JPH01164728A - Oxide superconducting material - Google Patents

Oxide superconducting material

Info

Publication number
JPH01164728A
JPH01164728A JP62323595A JP32359587A JPH01164728A JP H01164728 A JPH01164728 A JP H01164728A JP 62323595 A JP62323595 A JP 62323595A JP 32359587 A JP32359587 A JP 32359587A JP H01164728 A JPH01164728 A JP H01164728A
Authority
JP
Japan
Prior art keywords
magnetic field
critical
superconducting material
oxide
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62323595A
Other languages
Japanese (ja)
Inventor
Shigeyuki Tsurumi
重行 鶴見
Makoto Hikita
疋田 真
Tsunekazu Iwata
岩田 恒和
Yukimichi Tajima
田嶋 幸道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP62323595A priority Critical patent/JPH01164728A/en
Publication of JPH01164728A publication Critical patent/JPH01164728A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To obtain an oxide superconducting material having high critical electric current and critical magnetic field by providing a specified compsn. consisting of Nd, Ba, Cu and O. CONSTITUTION:This oxide superconducting material has an oxide compsn. contg. neodymium, barium and copper and represented by the formula [where 0.95<=Y<=1.05, 0.2<=X<=0.5 and 6.5<=delta<=7.1 (delta is decided according to X and Y)]. Since BaCuO2 does not deposit on the grain boundary of the superconducting material and the oxide represented by the formula is present as a single phase, the superconducting material has the advantages of high critical electric current and critical magnetic field at 77K.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、特に高い臨界電流、高い臨界磁場を有する酸
化物超伝導材料に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention particularly relates to oxide superconducting materials having high critical current and high critical magnetic field.

〔従来の技術〕[Conventional technology]

1987年ヒユーストン大学のWuとChuによりY+
、z Bao、q CuOδの組成で93Kから80に
の間で超伝導へ転移する酸化物超伝導が報告された。し
かしながら、これらの組成は、超伝導を示す相の他に超
伝導を示さない相が混在していた。
1987 Y+ by Wu and Chu of Hyuston University
, z Bao, q CuOδ transition to superconductivity between 93K and 80K was reported. However, these compositions contained a phase that did not exhibit superconductivity in addition to a phase that exhibited superconductivity.

続いて、Be1l研のCavaらは、超伝導は、Y:B
a:Cu=1:2:3の組成を有するYBa2Cu30
δ(δ=6.0〜7.0)であり、結晶構造は、斜方晶
系の属する酸素欠損ペロブスカイト構造であることを明
かとした。これとほぼ同時に、Yをランタン系列の元素
La、Nd、Sm、Eu、Gd、Dy。
Subsequently, Cava et al. of the Be1l laboratory discovered that superconductivity is caused by Y:B
a: YBa2Cu30 with a composition of Cu=1:2:3
δ (δ=6.0 to 7.0), and the crystal structure was revealed to be an oxygen-deficient perovskite structure belonging to the orthorhombic system. At about the same time, Y was replaced with lanthanum series elements La, Nd, Sm, Eu, Gd, and Dy.

Ho、、Er、Tm、Yb、Luで置換したLBazC
u30δ (Lは、前述ランタン系元素)でも、80に
〜90にの超伝導転移温度を有することが報告された。
LBazC substituted with Ho, Er, Tm, Yb, Lu
It has been reported that u30δ (L is the aforementioned lanthanum-based element) also has a superconducting transition temperature of 80 to 90.

〔解決しようとする問題点〕[Problem to be solved]

YBa2Cu30δの単結晶、及び単結晶薄膜が作製さ
れ高い臨界磁場や高い臨界電流を有することが示された
。しかし、YBa2Cu30δの焼結体を用いた測定で
は、超伝導転移温度は高いが、ゼロ磁場中及び磁場中で
の臨界磁場を測定すると単結晶で測定された値に比べ1
〜2桁程度小さく、応用上重要な問題であることが明ら
かとなった。
Single crystals and single crystal thin films of YBa2Cu30δ were fabricated and shown to have high critical magnetic fields and high critical currents. However, in measurements using a sintered body of YBa2Cu30δ, the superconducting transition temperature is high, but when measuring the critical magnetic field in zero magnetic field and in a magnetic field, it is 1
This is about two orders of magnitude smaller, and it has become clear that this is an important problem in terms of application.

YBazCuzOδBaCu0Oδ、臨界磁場が小さい
ことの主たる原因は、YBa2Cu306の粒界に存在
する絶縁層であることが分かってきた。
It has been found that the main reason why the critical magnetic field is small in YBazCuzOδBaCu0Oδ is the insulating layer existing at the grain boundaries of YBa2Cu306.

