JP3247914B2 - Metal oxide material - Google Patents

Metal oxide material

Info

Publication number
JP3247914B2
JP3247914B2 JP09058693A JP9058693A JP3247914B2 JP 3247914 B2 JP3247914 B2 JP 3247914B2 JP 09058693 A JP09058693 A JP 09058693A JP 9058693 A JP9058693 A JP 9058693A JP 3247914 B2 JP3247914 B2 JP 3247914B2
Authority
JP
Japan
Prior art keywords
metal oxide
present
oxide material
superconducting
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09058693A
Other languages
Japanese (ja)
Other versions
JPH06279029A (en
Inventor
透 田
玉樹 小林
典夫 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP09058693A priority Critical patent/JP3247914B2/en
Publication of JPH06279029A publication Critical patent/JPH06279029A/en
Application granted granted Critical
Publication of JP3247914B2 publication Critical patent/JP3247914B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は電気伝導性を有する金属
酸化物材料に関するものである。尚、本発明の材料は、
超伝導を応用したセンサー、電子素子、コンピュータ
ー、医療機器、マグネット、送電線、エネルギー器機及
び電圧標準等、各種分野で利用可能である。又、本発明
の材料は他の酸化物や金属との接合及び分散という形態
においても利用可能である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a metal oxide material having electrical conductivity. In addition, the material of the present invention
It can be used in various fields such as superconducting sensors, electronic devices, computers, medical equipment, magnets, power lines, energy devices and voltage standards. The material of the present invention can also be used in the form of bonding and dispersion with other oxides and metals.

【0002】[0002]

【従来の技術】近年、相次いで発見された銅を含む酸化
物超伝導体は、それ以前に知られていたニオブ系等の超
伝導臨界温度(Tc)を大きく上回るTcを持つ為、多
くの分野で応用研究が進められている。この様な銅を含
む酸化物超伝導体の中では、Y系と呼ばれるYBa2Cu3O
y 、Bi系と呼ばれるBi2Sr2CanCu1+nOy(n=0,1,2) 及
び、Tl系と呼ばれるTl2Ba2CanCu1+nOy(n=0,1,2) が特
によく知られている。このうち特にBi系は、加工が容
易であるという特徴を有することから、応用化の研究開
発が活発に行われている。
2. Description of the Related Art In recent years, oxide superconductors containing copper, which have been discovered one after another, have a Tc which is much higher than the superconducting critical temperature (Tc) of a niobium or the like which has been known before. Applied research is in progress in the field. Among such oxide superconductors containing copper, YBa 2 Cu 3 O
y, Bi 2 Sr called Bi type 2 Ca n Cu 1 + n O y (n = 0,1,2) and, Tl 2 Ba 2 Ca n Cu 1 + n O y (n = 0 , called Tl type, 1,2) are particularly well known. Among them, the Bi system is particularly active in research and development for application since it has a feature of easy processing.

【0003】[0003]

【発明が解決しようとしている課題】しかしながら、上
記のBi系の材料は、重金属であるBiの含有率が高
く、製造及び廃却の際、十分注意を要するという問題点
があった。又、単相化するのが難しく、特性を制御しに
くいという問題点があった。更に、磁場中での臨界電流
密度が極端に下がり、マグネットとしての利用には適さ
ないという問題点があった。
However, the Bi-based material described above has a problem in that the content of Bi, which is a heavy metal, is high, and sufficient care must be taken during production and disposal. Further, there is a problem that it is difficult to form a single phase, and it is difficult to control characteristics. Further, there is a problem that the critical current density in a magnetic field is extremely reduced, and is not suitable for use as a magnet.

【0004】従って、本発明の目的は、Bi等の重金属
の含有量の少ない、安全性のより高い超伝導材料である
金属酸化物材料を提供することにある。又、本発明の他
の目的は、単相化が容易であり、超伝導材料としての特
性を制御しやすい金属酸化物材料を提供することにあ
る。更に、本発明の他の目的は、磁場中での臨界電流密
度の低下がより少ない超伝導材料である金属酸化物材料
を提供することにある。
[0004] Accordingly, an object of the present invention is to provide a metal oxide material which is a highly safe superconducting material having a low content of heavy metals such as Bi. Another object of the present invention is to provide a metal oxide material which can be easily made into a single phase and whose characteristics as a superconducting material can be easily controlled. It is a further object of the present invention to provide a metal oxide material which is a superconducting material with less decrease in critical current density in a magnetic field.

