JPS63277555A - Oxide superconductive ceramic sintered material and production thereof - Google Patents

Oxide superconductive ceramic sintered material and production thereof

Info

Publication number
JPS63277555A
JPS63277555A JP62112722A JP11272287A JPS63277555A JP S63277555 A JPS63277555 A JP S63277555A JP 62112722 A JP62112722 A JP 62112722A JP 11272287 A JP11272287 A JP 11272287A JP S63277555 A JPS63277555 A JP S63277555A
Authority
JP
Japan
Prior art keywords
metal
powder
sintered material
copper
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62112722A
Other languages
Japanese (ja)
Inventor
Tsutomu Nanao
勉 七尾
Masao Yokoyama
横山 昌夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP62112722A priority Critical patent/JPS63277555A/en
Publication of JPS63277555A publication Critical patent/JPS63277555A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To promote improvement of critical current value, by orienting C axis at a right angle to the direction applying current in the titled sintered material having perovskite type layer structure. CONSTITUTION:In oxide superconductive ceramic linear sintered material having perovskite type layer structure composed of IIa metal, IIIa metal and copper, C axis is oriented at a right angle to the direction applying current. An oxide superconductive ceramic powder having perovskite type layer structure formed from IIa metal, IIIa metal and copper having >=3 aspect ratio and 0.1-1,000mu length in longer direction is used in order to produce such a sintered material. The powder is blended with an organic binder and the blend is molded to sheet to orient the powder and then the sheet is laminated and sintered. The sintered material having C axis oriented in the thickness direction is readily obtained thereby.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、高い臨界温度を有するIla金属、銅、ma
属金金属ら構成された、ペロブスカイト型金属酸化物超
電導性セラミックス焼結体及びその製造法に関するもの
で、特に大きな臨界電流値が得られるように電流を流す
方向に対してC軸が配向された焼結体及び該焼結体の製
造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION "Industrial Application Field" The present invention is applicable to Ila metal, copper, ma
This relates to a perovskite-type metal oxide superconducting ceramic sintered body composed of metallic metals and its manufacturing method, in which the C-axis is oriented with respect to the direction of current flow so as to obtain a particularly large critical current value. The present invention relates to a sintered body and a method for manufacturing the sintered body.

「従来技術と問題点」 IIa金属銅、IIIa属金属から構成されたペロブス
カイト型金属酸化物超電導セラミックスは、今までの最
高の臨界転移温度であったNb、Ge(23,2K)を
大幅に超える高い臨界転移温度が発見されて以来各方面
で注目されている。
"Prior art and problems" Perovskite-type metal oxide superconducting ceramics composed of IIa metal copper and IIIa group metals have significantly higher critical transition temperatures than Nb and Ge (23.2K), which were the highest to date. Since the discovery of a high critical transition temperature, it has attracted attention in various fields.

特に、この組成においてma属金金属してイツトリウム
やランタン系希土類金属を用いた化合物は臨界転移温度
が液体窒素の沸点(77,3K)を超えるものが得られ
ており、冷却材として希少資源であり、しかも約20倍
も高価な液体ヘリウムにかわって安価で冷却効率のよい
液体窒素が使えるので、半導体デバイス、超電導磁石、
エネルギー貯蔵等の大幅な用途の拡大が期待できる。
In particular, compounds using yttrium or lanthanum-based rare earth metals as ma group metals with this composition have been obtained with critical transition temperatures exceeding the boiling point of liquid nitrogen (77.3K), and are considered rare resources as coolants. Moreover, liquid nitrogen, which is cheaper and has better cooling efficiency, can be used instead of liquid helium, which is about 20 times more expensive, so it can be used for semiconductor devices, superconducting magnets,
Significant expansion of applications such as energy storage can be expected.

