JP2767750B2 - Method for producing oriented oxide superconductor - Google Patents

Method for producing oriented oxide superconductor

Info

Publication number
JP2767750B2
JP2767750B2 JP1137184A JP13718489A JP2767750B2 JP 2767750 B2 JP2767750 B2 JP 2767750B2 JP 1137184 A JP1137184 A JP 1137184A JP 13718489 A JP13718489 A JP 13718489A JP 2767750 B2 JP2767750 B2 JP 2767750B2
Authority
JP
Japan
Prior art keywords
sheet
oxide superconductor
solvent
weight
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1137184A
Other languages
Japanese (ja)
Other versions
JPH035358A (en
Inventor
浩正 下嶋
惠三 塚本
千丈 山岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON SEMENTO KK
Original Assignee
NIPPON SEMENTO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON SEMENTO KK filed Critical NIPPON SEMENTO KK
Priority to JP1137184A priority Critical patent/JP2767750B2/en
Publication of JPH035358A publication Critical patent/JPH035358A/en
Application granted granted Critical
Publication of JP2767750B2 publication Critical patent/JP2767750B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Press-Shaping Or Shaping Using Conveyers (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、配向性酸化物超伝導体の製造方法に関し、
特に液体窒素温度以上で超伝導特性を示す酸化物超伝導
膜体の製造方法に関するものである。
The present invention relates to a method for producing an oriented oxide superconductor,
In particular, the present invention relates to a method for producing an oxide superconducting film exhibiting superconductivity at a temperature of liquid nitrogen or higher.

[従来の技術] Bi−Pb−Sr−Ca−Cu−O系(110K級)、La−Sr−Cu−
O系(40K級)、La−Ba−Cu−O系(90K級)及びY−Ba
−Cu−O系(90K級)酸化物は、超伝導を示す材料であ
る。
[Prior art] Bi-Pb-Sr-Ca-Cu-O system (110K class), La-Sr-Cu-
O system (40K class), La-Ba-Cu-O system (90K class) and Y-Ba
-Cu-O-based (90K class) oxide is a material exhibiting superconductivity.

これらの材料を線材等に加工するための厚膜体の製造
は、各種原料酸化物粉末を各組成の所定の配合量で配合
したり、この配合物を仮焼した粉末材料と可塑剤、バイ
ンダ、分散剤及び溶剤とを混合し、ドクターブレード法
によりシート状に加工した後、このシートを各超伝導酸
化物に適した温度(例えばBi−Pb−Sr−Ca−Cu−O系で
は840〜850℃)で数百時間、空気中で強熱処理し、半溶
融状態にした後冷却して厚膜を得ていた。
For the production of a thick film body for processing these materials into a wire, etc., various raw material oxide powders are compounded in a predetermined compounding amount of each composition, or a powder material obtained by calcining the compound and a plasticizer and a binder. , A dispersant and a solvent, mixed and processed into a sheet by a doctor blade method, and then the sheet is subjected to a temperature suitable for each superconducting oxide (for example, 840 to 800 for a Bi-Pb-Sr-Ca-Cu-O system). (850 ° C.) for hundreds of hours in the air, in a semi-molten state, and then cooled to obtain a thick film.

[発明が解決しようとする問題点] しかしながら、上記の方法で厚膜を製造した場合、酸
化物超伝導体の結晶粒子が板状結晶であったりするた
め、強熱処理中に生成した結晶粒子は無秩序な方向に成
長するため。それ故、緻密な厚膜が得られず、また、超
伝導電流は板状結晶の結晶面に平行に流れるので、無秩
序な結晶配向の結果、臨界電流密度が低いという問題が
あった。
[Problems to be Solved by the Invention] However, when a thick film is produced by the above method, the crystal particles of the oxide superconductor are plate-like crystals, and thus the crystal particles generated during the strong heat treatment are To grow in a chaotic direction. Therefore, a dense thick film cannot be obtained, and the superconducting current flows in parallel with the crystal plane of the plate-like crystal, which causes a problem that the critical current density is low as a result of disordered crystal orientation.

[問題点を解決するための手段] 本発明者等は、この結晶配向の向上させるべく、シー
ト加工材料、加工条件、熱処理条件等につき研究した結
果、熱プレスによって膜体の結晶配向が大きく改善され
ることを見出した。
[Means for Solving the Problems] The present inventors studied sheet processing materials, processing conditions, heat treatment conditions, and the like in order to improve the crystal orientation. As a result, the crystal orientation of the film was greatly improved by hot pressing. Found to be.