【0005】[0005]

【問題点を解決する為の手段】上記の目的は、以下の本
発明により達成される。即ち、本発明は、組成式がX
Cu3−c と表される金属酸化
物材料において、1.5≦a≦2.5、3.5≦b≦
4.5、0.2≦c≦1.1及び9≦d≦13であり、
且つXがBi及びPbの元素群から選ばれた1種類以上
の元素又は原子団であり、且つYがSr、Ba及びLn
(LnはY若しくはランタノイド元素)の元素群から選
ばれた1種類以上の元素又は原子団であることを特徴と
する金属酸化物材料である。
The above objects are achieved by the present invention described below. That is, in the present invention, the composition formula is X a
In the metal oxide material expressed as Y b Cu 3-c C c O d, 1.5 ≦ a ≦ 2.5,3.5 ≦ b ≦
4.5, 0.2 ≦ c ≦ 1.1 and 9 ≦ d ≦ 13,
And X is one or more elements or atomic groups selected from the element group of Bi and Pb, and Y is Sr, Ba and Ln.
(Ln is Y or a lanthanoid element) The metal oxide material is one or more elements or atomic groups selected from the group of elements.

【0006】[0006]

【作用】本発明者らは、上記した従来技術の問題点を解
決すべく、従来のBi系とは異なった結晶構造及び組成
を有する材料を鋭意研究の結果、本発明に至った。本発
明により、組成比で換算してBiの含有量を数割減少さ
せ、安全性に優れた材料を得ることができた。又、単相
の材料が容易に得られ、磁場中での臨界電流密度が従来
のBi系と比較して大きい為、優れた超伝導特性を示す
材料が得られた。
The present inventors have conducted intensive studies on materials having a crystal structure and composition different from those of the conventional Bi system in order to solve the above-mentioned problems of the prior art, and have reached the present invention. According to the present invention, the Bi content can be reduced by several percent in terms of the composition ratio, and a material excellent in safety can be obtained. In addition, since a single-phase material was easily obtained and the critical current density in a magnetic field was larger than that of a conventional Bi-based material, a material having excellent superconductivity was obtained.

【0007】[0007]

【好ましい実施態様】次に、好ましい実施態様を挙げて
本発明を詳細に説明する。本発明の金属酸化物材料は、
上記組成を有する限りいずれのものでもよいが、特に好
ましい組成としては、上記組成比においてXをBi1-x
Pbx と表記した際、0≦x≦0.5であり、且つYを
Sr1-yy と表記した際、MがBa若しくはLnで、
0≦y≦0.3のものである。又、結晶構造としては、
結晶格子が正方晶若しくは斜方晶であり、格子定数
(c)が37Å以上40Å以下であるものが好ましい。
Next, the present invention will be described in detail with reference to preferred embodiments. The metal oxide material of the present invention,
Any composition may be used as long as it has the above composition, but a particularly preferred composition is that X is Bi 1-x
When expressed as pb x, a 0 ≦ x ≦ 0.5, and the Y when expressed as Sr 1-y M y, with M is Ba or Ln,
0 ≦ y ≦ 0.3. Also, as the crystal structure,
It is preferable that the crystal lattice is tetragonal or orthorhombic and the lattice constant (c) is 37 ° or more and 40 ° or less.

【0008】本発明の金属酸化物材料を作成する方法と
しては、所謂セラミックス材料で一般に使われている様
な、原料粉末からの加熱による反応及び焼結法が可能で
ある。上記の方法の例としては、Material Research Bu
lletin 第8巻777頁(1973年)、Solid State Commun
ication 第17巻27頁(1975年)、Zeitschrift fur
Physik B 第64巻189頁(1986年)、Physical Revi
ew Letters 第58巻第9号908頁(1987年)等に示
されており、これらの方法は、現在では定性的には極め
て一般的な方法として知られている。又、特に本発明の
材料を得るには、合成雰囲気として、酸素と二酸化炭素
が適当な分圧であることが良い。
As a method for preparing the metal oxide material of the present invention, a reaction and sintering method by heating raw material powder, which is generally used for a so-called ceramic material, is possible. An example of the above method is Material Research Bu
lletin Vol. 8, p. 777 (1973), Solid State Commun
ication Vol. 17, p. 27 (1975), Zeitschrift fur
Physik B Vol. 64, p. 189 (1986), Physical Revi
ew Letters, Vol. 58, No. 9, page 908 (1987) and the like, and these methods are qualitatively known as extremely general methods at present. In particular, in order to obtain the material of the present invention, it is preferable that oxygen and carbon dioxide have an appropriate partial pressure as the synthesis atmosphere.