しかし、この酸化物超電導性セラミックスは高いR界転
移温度と高い臨界磁場が得られるという優れた長所を有
しているが、従来のNb2 GeやNb、Snに比べて
極めて小さな臨界電流しか得られていないという問題点
を有しており、この欠点が実用に際しての大きな障害に
なっている。
However, although this oxide superconducting ceramic has the excellent advantages of being able to obtain a high R-field transition temperature and a high critical magnetic field, it can only obtain an extremely small critical current compared to conventional Nb2Ge, Nb, and Sn. This drawback is a major obstacle to practical use.

この酸化物超電導性セラミックスは層状構造を有するペ
ロブスカイト型化合物であり、aSS性は銅−酸素の八
面体構造の繋がっている部分により発生していると言わ
れており、結晶学的に超電導性の異方性があり、a、b
軸方向に超電導性がある。このため、通常のセラミック
スの焼結方法によって得られる多結晶体では、超電導性
を持つ結晶軸が揃っておらず臨界電流値が低くなり、更
に高い臨界電流値を得るためにはC軸方向の揃った多結
晶体を作り、超電導性の得られるa、b軸方向に電流を
流す必要がある。
This oxide superconducting ceramic is a perovskite-type compound with a layered structure, and the aSS property is said to occur due to the connected parts of the copper-oxygen octahedral structure. There is anisotropy, a, b
Superconducting in the axial direction. For this reason, in polycrystalline bodies obtained by normal ceramic sintering methods, the crystal axes of superconductivity are not aligned, resulting in a low critical current value.In order to obtain an even higher critical current value, it is necessary to It is necessary to create a uniform polycrystalline body and to flow current in the a- and b-axis directions where superconductivity can be obtained.

本発明者らはこのIla金属、銅、ma属金属から構成
された、ペロブスカイト型金属酸化物超電導性セラミッ
クスの臨界電流値を向上させる検討を進めているなかで
、この結晶体がa、b軸方向に襞間面を持った構造を存
しており、原料の製造方法によっては雲母状あるいは鱗
片状のC軸に配向しやすい粉末が得られることを見出し
、更に、特定のアスペクト比を有するこの酸化物超電導
性粉末に存機バインダーを加えて機械的ストレスをかけ
てシート状に成形した後、焼結させることにより、著し
く臨界電流値の向上した焼結体が得られることを見出し
、本発明に到達した。
The present inventors have been conducting studies to improve the critical current value of perovskite-type metal oxide superconducting ceramics composed of Ila metal, copper, and Ma group metal. It has been found that depending on the manufacturing method of the raw material, it is possible to obtain a powder that is easily oriented along the C-axis in a mica-like or scale-like manner. It has been discovered that a sintered body with a significantly improved critical current value can be obtained by adding a binder to oxide superconducting powder, applying mechanical stress, forming it into a sheet, and then sintering it, and has developed the present invention. reached.

「問題点を解決するための手段」 本発明は、特定の結晶軸が配向して臨界電流値の向上し
た酸化物超電導性セラミックス焼結体及びその製造方法
に関するものである。
"Means for Solving the Problems" The present invention relates to an oxide superconducting ceramic sintered body in which specific crystal axes are oriented and the critical current value is improved, and a method for manufacturing the same.

更に詳しくは、本発明の第1は、電流を流す方向に対し
て直角にC軸が配向されていることを特徴とする、Il
a金属、IIIa金属、銅から構成された層状のペロブ
スカイト型構造を存する酸化物超電導性セラミックス焼
結体を、 本発明の第2は、アスペクト比が3以上で長手方向の長
さが0.1μm以上1000μm以下の■a金金属ma
属金属、銅から構成された層状のペロブスカイト型構造
を有する酸化物超電導性セラミックス粉体を、を機バイ
ンダーに混合した後シート状に成形して粉体を配向させ
、次いで前記シーlを積層して焼結させることを特徴と
する酸化物超電導性セラミックス焼結体の製造方法をそ
れぞれ内容とするものである。
More specifically, the first aspect of the present invention is that the C-axis is oriented at right angles to the direction of current flow.
The second aspect of the present invention is an oxide superconducting ceramic sintered body having a layered perovskite structure composed of a metal, IIIa metal, and copper, and having an aspect ratio of 3 or more and a longitudinal length of 0.1 μm. ■a Gold metal ma of not less than 1000μm
An oxide superconducting ceramic powder having a layered perovskite structure composed of a metallic metal and copper is mixed with a mechanical binder, and then formed into a sheet to orient the powder, and then the above seal is laminated. Each content is a method for manufacturing an oxide superconducting ceramic sintered body, which is characterized by sintering the oxide superconducting ceramic body.