すなわち本発明は、酸化物超伝導体の粉末を、可塑
剤、バインダ、分散剤及び溶剤と混合し、脱泡した後、
シート状に加工し、乾燥し、得られた乾燥シートを65〜
100℃、5000〜10000kg/cm2で熱プレスしたのち、該シー
トを焼成することを特徴とする配向性酸化物超伝導体の
製造方法である。
That is, the present invention is to mix the oxide superconductor powder, plasticizer, binder, dispersant and solvent, and after defoaming,
It is processed into a sheet and dried, and the resulting dried sheet is 65 ~
This is a method for producing an oriented oxide superconductor, which comprises hot pressing at 100 ° C. and 5000 to 10,000 kg / cm 2 and then firing the sheet.

本発明において原料化合物として用いられる酸化物や
炭酸塩の配合は、作製しようとする超伝導体により異な
るが、例えばBi−Pb−Sr−Ca−Cu−O系ではその金属原
子比が次のような範囲になるよう配合される。
The compounding of the oxides and carbonates used as the raw material compounds in the present invention varies depending on the superconductor to be produced.For example, in the Bi-Pb-Sr-Ca-Cu-O system, the metal atom ratio is as follows. It is blended so that it may be in the proper range.

Bi:0.6〜1.1 Pb:0.2〜0.4 Sr:0.7〜1.1 Ca:0.7〜1.1 Cu:1.4〜2.2 また、Ba−Y−Cu−O系ではBa:Y:Cu=2:1:3の原子比
になるように配合すればよい。
Bi: 0.6 to 1.1 Pb: 0.2 to 0.4 Sr: 0.7 to 1.1 Ca: 0.7 to 1.1 Cu: 1.4 to 2.2 In the Ba-Y-Cu-O system, the atomic ratio of Ba: Y: Cu = 2: 1: 3 What is necessary is just to mix | blend so that it may become.

上記の範囲外の配合では、得られた超伝導体の臨界温
度が低くなる。
When the content is outside the above range, the critical temperature of the obtained superconductor becomes low.

上記配合比の各化合物を混合するに当たっては、アル
コール(メタノール、エタノール、イソプロパノール
等)と共に24時間混合した後、100℃で乾燥するのが好
ましい。
When mixing the compounds having the above mixing ratios, it is preferable that the compounds are mixed with an alcohol (methanol, ethanol, isopropanol, etc.) for 24 hours and then dried at 100 ° C.

得られた混合粉末を、適度な温度で(例えば例えばBi
−Pb−Sr−Ca−Cu−O系では780〜820℃、Ba−Y−Cu−
O系では850〜900℃程度)で10〜20時間仮焼して炭酸成
分を分解させ、次いでこの仮焼粉末を845〜860℃の温度
で、酸素の存在下、通常空気中で10〜100時間強熱処理
する。
The obtained mixed powder is mixed at an appropriate temperature (for example, Bi
-Pb-Sr-Ca-Cu-O system, 780-820 ° C, Ba-Y-Cu-
Calcination at about 850-900 ° C for O-system for 10-20 hours to decompose the carbonic acid component, and then calcining the powder at a temperature of 845-860 ° C in the presence of oxygen, usually in air for 10-100 Heat treatment for a long time.

この強熱処理された焼成粉末にバインダ、可塑剤、分
散剤及び溶剤を配合し、十分に粉砕混合してスラリーと
する。
A binder, a plasticizer, a dispersant, and a solvent are blended with the strongly heat-treated calcined powder, and sufficiently crushed and mixed to form a slurry.

上記で用いるバインダは、シート成形に際して保形性
を与えるもので、例えばポリビニルブチラール、ポリビ
ニルアルコール、ポリアクリル酸エステル、ニトロセル
ロース、ポリメタクリル酸エステル、エチルセルロース
等が用いられ、可塑剤はバインダを軟らかくし、例えば
ジブチルフタレート、プチルベンジルフタレート、ブチ
ルステアレート、ジメチルフタレート等が用いられる。
また、分散剤はスラリーの凝集を防ぎ、例えばオレイン
酸エチル、脂肪酸(グリセリントリオレエート)、天然
魚油、オクタジエン等が用いられる。
The binder used above gives shape retention at the time of sheet molding, for example, polyvinyl butyral, polyvinyl alcohol, polyacrylate, nitrocellulose, polymethacrylate, ethyl cellulose, etc. are used, and the plasticizer softens the binder. For example, dibutyl phthalate, butylbenzyl phthalate, butyl stearate, dimethyl phthalate and the like are used.
In addition, the dispersant prevents aggregation of the slurry, and for example, ethyl oleate, fatty acid (glycerin trioleate), natural fish oil, octadiene and the like are used.

