion means is preferable is that the crushed material may be immersed as it is during the next molding and sintering,
This is based on the fact that even if the period during this period is prolonged, re-water absorption of the pulverized material can be effectively prevented.

乾燥後、焼結が行われる。焼結は適宜な金型に粉砕物
を充填し、必要に応じ加圧しながら粉砕物を焼結する。
この際仮焼と異なり、焼結することが必要で粉砕物が充
分に焼結される温度で行われる。
After drying, sintering is performed. For sintering, an appropriate mold is filled with the pulverized material, and the pulverized material is sintered while applying pressure as necessary.
At this time, unlike calcination, sintering is required, and the crushing is performed at a temperature at which the sinter is sufficiently sintered.

〔実施例〕〔Example〕

以下に実施例を示して本発明法を詳しく説明する。 Hereinafter, the method of the present invention will be described in detail with reference to examples.

実施例1 Y1 Ba2 Cu3 OX(但しは6〜7)の製造:純度99.9
重量%以上のY2 O3、BaCO3、及びCUOを1:3.5:2.1(重量
比)でエタノールの共存下に乳鉢で湿式混合し、自然乾
燥金型に粉末を充填し、圧力100kg/cm2でハンドプレス
を用いて10φ×5mm程度のペレットに成形し、次いで900
℃で24時間大気中で仮焼し、炉冷した。得られた仮焼体
をエタノール中で粉砕し、引き続きエタノール中に1ケ
月間保存した。その後直ちに鉄製金型を用い、減圧下51
0kg/cm2の圧力でペレット(上記と同サイズ)状に成形
し、950℃で24時間大気中で焼結した。この結果は急激
に抵抗が低下し始める温度は90K、完全に抵抗がゼロに
なる温度は88Kであり“すそ引き”現象は殆どなかっ
た。
Example 1 Production of Y 1 Ba 2 Cu 3 O X (where X is 6 to 7): purity 99.9
Weight percent or more of Y 2 O 3 , BaCO 3 , and CUO are mixed at 1: 3.5: 2.1 (weight ratio) in a mortar in the presence of ethanol in a mortar, and the powder is filled in a natural drying mold, and the pressure is 100 kg / cm. Form into pellets of about 10φ × 5mm using a hand press in 2 , then 900
The mixture was calcined in the air at 24 ° C. for 24 hours and cooled in a furnace. The obtained calcined body was pulverized in ethanol and subsequently stored in ethanol for one month. Immediately afterwards, use an iron mold and
It was formed into a pellet (same size as above) at a pressure of 0 kg / cm 2 and sintered at 950 ° C. for 24 hours in the atmosphere. As a result, the temperature at which the resistance began to drop rapidly was 90K, and the temperature at which the resistance was completely zero was 88K, and there was almost no "tail pull" phenomenon.

実施例2 Y0.3Ba0.7Cu1 Oyは2〜2.5)の製造: 実施例1に於いて原料の配合比をY2 O3:BaCO3:CuO=
1:4.1:2.3とし、且つ焼結時の温度を900℃とし、その他
は実施例1と同様に処理したこのものの測定結果は、急
激に抵抗が低下し始める温度は89K、完全に抵抗がゼロ
になる温度は87Kであり“すそ引き”現象は殆どがなか
った。
Example 2 Y 0.3 Ba 0.7 Cu 1 O y (y is 2-2.5) Preparation of a blending ratio of the raw material In the embodiment 1 Y 2 O 3: BaCO 3 : CuO =
1: 4.1: 2.3, and the temperature at the time of sintering was 900 ° C., and the others were treated in the same manner as in Example 1. The measurement results showed that the temperature at which the resistance began to drop rapidly was 89 K, and the resistance was completely zero. The temperature was 87K, and there was almost no "tail pull" phenomenon.

比較例1及び2 実施例1及び2に於いて、仮焼体を粉砕した後1ケ月
間大気中に保存し、その他は実施例1及び2と同様に処
理した。
Comparative Examples 1 and 2 In Examples 1 and 2, the calcined body was pulverized and then stored in the air for one month, and the others were treated in the same manner as in Examples 1 and 2.

これ等についての測定結果は、夫々急激に抵抗が低下
し始める温度は86K、86K、完全に抵抗がゼロになる温度
は77K、78Kであって“すそ引き”現象が顕著に現れた。
The results of these measurements showed that the temperature at which the resistance began to drop rapidly was 86K and 86K, respectively, and the temperature at which the resistance was completely zero was 77K and 78K, and the "tail pulling" phenomenon was remarkable.

【図面の簡単な説明】[Brief description of the drawings]

第1図はY、Ba及びCuの三成分系組成図であり第2図は
従来の超電導物質の製法の一例を示すフローシートであ
り、また第3図は超電導物質の抵抗と温度との関係を示
すグラフである。
FIG. 1 is a ternary composition diagram of Y, Ba and Cu, FIG. 2 is a flow sheet showing an example of a conventional method for producing a superconducting material, and FIG. 3 is a relationship between resistance and temperature of the superconducting material. FIG.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉川 允 兵庫県尼崎市東向島西之町8番地 三菱 電線工業株式会社内 (56)参考文献 特開 昭63−239153(JP,A) 特開 昭63−307155(JP,A) ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor, Masayoshi Yoshikawa 8 Nishinocho, Higashimukaijima, Amagasaki City, Hyogo Prefecture Inside Mitsubishi Cable Industries, Ltd. (56) References JP-A-63-239153 (JP, A) JP-A-63 −307155 (JP, A)