【0009】特に本発明を超伝導電子素子用の基板とし
て用いる場合、原料粉末をフラックス等を用い、高温で
溶解してから単結晶成長させる方法も有用である。又、
本発明を薄膜の電子素子やシールド材に利用する場合、
原料を含むターゲットを用いた高周波スパッタリングや
マグネトロンスパッタリング等のスパッタリング法、電
子ビーム蒸着、MBE法、その他の真空蒸着法或はクラ
スターイオンビーム法や原料にガスを使うCVD法又は
プラズマCVD法等を使って基板上、若しくは超伝導薄
膜上に薄膜状に形成することが出来る。上記の方法で得
られた本発明の金属酸化物材料は、焼成条件や組成によ
りその超伝導転移温度が変化するが、最適組成では超伝
導転移温度が70Kにまで達する。従って、本発明の超
伝導体は液体ヘリウム温度での利用は勿論のこと、簡単
な冷却器によっても利用可能となる。又、本発明で使用
する原料は全て安価なものであり、低い原料コストで、
安価に提供することが可能である。
In particular, when the present invention is used as a substrate for a superconducting electronic device, a method of dissolving a raw material powder at a high temperature using a flux or the like and then growing a single crystal is also useful. or,
When the present invention is used for a thin film electronic element or a shielding material,
Using sputtering methods such as high-frequency sputtering or magnetron sputtering using a target containing raw materials, electron beam evaporation, MBE, other vacuum evaporation methods, cluster ion beam methods, CVD using gas as raw material, or plasma CVD. To form a thin film on a substrate or a superconducting thin film. The superconducting transition temperature of the metal oxide material of the present invention obtained by the above method varies depending on the firing conditions and composition, but the superconducting transition temperature reaches 70 K with the optimum composition. Therefore, the superconductor of the present invention can be used not only at a liquid helium temperature but also by a simple cooler. Also, the raw materials used in the present invention are all inexpensive, with low raw material costs,
It can be provided at low cost.

【0010】[0010]

【実施例】次に、実施例及び比較例を挙げて、本発明を
更に具体的に説明する。 <実施例1〜実施例10、比較例1〜比較例10>原料
としてBi2O3 、PbO 、SrCO3 、NiO 、Sc2O3 及びCuO を
用い、これらを適当な組成比に秤量して乾式混合した。
次に、これらの混合物を夫々φ10mm及び厚み1mmのペ
レット状に加圧形成し、得られた形成物を夫々アルミナ
ボートの上で700〜900℃で、大気中若しくは酸素
と二酸化炭素の混合ガス中で反応及び焼結させ、本実施
例及び比較例の金属酸化物材料を作成した。得られたサ
ンプルに関し、室温から液体ヘリウム温度の範囲で、4
端子による電気抵抗率測定及びEPMAによる組成評価
を行った。尚、ここで、組成比はEPMAで測定した
為、酸素の量に関しては20%程度の誤差が含まれる。
Next, the present invention will be described more specifically with reference to examples and comparative examples. <Examples 1 to 10, Comparative Examples 1 to 10> Bi 2 O 3, PbO , SrCO 3, NiO, and Sc 2 O 3 and CuO as starting materials, were weighed them in an appropriate composition ratio Dry mixed.
Next, these mixtures are formed into pellets each having a diameter of 10 mm and a thickness of 1 mm under pressure, and the resulting products are each placed on an alumina boat at 700 to 900 ° C. in the air or a mixed gas of oxygen and carbon dioxide. The reaction and sintering were performed to produce metal oxide materials of the present example and comparative examples. Regarding the obtained sample, in the range of room temperature to liquid helium temperature, 4
The electrical resistivity was measured using terminals and the composition was evaluated using EPMA. Here, since the composition ratio was measured by EPMA, an error of about 20% is included in the amount of oxygen.