本発明に用いられる酸化物超を導性セラミックス粉体は
、IIa金属、銅、ma金金属ら構成された、臨界転移
温度が液体窒素の沸点以上、特に好ましくは90に以上
の臨界転移温度を有する組成であることが望ましく、具
体的には次の一般式(1)に示す組成が好ましい。
The oxide superconducting ceramic powder used in the present invention is composed of IIa metal, copper, and MA gold metal, and has a critical transition temperature of at least the boiling point of liquid nitrogen, particularly preferably at least 90. Specifically, the composition shown in the following general formula (1) is preferable.

AM  ’ Bl−X  ’ Cuy  ” Os  
 ” ’  (Hここで、A:IIa金属 B:ma属金属 x:Q、l<x<0.9 y:Q、3<y<5 z : 2<z<B 11a金属としては、マグネシウム、カルシウム、スト
ロンチウム、バリウムの1種以上、そして■al;Ii
i金属としては、スカンジウム、イツトリウム、ランタ
ン系希土類金属の1種以上の組み合わせが好ましい。
AM'Bl-X' Cuy” Os
"' (H Here, A: IIa metal B: ma group metal x: Q, l<x<0.9 y: Q, 3<y<5 z: 2<z<B 11a Metals include magnesium, One or more of calcium, strontium, and barium, and ■al;Ii
The i-metal is preferably a combination of one or more of scandium, yttrium, and lanthanum-based rare earth metals.

また、この化合物は層状結晶構造を有し襞間性があるた
め、合成方法を工夫することにより、本発明にとって好
ましい、厚み方向にC軸が揃った鱗片状もしくは板状の
酸化物超電導性セラミックス粉体が得られる。本発明に
好ましい粉体の形状はアスペクト比が3以上で、長手方
向の長さが061μm以上1000μm以下であり、特
に好ましくはアスペクト比が5以上30以下で、長手方
向の長さが1μmから100μmのものである。この様
な粉体は通常の合成方法でも可能であるが、更に融剤と
なるアルカリまたはアルカリ土類金属のハロゲン化物を
加えて焼成し、この焼成物を融剤を溶かしながら粉砕す
ることにより、アスペクト比の大きな焼結用原料が得ら
れる。
In addition, since this compound has a layered crystal structure and has interfold properties, by devising a synthesis method, it is possible to create a scale-like or plate-like oxide superconducting ceramic with the C axis aligned in the thickness direction, which is preferable for the present invention. A powder is obtained. The shape of the powder preferable for the present invention has an aspect ratio of 3 or more and a length in the longitudinal direction of 061 μm or more and 1000 μm or less, particularly preferably an aspect ratio of 5 or more and 30 or less and a length in the longitudinal direction of 1 μm to 100 μm. belongs to. Such a powder can be produced by ordinary synthesis methods, but by adding an alkali or alkaline earth metal halide as a flux, firing it, and pulverizing the fired product while dissolving the flux, A raw material for sintering with a large aspect ratio can be obtained.