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】所定原料粉末を混合し、仮焼し、次いで該
仮焼体を粉砕した後形成し、ここに得た成形体を焼結し
て超電導物質を製造する方法に於いて上記仮焼体の粉砕
物を低温で水と共沸して水を除去しうる液媒で処理した
後乾燥することを特徴とする超電導物質の製法。
1. A method for producing a superconducting material, comprising mixing a predetermined raw material powder, calcining, and then pulverizing the calcined body to form a molded body, and sintering the obtained molded body. A method for producing a superconducting material, comprising: treating a pulverized product of a fired body with a liquid medium capable of removing water by azeotropic distillation with water at a low temperature, and then drying the resultant.
【請求項2】所定原料粉末の混合に際し、これを湿式混
合し、その後乾燥することを特徴とする特許請求の範囲
第(1)項に記載の製法。
2. The method according to claim 1, wherein said predetermined raw material powder is mixed by wet mixing and then dried.
【請求項3】前記液媒がアルコール形液媒である特許請
求の範囲第(1)項または(2)項に記載の製法。
3. The method according to claim 1, wherein said liquid medium is an alcohol type liquid medium.
【請求項4】所定原料粉末が酸化イットリウム、酸化
銅、及び炭酸バリウムの混合粉末である特許請求の範囲
第(1)項乃至第(3)項いずれかに記載の製法。
4. The method according to claim 1, wherein the predetermined raw material powder is a mixed powder of yttrium oxide, copper oxide, and barium carbonate.
【請求項5】所定原料粉末が酸化ランタン、炭酸ストロ
ンチュウム又は炭酸バリウム、及び酸化銅の混合粉末で
ある特許請求の範囲第(1)項乃至第(3)項のいずれ
かに記載の製法。
5. The method according to claim 1, wherein the predetermined raw material powder is a mixed powder of lanthanum oxide, strontium carbonate or barium carbonate, and copper oxide. .
【請求項6】得られる超電導物質のイットリウム、バリ
ウム及び銅の組成が第1図に示す三成分組成図に於いて
斜線で示した範囲となるように原料粉末を配合すること
を特徴とする特許請求の範囲第(1)項または第(4)
項に記載の製法。
6. A patent characterized in that the raw material powders are blended so that the composition of yttrium, barium and copper of the obtained superconducting substance falls within the range shown by hatching in the ternary composition diagram shown in FIG. Claim (1) or (4)
Production method described in the section.
JP62233249A 1987-09-17 1987-09-17 Production method of superconducting material Expired - Lifetime JP2587651B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62233249A JP2587651B2 (en) 1987-09-17 1987-09-17 Production method of superconducting material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62233249A JP2587651B2 (en) 1987-09-17 1987-09-17 Production method of superconducting material

Publications (2)

Publication Number Publication Date
JPS6476948A JPS6476948A (en) 1989-03-23
JP2587651B2 true JP2587651B2 (en) 1997-03-05

Family

ID=16952112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62233249A Expired - Lifetime JP2587651B2 (en) 1987-09-17 1987-09-17 Production method of superconducting material

Country Status (1)

Country Link
JP (1) JP2587651B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995014226A1 (en) * 1993-11-19 1995-05-26 Ceramatec, Inc. Multi-functional sensor for combustion systems
US5670949A (en) * 1993-12-23 1997-09-23 Hughes Aircraft Company Carbon monoxide/hydrocarbon thin film sensor
US6051123A (en) * 1995-06-15 2000-04-18 Gas Research Institute Multi-functional and NOx sensor for combustion systems
JP5743877B2 (en) * 2011-12-27 2015-07-01 株式会社フジクラ Target manufacturing method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63239153A (en) * 1987-03-27 1988-10-05 Sanyo Electric Co Ltd Production of superconductive material
JPS63307155A (en) * 1987-06-10 1988-12-14 Kazuo Fueki Production of superconductor

Also Published As

Publication number Publication date
JPS6476948A (en) 1989-03-23

Similar Documents

Publication Publication Date Title
Garnier et al. Relationship among synthesis, microstructure and properties in sinter-forged Bi-2212 ceramics
JP2721189B2 (en) Method for producing oxide superconductor, composite oxide powder as precursor of oxide superconductor, and method for producing the same
JP2587651B2 (en) Production method of superconducting material
JPH04237910A (en) Manufacture of bismuth oxide superconducting wire rod
Sastry et al. Towards the synthesis of the single-phase Bi-2223 superconductor from stoichiometric (Bi, Pb) 2Ca2Sr2Cu3Oy compositions
JP2587652B2 (en) Production method of superconducting material
JP2585020B2 (en) Production method of superconducting material
JP3287028B2 (en) Tl, Pb-based oxide superconducting material and method for producing the same
JP2677882B2 (en) Method for producing bismuth oxide superconductor
JP2767750B2 (en) Method for producing oriented oxide superconductor
JPH01309503A (en) High performance antenna
JPH0193460A (en) Production of superconducting substance
JPH01131087A (en) Production of superconducting substance
JP2634187B2 (en) Method for producing thallium-based oxide superconductor
JPH01176205A (en) Production of superconducting substance
JPH01295803A (en) Manufacture of superconducting material
US5229035A (en) Bi-Pb-Sr-Ca-Cu-O system superconductors
JP2821568B2 (en) Method for producing superconducting whisker composite
JPH05182541A (en) Manufacture of bismuth group oxide superconductor
Ko et al. Fabrication and Properties of Ultra Fine MgO Added Bi-2223/MgO/Ag Tapes
JPH10101337A (en) Calcined powder for producing bi-containing oxide superconductor
JPH01131076A (en) Production of superconducting substance
Yamashita et al. Bi-2223 precursor billets for PIT wire production
JPH04334819A (en) Manufacture of bismuth oxide superconducting wire
JPH05170515A (en) Production of oxide superconductor