YBazCu30δは木質的に不安定で粒界においてY
BazCu30δ→YJaCuOδ+BaCuO2+C
uOと分解して絶縁体が生成する。
YBazCu30δ is woody and unstable, with Y at the grain boundaries.
BazCu30δ→YJaCuOδ+BaCuO2+C
It decomposes with uO to produce an insulator.

このように、YBa2Cu30Bで臨界電流、臨界磁場
が小さいことは材料特性そのものに根差したものであり
、これを改善するのは粒界が存在する以上、困難な状況
であった。
As described above, the fact that the critical current and critical magnetic field are small in YBa2Cu30B is rooted in the material properties themselves, and it has been difficult to improve this because of the presence of grain boundaries.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、これまでの高温超伝導体の低い臨界電流、臨
界磁場特性を解決した単一相の高い臨界電流、臨界磁場
を有する酸化物高温超伝導体を提供しようとするもので
あり、具体的にはNd−Ba−Cu系酸化物においてB
aCuO2が粒界に析出しない組成領域を明確にし、高
い臨界電流、高い臨界磁場が得られる酸化物超伝導体を
得ることにある。
The present invention aims to provide an oxide high-temperature superconductor having a single-phase high critical current and critical magnetic field, which solves the low critical current and critical magnetic field characteristics of conventional high-temperature superconductors. Specifically, B in Nd-Ba-Cu oxides
The objective is to clarify the compositional region in which aCuO2 does not precipitate at grain boundaries, and to obtain an oxide superconductor that can obtain a high critical current and a high critical magnetic field.

〔実施例〕〔Example〕

(実施例1) NdBa2Cu30δは YBazCu30δと同様に
粒界において、次のような反応を起こして分解する。
(Example 1) Like YBazCu30δ, NdBa2Cu30δ is decomposed by the following reaction at the grain boundaries.

NdBa2Cu30δ →NdBa (2−X) Cu
 t3−xl OB +XB(ICLIO□この反応に
より分離されるBaCuO□、は絶縁層であり臨界電流
、臨界磁場を劣化せさる。しかし、NdBa2Cu30
δは YBa2Cu30sと異なり、広い組成範囲で固
溶体を形成するため、あらかじめより安定なNdBa 
(2−XI Cu t3−X) 08を形成することが
可能でありBaCu0zが分離しない組成の酸化物超伝
導体が得られるはずである。
NdBa2Cu30δ →NdBa (2-X) Cu
t3-xl OB +XB (ICLIO□BaCuO□ separated by this reaction is an insulating layer and degrades the critical current and critical magnetic field.
Unlike YBa2Cu30s, δ forms a solid solution over a wide composition range, so it is made of more stable NdBa in advance.
(2-XI Cu t3-X) 08 can be formed and an oxide superconductor having a composition in which BaCu0z does not separate should be obtained.

゛  表1にNdBa (2−x) Cu (3−Xl
 08系酸化物超伝導体でX−0〜0.70までの試料
の臨界温度及び臨界電流を示す。試料は950°Cの温
度で12時間、酸素雰囲気中で仮焼きを行った後、3ト
ン/ c+flの圧力で圧粉成形し、再度、950°C
112時間、□酸素雰囲気中で本焼結したものである。
゛ Table 1 shows NdBa (2-x) Cu (3-Xl
The critical temperature and critical current of samples of X-0 to 0.70 are shown for 08-based oxide superconductors. The sample was calcined at a temperature of 950°C for 12 hours in an oxygen atmosphere, then compacted at a pressure of 3 tons/c+fl, and then heated again at 950°C.
This was sintered for 112 hours in an oxygen atmosphere.