【0011】表1に実施例における組成比及びそれらの
超伝導転移温度Tc(K)を示した。又、表2には、比
較例の仕込み組成と、電気的特性若しくは超伝導転移温
度を示した。表1から、本発明の金属酸化物材料が、全
てTc=30K以上の超伝導体となることがわかる。こ
の場合、特に組成比が下記の組成比の場合に超伝導転移
温度が40Kを越えており、超伝導特性が優れていた。 (Bi1−xPbSrCu3−c
(0≦x≦0.5) 又、表2の比較例の結果から、本発明の組成比以外の材
料では超伝導転移を示さないか、或は示してもTcが2
0K以下と低いことがわかる。
Table 1 shows the composition ratios and the superconducting transition temperatures Tc (K) of the examples. Table 2 shows the charged composition of the comparative example and the electrical characteristics or the superconducting transition temperature. Table 1 shows that the metal oxide materials of the present invention are all superconductors with Tc of 30K or more. In this case, particularly when the composition ratio was the following composition ratio, the superconducting transition temperature exceeded 40 K, and the superconducting properties were excellent. (Bi 1-x Pb x) a Sr b Cu 3-c C c O d
(0 ≦ x ≦ 0.5) Also, from the results of the comparative examples in Table 2, materials other than the composition ratio of the present invention show no superconducting transition, or even if they show Tc of 2
It turns out that it is as low as 0K or less.

【0012】更に、図1には、実施例1のサンプルの電
気抵抗率の温度依存性のグラフを示したが、約70Kか
ら超伝導転移が始まり、60Kでゼロ抵抗になってい
る。従って、実施例1で得られた金属酸化物材料は、液
体ヘリウム温度よりはるかに高い温度で超伝導になるこ
とがわかる。
Further, FIG. 1 shows a graph of the temperature dependence of the electrical resistivity of the sample of Example 1. The superconducting transition starts at about 70K and reaches zero resistance at 60K. Therefore, it is understood that the metal oxide material obtained in Example 1 becomes superconductive at a temperature much higher than the liquid helium temperature.

【0013】図2には、実施例1のサンプルを電子顕微
鏡で観察して結晶構造を調べた結果の、c軸に垂直方向
から見た場合の簡略図を示した。結晶構造は、層状ペロ
ブスカイト構造をしており、c軸の長さが約39Åの正
方晶であった。又、実施例1のサンプルと所謂”Bi
2212相”と呼ばれているBiSrCaCu
のサンプルの、磁場中での臨界電流密度を50Kで比
較してみると、実施例1のサンプルの方が2倍以上大き
な値を示した。更に、電子顕微鏡観察及びX線回折実験
からもサンプル1がきれいな単相であることを確認する
ことが出来た。
FIG. 2 is a simplified diagram of the sample of Example 1 observed with an electron microscope to examine the crystal structure when viewed from a direction perpendicular to the c-axis. The crystal structure was a layered perovskite structure, and was a tetragonal crystal with a c-axis length of about 39 °. In addition, the sample of Example 1 and the so-called “Bi
Bi 2 Sr 2 CaCu 2 O, which is referred to as the 2212 phase "
Comparing the critical current densities in the magnetic field of the sample No. 8 in the magnetic field at 50 K, the sample of the example 1 showed a value more than twice as large. Furthermore, it was also confirmed from the electron microscope observation and the X-ray diffraction experiment that Sample 1 was a clean single phase.

【0014】[0014]

【表1】表1 実施例1〜実施例10における組成比と
Tc値
TABLE 1 Composition ratio and Tc value in Examples 1 to 10

【0015】[0015]

【表2】表2 比較例1〜比較例10における組成比と
電気特性
Table 2 Composition ratios and electrical characteristics in Comparative Examples 1 to 10

【0016】<実施例11〜20>原料としてBi
、PbO 、SrCO 、BaCO 、La
、Y及びCuOを使用し、これらを適当な
組成比に秤量して乾式混合した。得られた混合物を、実
施例1〜10と同様に反応及び焼結させ、本発明の金属
酸化物材料を調製し、それらの電気抵抗率と組成分析を
行った。表3に、実施例の組成比及びその超伝導転移温
度Tc(K)を示した。尚、ここで、組成比はEPMA
で測定した為、酸素の量に関しては20%程度の誤差が
含まれる。
<Examples 11 to 20> Bi 2 O as a raw material
3 , PbO, SrCO 3 , BaCO 3 , La 2
O 3 , Y 2 O 3 and CuO were used, weighed to an appropriate composition ratio, and dry-mixed. The obtained mixture was reacted and sintered in the same manner as in Examples 1 to 10, to prepare metal oxide materials of the present invention, and to analyze their electrical resistivity and composition. Table 3 shows the composition ratio and the superconducting transition temperature Tc (K) of the examples. Here, the composition ratio is EPMA
, The amount of oxygen contains an error of about 20%.