この様にして得られたアスペクト比の高い酸化物超電導
セラミックス原料粉末を、有機パインダ−を加えて混合
したのち、ロール加工やドクターブレード法などにより
機械的ストレスをかけてシート状に成形することによっ
て、原料粒子を厚み方向に対してC軸に配向することが
できる。更に、このシートを積層するかテープ状の形体
にし焼成することによって、臨界電流値の向上したブロ
ック状またはリボン状の焼結体が得られる。
The oxide superconducting ceramic raw material powder with a high aspect ratio obtained in this way is mixed with an organic binder, and then formed into a sheet by applying mechanical stress by rolling or doctor blading. , raw material particles can be oriented along the C-axis with respect to the thickness direction. Furthermore, by laminating these sheets or forming them into a tape-like shape and firing them, a block-like or ribbon-like sintered body with an improved critical current value can be obtained.

有機バインダーは有機高分子単体、あるいは更に可塑剤
や溶剤で希釈した通常セラミックスの成形に用いられる
バインダー系が使用可能で特に制約はないが、大気中の
焼成で速やかに分解または燃焼して揮散することが好ま
しく、例えば有機高分子としてポリ酢酸ビニル、ポリエ
チレングリコール、ポリビニルブチラール、ポリグリコ
ール酸、ポリブテン、ポリウレタン、ポリビニルアルコ
ール、ポリエチレン、ポリプロピレン、ポリエチレン酢
酸ビニル共重合体などが挙げられる。また当然ながら、
これにフタル酸エステル等の可塑剤や潤滑剤、有機溶剤
などの成型加工上の添加剤の添加は一向に構わない。
The organic binder can be a single organic polymer or a binder system that is diluted with a plasticizer or solvent and is usually used for molding ceramics, and there are no particular restrictions, but it will quickly decompose or burn and volatilize when fired in the atmosphere. Examples of organic polymers include polyvinyl acetate, polyethylene glycol, polyvinyl butyral, polyglycolic acid, polybutene, polyurethane, polyvinyl alcohol, polyethylene, polypropylene, and polyethylene-vinyl acetate copolymer. Also, of course,
Additives for molding processing such as plasticizers such as phthalate esters, lubricants, and organic solvents may be added to this.

シート状の成型加工は通常のセラミックスの成型加工方
法により成型が可能であり、例えばドクターブレード法
、ロール加工、押出し成型法が挙げられ、特に機械的な
シェアーを強くしてなるべく薄く成型することにより、
鱗片状酸化物超電導性粉末の配向がより向上する。
Sheet-like molding can be performed using normal ceramic molding methods, such as the doctor blade method, roll processing, and extrusion molding methods.In particular, by strengthening the mechanical shear and molding as thin as possible. ,
The orientation of the scaly oxide superconducting powder is further improved.

得られた成型体を酸化性雰囲気、好ましくは大気中ある
いはこれよりも酸素濃度が高い雰囲気中で焼成すること
により本発明の焼結体が得られる。
The sintered body of the present invention can be obtained by firing the obtained molded body in an oxidizing atmosphere, preferably in the atmosphere or in an atmosphere with a higher oxygen concentration.

焼成温度は800℃〜1200℃、好ましくは850℃
〜1000℃で、30分以上、特に4時間以上焼成する
と結晶成長が進み、更に臨界電流値の向上が実現できる
Firing temperature is 800℃~1200℃, preferably 850℃
Firing at ~1000° C. for 30 minutes or more, particularly 4 hours or more, promotes crystal growth and further improves the critical current value.

「実施例」 次に、実施例を以て本発明の更に詳しい説明を行うが、
当然ながら本発明は実施例のみに限定されるものではな
い。
“Examples” Next, the present invention will be explained in more detail with reference to Examples.
Naturally, the present invention is not limited to the examples.

実施例 走査電子顕微鏡による観察で、アスペクト比が約8で長
手方向の長さが約7μmのイツトリウム、バリウム、銅
の金属組成比が1:2:3からなる層状ペロブスカイト
型酸化物超電導性粉末にポリ酢酸ビニル溶液を加え攪拌
してペースト状にしたのち、テフロンフィルム上にバー
コーターを用いてコーテイング後乾燥して厚さ約200
μmのフィルムを得た。
Example Observation using a scanning electron microscope revealed that a layered perovskite-type oxide superconducting powder with an aspect ratio of about 8 and a longitudinal length of about 7 μm and a metal composition ratio of yttrium, barium, and copper of 1:2:3 was obtained. Add polyvinyl acetate solution and stir to make a paste, then coat it on a Teflon film using a bar coater and dry to a thickness of about 200mm.
A μm film was obtained.