また溶剤としては、メタノール、エタノール、ブタノ
ール、イソプロパノール等の低級アルコール、キシレ
ン、トルエン等の芳香族系溶媒、その他トリクロロエチ
レン、酢酸エチル、メチルエチルケトン等が挙げられ、
特に溶剤としてアルコール系溶剤と芳香族系溶剤との混
合溶剤、例えばトルエン/酢酸エチル、エチルアルコー
ル/トリクロロエチレン等の混合溶媒を用いることが好
ましい。
As the solvent, methanol, ethanol, butanol, lower alcohols such as isopropanol, xylene, aromatic solvents such as toluene, other trichloroethylene, ethyl acetate, methyl ethyl ketone and the like,
In particular, it is preferable to use a mixed solvent of an alcohol solvent and an aromatic solvent as a solvent, for example, a mixed solvent of toluene / ethyl acetate, ethyl alcohol / trichloroethylene and the like.

これらの配合割合は、 焼成粉末:100重量部 バインダ:2〜5重量部 可塑剤 :2〜5重量部 分散剤 :1〜2重量部 溶剤 :40〜60重量部 である。 The mixing ratio of these is as follows: calcined powder: 100 parts by weight Binder: 2 to 5 parts by weight Plasticizer: 2 to 5 parts by weight Dispersant: 1 to 2 parts by weight Solvent: 40 to 60 parts by weight

焼成粉末とバインダ等の混合はボールミル中で行な
い、混合時間は少なくとも10時間以上行なうことが望ま
しい。
The mixing of the calcined powder and the binder is performed in a ball mill, and the mixing time is preferably at least 10 hours or more.

混合粉砕して得られたスラリー状の混合物を、ロータ
リーポンプ等で減圧しながら撹拌することによって脱泡
した後、厚さ100〜300μmのシート状に加工する。
The slurry-like mixture obtained by mixing and pulverizing is defoamed by stirring under reduced pressure with a rotary pump or the like, and then processed into a sheet having a thickness of 100 to 300 μm.

このシート成形は、ポリエチレン、ポリプロピレン等
のプラスチックシート上にドクターブレード法により延
展して行なうが、カレンダーロール法、押出法等の方法
を採用してもよい。
The sheet is formed by extending the sheet on a plastic sheet such as polyethylene or polypropylene by a doctor blade method, but a method such as a calendar roll method or an extrusion method may be employed.

成形されたシートは、常温で乾燥させた後、5000〜10
000kg/cm2の荷重をかけ、その状態を10〜20分間維持す
る。荷重は通常油圧プレスが用いられる。5000kg/cm2
満の荷重では結晶配向の改善効果が少なく、10000kg/cm
2以上の荷重をかけても効果の向上は少ない。
After drying the formed sheet at room temperature, 5000 ~ 10
Apply a load of 000 kg / cm 2 and maintain that state for 10-20 minutes. The load is usually a hydraulic press. Little improvement in crystal orientation at 5000 kg / cm 2 less than the load, 10000 kg / cm
Even if a load of 2 or more is applied, the improvement in the effect is small.

加圧処理が終了したら、400〜500℃の温度で配合添加
物を揮発又は燃焼させて除去(脱脂処理)した後、空気
中又は適当な酸素分圧中で、各種酸化物超伝導体が合成
できる温度(例えばBi−Pb−Sr−Ca−Cu−O系の場合84
5〜860℃)で10〜120時間強熱処理し、その後焼成炉内
で放冷する。
After the pressure treatment is completed, the compounded additives are removed by volatilization or burning at a temperature of 400 to 500 ° C (degreasing treatment), and then various oxide superconductors are synthesized in air or at an appropriate partial pressure of oxygen. Temperature (for example, in the case of Bi-Pb-Sr-Ca-Cu-O system 84
(5 to 860 ° C) for 10 to 120 hours, and then allowed to cool in a firing furnace.

得られた膜体は臨界温度が高く、その臨界電流密度も
高いので、膜体にまま又は線材に加工して超伝導体とし
ての各種の用途に利用することができる。
Since the obtained film has a high critical temperature and a high critical current density, it can be used as a superconductor as it is or after being processed into a wire.