【0017】表3から本発明の材料が、全てTc=30
K以上の超伝導体となることがわかる。特に組成比が下
記の組成比の場合に、超伝導転移温度が40Kを越えて
おり、超伝導特性が優れていることがわかる。 (Bi1-xPbx)a(Sr1-yMy)bCu3-cCcOd (0≦y≦0.5、MはBa若しくはLnである)
From Table 3, it can be seen that all the materials of the present invention have Tc = 30.
It turns out that it becomes a superconductor of K or more. In particular, when the composition ratio is the following composition ratio, the superconducting transition temperature exceeds 40K, and it can be seen that the superconductivity is excellent. (Bi 1-x Pb x) a (Sr 1-y M y) b Cu 3-c C c O d (0 ≦ y ≦ 0.5, M is Ba or Ln)

【0018】[0018]

【表3】表3 実施例11〜実施例20における組成比
とTc値
Table 3 Composition ratios and Tc values in Examples 11 to 20

【0019】[0019]

【効果】以上説明した様に、本発明の金属酸化物材料に
より以下の効果を期待することが出来る。 (1)Bi含有量の少ない超伝導材料が得られる為、合
成、使用及び廃棄の際の安全性に優れる。 (2)単相試料の作製が容易であり、超伝導特性の制御
が容易な超伝導材料が得られる。 (3)従来のBi系超伝導材料の問題点であった、磁場
中での臨界電流密度の低下を抑えることが可能になり、
1テスラ中で比較すると2倍以上に向上させることが出
来る。これにより、超伝導マグネットへの応用も可能な
ものとなる。 (4)超伝導転移温度が70Kと高く、液体ヘリウム中
での使用は勿論、安易な冷却装置によっても利用可能と
なる。
As described above, the following effects can be expected from the metal oxide material of the present invention. (1) Since a superconducting material having a low Bi content can be obtained, the safety in synthesis, use and disposal is excellent. (2) It is easy to prepare a single-phase sample, and a superconducting material with easy control of superconductivity can be obtained. (3) It is possible to suppress a decrease in critical current density in a magnetic field, which is a problem of the conventional Bi-based superconducting material,
It can be improved by a factor of two or more when compared in 1 Tesla. Thereby, application to a superconducting magnet is also possible. (4) The superconducting transition temperature is as high as 70 K, so that it can be used not only in liquid helium but also with an easy cooling device.

【0020】[0020]

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1のBi1.5Pb0.5Sr4Cu2CO11の電気抵抗率
の温度依存性のグラフである。
FIG. 1 is a graph showing the temperature dependence of the electrical resistivity of Bi 1.5 Pb 0.5 Sr 4 Cu 2 CO 11 in Example 1.