次に、このフィルムを10枚積層してプレス成形した後
、酸化雰囲気で950℃5時間焼成して、厚さ約1.3
flの板状焼結体を得た。X線回折による分析の結果、
この焼結体は原料粉末に比べて厚み方向にC軸が強く配
向していることが分かった。
Next, 10 of these films were laminated and press-molded, and then baked at 950°C for 5 hours in an oxidizing atmosphere to a thickness of about 1.3 cm.
A plate-shaped sintered body of fl was obtained. As a result of analysis by X-ray diffraction,
It was found that the C-axis of this sintered body was more strongly oriented in the thickness direction than that of the raw material powder.

この焼結体上に銀電極を取り付け、直流四端子法により
導電性の温度変化を測定したところ、96にで抵抗の急
激な低下が始まり93.5 Kで測定器の検出限界を超
える低い電気抵抗となり、超電導状態に達したものと判
断した。
When a silver electrode was attached to this sintered body and temperature changes in conductivity were measured using the DC four-probe method, the resistance began to drop rapidly at 96 K and a low electrical current exceeding the detection limit of the measuring device was detected at 93.5 K. It became a resistance and was judged to have reached a superconducting state.

また、測定中に電流値を変えてみたが、同一組成で、ア
スペクト比が3未満の常法による酸化物超電導性粉末を
用いて同様な方法で得た焼結体に比較して、超電導の転
移温度の変化量は1/3近く小さかった。このことは明
らかには界電流値が向上したことを示している。
In addition, although we tried changing the current value during the measurement, we found that the superconductivity of The amount of change in transition temperature was nearly 1/3 smaller. This clearly shows that the field current value has improved.

「作用・効果」 畝上のように、本発明の酸化物超電導性セラミックス焼
結体は臨界電流値が向上する。
"Action/Effect" As shown in the ridges, the oxide superconducting ceramic sintered body of the present invention has an improved critical current value.

Claims (1)

【特許請求の範囲】 1、電流を流す方向に対して直角にC軸が配向されてい
ることを特徴とする、IIa金属、IIIa金属、銅から構
成された層状のペロブスカイト型構造を有する酸化物超
電導性セラミックス焼結体。 2、アスペクト比が3以上で長手方向の長さが0.1μ
m以上1000μm以下のIIa金属、IIIa属金属、銅
から構成された層状のペロブスカイト型構造を有する酸
化物超電導性セラミックス粉体を、有機バインダーに混
合した後シート状に成形して粉体を配向させ、次いで前
記シートを焼結させることを特徴とする酸化物超電導性
セラミックス焼結体の製造方法。
[Claims] 1. An oxide having a layered perovskite structure composed of IIa metal, IIIa metal, and copper, characterized in that the C-axis is oriented at right angles to the direction of current flow. Superconducting ceramic sintered body. 2. Aspect ratio is 3 or more and longitudinal length is 0.1μ
An oxide superconducting ceramic powder having a layered perovskite structure composed of IIa metal, IIIa group metal, and copper with a diameter of 1000 μm or more is mixed with an organic binder and then formed into a sheet to orient the powder. . A method for producing an oxide superconducting ceramic sintered body, the method comprising: then sintering the sheet.
JP62112722A 1987-05-08 1987-05-08 Oxide superconductive ceramic sintered material and production thereof Pending JPS63277555A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62112722A JPS63277555A (en) 1987-05-08 1987-05-08 Oxide superconductive ceramic sintered material and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62112722A JPS63277555A (en) 1987-05-08 1987-05-08 Oxide superconductive ceramic sintered material and production thereof