[実施例] 実施例1 Bi2O3、PbO、SrCO3、CaCO3及びCuOの粉末を金属原子
比が Bi:Pb:Sr:Ca:Cu=0.96:0.24:1:1:1.6 となるように配合し、メタノールを加えて24時間混合し
た後、100℃で乾燥した。乾燥粉末を空気中800℃仮焼し
て炭酸成分を分解した。仮焼粉末を20mmφ×10mmtに成
形し、空気中850℃で60時間処理して燒結させた。
Example 1 Example 1 Powders of Bi 2 O 3 , PbO, SrCO 3 , CaCO 3 and CuO were prepared so that the metal atomic ratio was Bi: Pb: Sr: Ca: Cu = 0.96: 0.24: 1: 1: 1.6. After mixing with methanol for 24 hours, the mixture was dried at 100 ° C. The dried powder was calcined in air at 800 ° C. to decompose the carbonic acid component. The calcined powder was formed into a size of 20 mmφ × 10 mmt, and was sintered at 850 ° C. for 60 hours in the air.

燒結体を粉砕し、得られた粉末100重量部に対して ポリビニルブチラール 3重量部 ジブチルフタレート 3重量部 オレイン酸エチル 1重量部 エタノール 23重量部 キシレン 23重量部 を加え、24時間混合粉砕し、次いで減圧下において脱泡
した。
The sintered body is pulverized, and polyvinyl butyral 3 parts by weight dibutyl phthalate 3 parts by weight Ethyl oleate 1 part by weight Ethanol 23 parts by weight Xylene 23 parts by weight is added to 100 parts by weight of the obtained powder, and mixed and pulverized for 24 hours. Degassed under reduced pressure.

得られたペーストをポリエチレンシート上に延ばして
厚さ200μmのシートに加工した。このシートを室温で
乾燥し、20mm×10mmの角片に切り出した。
The obtained paste was spread on a polyethylene sheet and processed into a sheet having a thickness of 200 μm. The sheet was dried at room temperature and cut into square pieces of 20 mm × 10 mm.

この角片からポリエチレンシートを外し、70℃に加熱
しながら油圧プレスで20トン(10000kg/cm2)の荷重を1
0分間加えた。
Remove the polyethylene sheet from these square pieces and apply a load of 20 tons (10000 kg / cm 2 ) with a hydraulic press while heating to 70 ° C.
Added for 0 minutes.

加圧した角片を空気中850℃で14時間強熱処理した
後、炉内で放冷した。
The pressurized square piece was subjected to a strong heat treatment in air at 850 ° C. for 14 hours and then allowed to cool in a furnace.

得られた膜について液体ヘリウムによる冷却下で四端
子法で臨界温度、臨界電流密度を測定した。また、膜の
配向性をX線回折計により、(002)面回折線強度(I
(002))と(200)面回折線強度(I(200))とから、以下
の式により求めた。
The critical temperature and critical current density of the obtained film were measured by a four-terminal method under cooling with liquid helium. The orientation of the film was measured by X-ray diffractometer using the (002) plane diffraction line intensity (I
(002) ) and (200) plane diffraction line intensity (I (200) ) were determined by the following equation.

結果は第1表に示す。 The results are shown in Table 1.

実施例2、3 実施例1で加圧片の強熱処理温度を変え場合の結果を
第1表に示す。
Examples 2 and 3 Table 1 shows the results obtained in Example 1 when the heat treatment temperature of the pressure piece was changed.

実施例4 実施例1と同様の実験をYBa2Cu3Oxについて行なった
場合の結果を第1表に示す。
Example 4 Table 1 shows the results when the same experiment as in Example 1 was performed for YBa 2 Cu 3 O x .

比較例1、2 実施例1で角片の熱プレスを行なわなかった以外はす
べて実施例1と同様に行なった(比較例1)。
Comparative Examples 1 and 2 The same procedure was performed as in Example 1 except that the square pieces were not hot pressed (Comparative Example 1).

また、実施例4で角片の熱プレスを行なわなかった以
外はすべて実施例4と同様に行なった(比較例2)。
Further, the same procedure was performed as in Example 4 except that the square pieces were not hot-pressed (Comparative Example 2).

得られた結果は第1表に示す。 The results obtained are shown in Table 1.