Xの増加と共に臨界温度は少し低下するが液体窒素温度
(77K)に於ける臨界電流はX≧0.2で大幅に改善
されることがわかる。これはX≧0.2で粒界において
、BaCuO□の析出が抑制されたことによる。このこ
とは、第1図に示すようにX線回折の結果からも確認で
きる。Xの増加と共に矢印で示すBaCuO□のピーク
が減少しX≧ 0.2で消えてしまうことが分かる。ま
た、NdBa’(Z−x) Cu (3−xl 08が
0≦X≦0.7の組成範囲で単相で存在していることも
確認できる。Xが0.5以上では臨界温度が液体窒素温
度以下に低下するため高温超伝導体としての利点が損な
われる。また、NdはNdBa (2−XI Cu (
3−X) 08において原子比Yが 0.95〜1.0
5でないと酸素欠損ペロブスカイト相以外の相が出現し
、臨界温度及び臨界電流が低下する。この様子は表1下
段に併せて示した。以上の結果から明らかなように、0
.95≦Y≦1.05.0.2≦X≦0.5の範囲にお
いて従来のYBa2CusOδの焼結体に比べ、77に
で大きい臨界電流が得られる改善があった。
It can be seen that as X increases, the critical temperature decreases a little, but the critical current at liquid nitrogen temperature (77 K) is significantly improved when X≧0.2. This is because the precipitation of BaCuO□ was suppressed at grain boundaries when X≧0.2. This can also be confirmed from the results of X-ray diffraction as shown in FIG. It can be seen that as X increases, the BaCuO□ peak shown by the arrow decreases and disappears when X≧0.2. It can also be confirmed that NdBa'(Z-x)Cu(3-xl08 exists as a single phase in the composition range of 0≦X≦0.7.When X is 0.5 or more, the critical temperature becomes liquid. Since the temperature decreases below the nitrogen temperature, the advantage as a high-temperature superconductor is lost.
3-X) In 08, the atomic ratio Y is 0.95 to 1.0
If it is not 5, a phase other than the oxygen-deficient perovskite phase will appear, and the critical temperature and critical current will decrease. This situation is also shown in the lower part of Table 1. As is clear from the above results, 0
.. In the range of 95≦Y≦1.05.0.2≦X≦0.5, there was an improvement in that a large critical current could be obtained in 77 compared to the conventional sintered body of YBa2CusOδ.

(実施例2) NdBa (2−X) Cu (3−x) o3におい
て、X = 0〜0.5の組成の試料について磁場を与
えない状態と1テスラの磁場を与えた状態における温度
に対する電気抵抗の変化を第2図に示す。比較のために
、YBazCu、、Oδに対する測定結果も併せて示す
。ここで、縦軸は電気抵抗、横軸は絶対温度である。X
−O,0,1の試料及びYBa2Cu308は粒界にB
aCuO2が析出しており、電流の伝導パスの面積が小
さく容易に磁場が侵入できる。このため磁場により簡単
に超伝導パスが破壊される。この結果、第2図に見られ
るように1テスラの磁場により60に付近まで超伝導を
示さない。これに対し、X=0.2〜0.5の試料はB
aCuO2の析出がないため、1テスラの磁場が与えら
れても超伝導の転移点が数に低下するだけでそれほど大
きな影響を受けない。以上の結果から明らかのように、
従来のYBa2Cu30δの焼結体に比べ、磁場に対し
て臨界温度が低下しないという改善があった。
(Example 2) In NdBa (2-X) Cu (3-x) o3, electricity versus temperature in a state where no magnetic field is applied and a state where a 1 Tesla magnetic field is applied for a sample with a composition of X = 0 to 0.5 Figure 2 shows the change in resistance. For comparison, measurement results for YBazCu, and Oδ are also shown. Here, the vertical axis is electrical resistance, and the horizontal axis is absolute temperature. X
-O,0,1 samples and YBa2Cu308 have B at the grain boundaries.
aCuO2 is precipitated, and the area of the current conduction path is small, allowing the magnetic field to easily penetrate. Therefore, the superconducting path is easily destroyed by the magnetic field. As a result, as shown in FIG. 2, superconductivity is not exhibited until around 60°C due to a 1 Tesla magnetic field. On the other hand, the sample with X=0.2~0.5 has B
Since there is no precipitation of aCuO2, even if a magnetic field of 1 Tesla is applied, the superconducting transition point will only be reduced to a few points and will not be significantly affected. As is clear from the above results,
Compared to the conventional sintered body of YBa2Cu30δ, there was an improvement in that the critical temperature did not decrease with respect to the magnetic field.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、ネオジウム(Nd)、バリウム(
Ba)、銅(Cu)で構成されたNd、−Ba (2−
x) Cu (3−Xi 08の酸化物において、0.
95≦Y≦1.05.0.2≦X≦0.5 、6.5≦
δ≦7.1(ただしδはX、Yの選択により決まる値)
の組成からなる酸化物超伝導材料は粒界にBaCuO2
が析出せずかつ単相で存在するため77Kにおける臨界
電流、臨界磁場が大きいという利点がある。
As explained above, neodymium (Nd), barium (
Nd composed of copper (Cu), -Ba (2-
x) In the oxide of Cu(3-Xi 08, 0.
95≦Y≦1.05.0.2≦X≦0.5, 6.5≦
δ≦7.1 (however, δ is a value determined by the selection of X and Y)
The oxide superconducting material has a composition of BaCuO2 at the grain boundaries.
Since it does not precipitate and exists in a single phase, it has the advantage that the critical current and critical magnetic field at 77K are large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はNdYBa (2−X) Cu f3−x) 
0&のX線回折像を示す図、第2図は磁場がない場合と
ある場合(1テスラ)における電気抵抗の温度変化を示
す図である。
Figure 1 shows NdYBa (2-X) Cu f3-x)
FIG. 2 is a diagram showing the X-ray diffraction image of 0&, and FIG. 2 is a diagram showing the temperature change in electrical resistance in the absence and presence of a magnetic field (1 Tesla).