Publications (1)

Publication Number Publication Date
JPS63277555A true JPS63277555A (en) 1988-11-15

Family

ID=14593890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62112722A Pending JPS63277555A (en) 1987-05-08 1987-05-08 Oxide superconductive ceramic sintered material and production thereof

Country Status (1)

Country Link
JP (1) JPS63277555A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63285159A (en) * 1987-05-19 1988-11-22 Matsushita Electric Ind Co Ltd Production of superconductor of oxide
JPS6479011A (en) * 1987-09-21 1989-03-24 Furukawa Electric Co Ltd Flaky oxide superconductor and production thereof
JPH01100021A (en) * 1987-05-31 1989-04-18 Sumitomo Electric Ind Ltd Superconducting thin film
JPH01108144A (en) * 1987-10-19 1989-04-25 Seiko Epson Corp Superconducting material
JPH01275426A (en) * 1988-04-27 1989-11-06 Kyocera Corp Oxide superconductor and production thereof
JPH035358A (en) * 1989-05-30 1991-01-11 Nippon Cement Co Ltd Production of orientable oxide superconductor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63285159A (en) * 1987-05-19 1988-11-22 Matsushita Electric Ind Co Ltd Production of superconductor of oxide
JPH01100021A (en) * 1987-05-31 1989-04-18 Sumitomo Electric Ind Ltd Superconducting thin film
JPS6479011A (en) * 1987-09-21 1989-03-24 Furukawa Electric Co Ltd Flaky oxide superconductor and production thereof
JPH01108144A (en) * 1987-10-19 1989-04-25 Seiko Epson Corp Superconducting material
JPH01275426A (en) * 1988-04-27 1989-11-06 Kyocera Corp Oxide superconductor and production thereof
JPH035358A (en) * 1989-05-30 1991-01-11 Nippon Cement Co Ltd Production of orientable oxide superconductor

Similar Documents

Publication Publication Date Title
Wei et al. Fabrication of YBa2Cu3O7− x (YBCO) superconductor bulk structures by extrusion freeforming
JP3089294B2 (en) Manufacturing method of superconducting tape material
JPS63277555A (en) Oxide superconductive ceramic sintered material and production thereof
JPH0780710B2 (en) Manufacturing method of oxide high temperature superconductor
Nies et al. Glass-bonded composites containing superconducting YBa2Cu3O9− y for levitation and magnetic shielding applications
JPS63256564A (en) Superconductive ceramic of scalelike oxide and its production
JPS63277554A (en) Oxide superconductive ceramic linear sintered material and production thereof
Ramli et al. Microstructure and superconducting properties of Ag-substituted YBa2-xAgxCu3O7-δ ceramics prepared by sol-gel method
JP3219563B2 (en) Metal oxide and method for producing the same
JP2899510B2 (en) Oxide superconductor and manufacturing method thereof
JPH0816022B2 (en) Method for manufacturing oxide superconductor
JP2855123B2 (en) Oxide superconductor
JP2599387B2 (en) Ceramic superconductor
JP3257000B2 (en) Copper oxide superconductor and method of manufacturing the same
JP3247914B2 (en) Metal oxide material
Sembiring et al. Characterization of Physical and Electrical Properties of Bi1. 8Pb0. 4Sr2Ca2-xMxCu3Oy (M= Na, Mg, Ce) Superconductor
JP2590370B2 (en) Superconducting material and manufacturing method thereof
JP2855128B2 (en) Oxide superconductor
JP2781033B2 (en) Metal oxide material
JP2002037626A (en) Method for manufacturing bismuth type high temperature superconductor
JP2855126B2 (en) Oxide superconductor
JP3059464B2 (en) Oxide material
JP2855124B2 (en) Oxide superconductor
JPH01131049A (en) Ceramic superconductor
JPS63270346A (en) Production of oxide superconductor