[発明の効果] 本発明の方法によれば、燒結体ペーストより成形され
たシートを加熱下で加圧することにより、板状結晶の配
向が改善される経過、臨界電流密度の高い酸化物超伝導
体膜を得ることができる。
[Effects of the Invention] According to the method of the present invention, the sheet formed from the sintered paste is pressed under heating to improve the orientation of the plate-like crystals, and the oxide superconductivity having a high critical current density A body membrane can be obtained.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) B28B 3/00 - 5/12 C04B 35/00 - 35/22 C01G 1/00 H01B 13/00 565──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 6 , DB name) B28B 3/00-5/12 C04B 35/00-35/22 C01G 1/00 H01B 13/00 565

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】酸化物超伝導体の粉末を、可塑剤、バイン
ダ、分散剤及び溶剤と混合し、脱泡した後、シート状に
加工し、乾燥し、得られた乾燥シートを65〜100℃、500
0〜10000kg/cm2で熱プレスしたのち、該シートを焼成す
ることを特徴とする配向性酸化物超伝導体の製造方法。
1. A powder of an oxide superconductor is mixed with a plasticizer, a binder, a dispersant and a solvent, defoamed, processed into a sheet, and dried. ° C, 500
A method for producing an oriented oxide superconductor, wherein the sheet is calcined after hot pressing at 0 to 10,000 kg / cm 2 .
JP1137184A 1989-05-30 1989-05-30 Method for producing oriented oxide superconductor Expired - Lifetime JP2767750B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1137184A JP2767750B2 (en) 1989-05-30 1989-05-30 Method for producing oriented oxide superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1137184A JP2767750B2 (en) 1989-05-30 1989-05-30 Method for producing oriented oxide superconductor

Publications (2)

Publication Number Publication Date
JPH035358A JPH035358A (en) 1991-01-11
JP2767750B2 true JP2767750B2 (en) 1998-06-18

Family

ID=15192768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1137184A Expired - Lifetime JP2767750B2 (en) 1989-05-30 1989-05-30 Method for producing oriented oxide superconductor

Country Status (1)

Country Link
JP (1) JP2767750B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5187149A (en) * 1991-02-15 1993-02-16 At&T Bell Laboratories Method of making a ribbon-like or sheet-like superconducting oxide composite body
JP4921144B2 (en) * 2006-12-14 2012-04-25 文明農機株式会社 Chrysanthemum cultivation net take-up collection machine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61275158A (en) * 1985-05-27 1986-12-05 松下電工株式会社 Manufacture of piezoelectric ceramic
JPS63277555A (en) * 1987-05-08 1988-11-15 Kanegafuchi Chem Ind Co Ltd Oxide superconductive ceramic sintered material and production thereof

Also Published As

Publication number Publication date
JPH035358A (en) 1991-01-11

Similar Documents

Publication Publication Date Title
EP0587326B1 (en) Method for making rare earth superconductive composite
EP0303249B1 (en) Method of manufacturing oxide superconductor, and method of manufacturing composite oxide powder which is the precursor of the oxide superconductor
Gubser et al. Superconducting phase transitions in the La-M-Cu-O layered perovskite system, M= La, Ba, Sr, and Pb
DE68921382T2 (en) Method for producing bismuth oxide superconductors.
JP2767750B2 (en) Method for producing oriented oxide superconductor
Spann et al. Preparation of Orthorhombic Ba2YCu3O7 Powder by Single‐Step Calcining
DE3932423C2 (en)
US5260263A (en) Superconductive ceramic wire and method for producing the same
JP2632514B2 (en) Manufacturing method of ceramic superconductor
JPH0345301A (en) Manufacture of oxide superconductive tape wire
JPH06176637A (en) Manufacture of bi oxide superconductive wire
JP2978538B2 (en) Superconducting material with high density crystal structure
Hamadneh et al. Effect of nano sized oxalate precursor on the formation of REBa2Cu3O7− δ (RE= Gd, Sm, Ho) ceramic via coprecipitation method
JP2803819B2 (en) Manufacturing method of oxide superconductor
JP3160899B2 (en) Method for producing oxide high-temperature superconductor
DE68927914T2 (en) METHOD FOR PRODUCING HOMOGENOUS HIGH TEMPERATURE SUPER LADDERS
JP2969221B2 (en) Manufacturing method of oxide superconductor
USH1138H (en) Processing method for superconducting ceramics
JP2590242B2 (en) Manufacturing method of oxide superconductor
KR0144727B1 (en) Manufacturing method of high temperature superconductor of ytrium system
JP3044394B2 (en) Manufacturing method of magnetic shield
JP3115357B2 (en) Manufacturing method of oxide superconducting material
JP2866484B2 (en) Manufacturing method of oxide superconductor
JP2574173B2 (en) Superconducting wire manufacturing method
JPS63303851A (en) Sintered body of superconducting ceramic