Claims (1)

【特許請求の範囲】[Claims]  ネオジウム(Nd),バリウム(Ba),銅(Cu)
で構成されたNd_YBa_(_2_−_X_)Cu_
(_3_−_X_)O_δの酸化物において、0.95
≦Y≦1.05,0.2≦X≦0.5,6.5≦δ≦7
.1(ただしδは、X,Yの選択により決まる値)の組
成からなることを特徴とする酸化物超伝導材料。
Neodymium (Nd), barium (Ba), copper (Cu)
Nd_YBa_(_2_−_X_)Cu_ composed of
In the oxide of (_3_−_X_)O_δ, 0.95
≦Y≦1.05, 0.2≦X≦0.5, 6.5≦δ≦7
.. 1 (where δ is a value determined by the selection of X and Y).
JP62323595A 1987-12-21 1987-12-21 Oxide superconducting material Pending JPH01164728A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62323595A JPH01164728A (en) 1987-12-21 1987-12-21 Oxide superconducting material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62323595A JPH01164728A (en) 1987-12-21 1987-12-21 Oxide superconducting material

Publications (1)

Publication Number Publication Date
JPH01164728A true JPH01164728A (en) 1989-06-28

Family

ID=18156463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62323595A Pending JPH01164728A (en) 1987-12-21 1987-12-21 Oxide superconducting material

Country Status (1)

Country Link
JP (1) JPH01164728A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07232917A (en) * 1994-02-18 1995-09-05 Kokusai Chodendo Sangyo Gijutsu Kenkyu Center Oxide superconductor and its production
EP0710992A1 (en) * 1994-11-07 1996-05-08 International Superconductivity Technology Center Superconducting metal oxide film and method of preparing same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07232917A (en) * 1994-02-18 1995-09-05 Kokusai Chodendo Sangyo Gijutsu Kenkyu Center Oxide superconductor and its production
EP0710992A1 (en) * 1994-11-07 1996-05-08 International Superconductivity Technology Center Superconducting metal oxide film and method of preparing same

Similar Documents

Publication Publication Date Title
EP0332291B1 (en) Devices and systems based on novel superconducting material
EP0274407B1 (en) Devices and systems based on novel superconducting material
US8688181B1 (en) Superconductive compounds having high transition temperature, and methods for their use and preparation
Kırat et al. Effect of the Er-substitution on critical current density in glass-ceramic Bi2Sr2Ca2 (Cu3− xErx) O10+ δ superconducting system
CA1341628C (en) Devices and systems comprising ba-cuprate superconductor
JP2571789B2 (en) Superconducting material and its manufacturing method
EP0800494B1 (en) LOW TEMPERATURE (T LOWER THAN 950 oC) PREPARATION OF MELT TEXTURE YBCO SUPERCONDUCTORS
JP2664070B2 (en) Preparation method of composite oxide superconducting thin film
JPH01164728A (en) Oxide superconducting material
WO1990002098A1 (en) Superconducting metal oxide compositions
EP0305515B1 (en) Devices and systems based on novel superconducting material
Zhou et al. Superconductivity in the (Sr1− xYx) CuO2 (x= 0.00− 0.30) system synthesized under high pressure
US8060169B1 (en) Superconductive compounds having high transition temperature, and methods for their use and preparation
JP3217905B2 (en) Metal oxide material and method for producing the same
JP3219563B2 (en) Metal oxide and method for producing the same
EP0442210B1 (en) Bi oxide superconductors
JPH01208319A (en) Oxide superconducting material
JP3242252B2 (en) Metal oxide material and superconducting device using the same
JP2749194B2 (en) Method for producing Bi-Sr-Ca-Cu-O-based superconductor
JP3247914B2 (en) Metal oxide material
JP2855128B2 (en) Oxide superconductor
JP3287667B2 (en) Metal oxide
JP2854338B2 (en) Copper oxide superconductor
JP2590370B2 (en) Superconducting material and manufacturing method thereof
JPH0825744B2 (en) Manufacturing method of superconducting material