【図2】実施例1のBi1.5Pb0.5Sr4Cu2CO11を電子顕微鏡
で観察して結晶構造を調べた結果のc軸に垂直方向から
見た場合の簡略図である。
FIG. 2 is a simplified diagram of Bi 1.5 Pb 0.5 Sr 4 Cu 2 CO 11 of Example 1 as viewed from a direction perpendicular to the c-axis as a result of examining a crystal structure by observation with an electron microscope.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭64−3009(JP,A) 特開 平3−218925(JP,A) 特開 平1−122923(JP,A) (58)調査した分野(Int.Cl.7,DB名) C01G 1/00 CA(STN) JICSTファイル(JOIS) REGISTRY(STN) WPI(DIALOG)────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-64-3009 (JP, A) JP-A-3-218925 (JP, A) JP-A-1-122923 (JP, A) (58) Survey Field (Int. Cl. 7 , DB name) C01G 1/00 CA (STN) JICST file (JOIS) REGISTRY (STN) WPI (DIALOG)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 組成式がX Cu3−c
と表される金属酸化物材料において、1.5≦a
≦2.5、3.5≦b≦4.5、0.2≦c≦1.1及
び9≦d≦13であり、且つXがBi及びPbの元素群
から選ばれた1種類 以上の元素又は原子団であり、且
つYがSr、Ba及びLn(LnはY若しくはランタノ
イド元素)の元素群から選ばれた1種類以上の元素又は
原子団であることを特徴とする金属酸化物材料。
1. A composition formula X a Y b Cu 3-c C c
In a metal oxide material represented by Od , 1.5 ≦ a
≦ 2.5, 3.5 ≦ b ≦ 4.5, 0.2 ≦ c ≦ 1.1 and 9 ≦ d ≦ 13, and X is at least one element selected from the group consisting of Bi and Pb. A metal oxide material, wherein the metal oxide material is an element or an atomic group, and Y is one or more elements or atomic groups selected from an element group of Sr, Ba, and Ln (Ln is Y or a lanthanoid element).
【請求項2】 XをBi1-x Pbx と表記した際、0≦
x≦0.5であり、且つYをSr1-yy と表記した
際、MがBa若しくはLnで、0≦y≦0.3である請
求項1に記載の金属酸化物材料。
2. When X is represented as Bi 1-x Pb x , 0 ≦
an x ≦ 0.5, and when the Y was expressed as Sr 1-y M y, M is at Ba or Ln, metal oxide material according to claim 1 which is 0 ≦ y ≦ 0.3.
【請求項3】 結晶格子が正方晶若しくは斜方晶であ
り、格子定数(c)が37Å以上40Å以下である請求
項1に記載の金属酸化物材料。
3. The metal oxide material according to claim 1, wherein the crystal lattice is tetragonal or orthorhombic, and the lattice constant (c) is 37 ° or more and 40 ° or less.
JP09058693A 1993-03-26 1993-03-26 Metal oxide material Expired - Fee Related JP3247914B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09058693A JP3247914B2 (en) 1993-03-26 1993-03-26 Metal oxide material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09058693A JP3247914B2 (en) 1993-03-26 1993-03-26 Metal oxide material

Publications (2)

Publication Number Publication Date
JPH06279029A JPH06279029A (en) 1994-10-04
JP3247914B2 true JP3247914B2 (en) 2002-01-21

Family

ID=14002561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09058693A Expired - Fee Related JP3247914B2 (en) 1993-03-26 1993-03-26 Metal oxide material

Country Status (1)

Country Link
JP (1) JP3247914B2 (en)

Also Published As

Publication number Publication date
JPH06279029A (en) 1994-10-04

Similar Documents

Publication Publication Date Title
US4880771A (en) Bismuth-lead-strontium-calcium-cuprate superconductors
Maeda et al. Synthesis and characterization of the superconducting cuprates (Pb, Cu) Sr 2 (Y, Ca) Cu 2 O z
JP2664387B2 (en) Superconductor and its equipment
US5340796A (en) Oxide superconductor comprising Cu, Bi, Ca and Sr
EP0800494B1 (en) LOW TEMPERATURE (T LOWER THAN 950 oC) PREPARATION OF MELT TEXTURE YBCO SUPERCONDUCTORS
US5389603A (en) Oxide superconductors, and devices and systems comprising such a superconductor
JP3247914B2 (en) Metal oxide material
JPH0881221A (en) Oxide superconductor and its production
JP3219563B2 (en) Metal oxide and method for producing the same
JP3217905B2 (en) Metal oxide material and method for producing the same
CN1018311B (en) Method for film forming of bismuth system complex oxide superconductive film
JP2859516B2 (en) Oxide superconductor and manufacturing method thereof
JP3287667B2 (en) Metal oxide
JP2555505B2 (en) Metal oxide material
Kirschner et al. High-Tc Superconductivity in La-Ba-Cu-O and Y-Ba-Cu-O Compounds
JP3242252B2 (en) Metal oxide material and superconducting device using the same
JP2817170B2 (en) Manufacturing method of superconducting material
JPH0616419A (en) Infinite-layer superconductor
JP2801806B2 (en) Metal oxide material
JP2749194B2 (en) Method for producing Bi-Sr-Ca-Cu-O-based superconductor
KR0119192B1 (en) New high-tc superconductors and process for preparing them
JP2716698B2 (en) Method for producing superconducting oxide
JPH0230618A (en) Oxide high-temperature superconductor
JPH04292418A (en) Oxide superconductor and its production
JPH01164728A (en) Oxide superconducting material

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081102

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091102

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees