JPS63277554A - Oxide superconductive ceramic linear sintered material and production thereof - Google Patents

Oxide superconductive ceramic linear sintered material and production thereof

Info

Publication number
JPS63277554A
JPS63277554A JP62112721A JP11272187A JPS63277554A JP S63277554 A JPS63277554 A JP S63277554A JP 62112721 A JP62112721 A JP 62112721A JP 11272187 A JP11272187 A JP 11272187A JP S63277554 A JPS63277554 A JP S63277554A
Authority
JP
Japan
Prior art keywords
metal
sintered material
powder
linear
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62112721A
Other languages
Japanese (ja)
Inventor
Tsutomu Nanao
勉 七尾
Masao Yokoyama
横山 昌夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP62112721A priority Critical patent/JPS63277554A/en
Publication of JPS63277554A publication Critical patent/JPS63277554A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To promote improvement of critical current value, by orienting C axis radiately to the direction applying current in the titled sintered material having perovskite type layer structure. CONSTITUTION:In oxide superconductive ceramic linear sintered material having perovskite type layer structure composed of IIa metal, IIIa metal and copper, C axis is oriented radiately to the direction applying current. An oxide superconductive ceramic powder having perovskite type layer structure formed from IIa metal, IIIa metal and copper having >=3 aspect ratio and 0.1-1,000mu length in longer direction is used in order to produce such a sintered material. The powder is blended with an organic binder and the blend is molded to sheet to orient the powder and then the sheet is linearly rolled and sintered. The long and linear sintered material having radiately oriented C axis is readily obtained thereby.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、高い臨界温度を有する]Ia金金属銅、II
Ia属金属から構成された、ペロブスカイト型金属酸化
物超電導セラミックス焼結体及びその製造方法に関する
もので、特に大きな臨界電流値が得られるように電流の
流す方向に対してC軸が放射状に配向された焼結体及び
該焼結体の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION "Industrial Field of Application" The present invention is directed to Ia gold metal copper having a high critical temperature, IIa gold metal copper,
This relates to a perovskite-type metal oxide superconducting ceramic sintered body composed of a group Ia metal and a method for producing the same, in which the C-axis is oriented radially with respect to the direction of current flow so as to obtain a particularly large critical current value. The present invention relates to a sintered body and a method for manufacturing the sintered body.

「従来技術と問題点」 I[a金属、銅、IIIa属金属から構成されたペロブ
スカイト型金属酸化物起電導セラミックスは、今までの
最高の臨界転移温度であったNbffG11(23,2
K)を大幅に趨える高い臨界転移温度が発見されて以来
各方面で注目されている。
"Prior Art and Problems" Perovskite-type metal oxide conductive ceramics composed of I[a metal, copper, and IIIa group metal have the highest critical transition temperature up to now, NbffG11 (23,2
Since the discovery of a high critical transition temperature that significantly exceeds K), it has attracted attention in various fields.

特に、この組成においてIIIa属金属としてイツトリ
ウムやランタン系希土類金属を用いた化合物は臨界転移
温度が液体窒素の沸点(77,3K)を超えるものが得
られており、冷却材として希少資源であり、しかも約2
0倍も高価な液体ヘリウムにかわって安価で冷却効率の
よい液体窒素が使えるので、半導体デバイス、超電導磁
石、エネルギ−貯蔵等の大幅な用途の拡大が期待できる
In particular, compounds using yttrium or lanthanum-based rare earth metals as group IIIa metals in this composition have been obtained with critical transition temperatures exceeding the boiling point of liquid nitrogen (77.3K), and are rare resources as coolants. And about 2
Since liquid nitrogen, which is inexpensive and has good cooling efficiency, can be used instead of liquid helium, which is 0 times more expensive, it is expected that applications such as semiconductor devices, superconducting magnets, and energy storage will be greatly expanded.

しかし、この酸化物超電導性セラミックスは高い臨界転
移温度と高い臨界磁場が得られるという優れた長所を有
しているが、従来のNb、QeやNb、Snに比べて極
めて小さな臨界電流しか得られていないという問題点を
有しており、この欠点が実用に際しての大きな障害にな
っている。
However, although this oxide superconducting ceramic has the excellent advantages of being able to obtain a high critical transition temperature and a high critical magnetic field, it can only obtain an extremely small critical current compared to conventional Nb, Qe, Nb, and Sn. This drawback is a major obstacle to practical use.

この酸化物at導性セラミックスは層状構造を有するペ
ロブスカイト型化合物であり、超電導性は銅−酸素の八
面体構造の繋がっている部分により発生していると言わ
れており、結晶学的に超電導性の異方性があり、a、b
軸方向に超を導性がある。このため、通常のセラミック
スの焼結方法によって得られる多結晶体では、超1i導
性を持つ結晶軸が揃っておらず臨界電流値が低くなり、
更に高い臨界電流値を得るためにはC軸方向の揃った多
結晶体を作り、超電導性の得られるa、b軸方向に電流
を流す必要がある。
This oxide at conductive ceramic is a perovskite compound with a layered structure, and its superconductivity is said to occur due to the connected parts of the copper-oxygen octahedral structure. There is anisotropy of a, b
Super conductive in the axial direction. For this reason, in polycrystalline bodies obtained by ordinary ceramic sintering methods, the crystal axes with super 1i conductivity are not aligned, resulting in a low critical current value.
In order to obtain an even higher critical current value, it is necessary to create a polycrystalline body with aligned C-axis directions and to flow current in the a- and b-axis directions where superconductivity can be obtained.

本発明者らはこのlla金属、銅、llal金属から構
成された、ペロブスカイト型金属酸化物趨電導性セラミ
ックスの臨界電流値を向上させる検討を進めているなか
で、この結晶体がa、b軸方向に襞間面を持った構造を
有しており、原料の製造方法によっては雲母状あるいは
鱗片状のC軸に配向しやすい粉末が得られることを見出
し、更に、特定のアスペクト比を有するこの酸化物超電
導性粉末を用いて有機バインダーを加えて機械的ストレ
スをかけてシート状に成形し、更に線状に成形して焼結
させることにより著しく臨界電流値の向上した焼結体が
得られることを見出し、本発明に到達した。
The present inventors are proceeding with studies to improve the critical current value of perovskite-type metal oxide conductive ceramics composed of lla metal, copper, and llal metal, and found that this crystal body It has a structure with interfold planes in the direction, and it was discovered that depending on the manufacturing method of the raw material, it is possible to obtain a powder that is easily oriented along the C-axis in a mica-like or scale-like manner. By using oxide superconducting powder, adding an organic binder, applying mechanical stress, forming it into a sheet shape, and then forming it into a linear shape and sintering it, a sintered body with a significantly improved critical current value can be obtained. They discovered this and arrived at the present invention.

「問題点を解決するための手段」 本発明は、特定の結晶軸が配向して臨界電流値の向上し
た酸化物超電導性セラミックス線状焼結体及びその製造
方法に関するものである。
"Means for Solving the Problems" The present invention relates to an oxide superconducting ceramic linear sintered body in which specific crystal axes are oriented and the critical current value is improved, and a method for manufacturing the same.

更に詳しくは、本発明の第1は、電流を流す方向に対し
て放射状にC軸が配向されていることを特徴とする、I
[a金属、1lla金属、銅から構成された層状のペロ
ブスカイト型構造を有する酸化物超電導性セラミックス
線状焼結体を、 本発明の第2は、アスペクト比が3以上で長手方向の長
さが0.1μm以上1000μm以下の■a金金属■a
属金金属銅から構成された層状のペロブスカイト型構造
を有する酸化物超電導性セラミックス粉体を、有機バイ
ンダーに混合した後シート状に成形して粉体を配向させ
、次いで前記シートを線状に巻いて焼結させることを特
徴とする酸化物超電導性セラミックス線状焼結体の製造
方法をそれぞれ内容とするものである。
More specifically, the first aspect of the present invention is an I, characterized in that the C axis is oriented radially with respect to the direction in which the current flows.
[The second aspect of the present invention is to provide an oxide superconducting ceramic linear sintered body having a layered perovskite structure composed of a metal, 1lla metal, and copper, with an aspect ratio of 3 or more and a length in the longitudinal direction. 0.1 μm or more and 1000 μm or less ■a Gold metal ■a
An oxide superconducting ceramic powder having a layered perovskite structure composed of metallic copper is mixed with an organic binder and then formed into a sheet to orient the powder, and then the sheet is wound into a linear shape. Each content is a method for producing an oxide superconducting ceramic linear sintered body, which is characterized by sintering the oxide superconducting ceramic linear body.

本発明に用いられる酸化物超電導性セラミックス粉体は
、Ila金属、銅、IIIa@属から構成された、臨界
転移温度が液体窒素の沸点以上、特に好ましくは90に
以上の臨界転移温度を有する組成であることが望ましく
、具体的には次の一般式(1)に示す組成が好ましい。
The oxide superconducting ceramic powder used in the present invention has a critical transition temperature of at least the boiling point of liquid nitrogen, particularly preferably at least 90, which is composed of metal Ila, copper, and group IIIa. Specifically, the composition shown in the following general formula (1) is preferable.

Ax’B+−x’cut’o*   −−−(1)ここ
で、A: I[a金属 B:I[Ia属金金 属 : Q、 l < x < 0.9y:o、3<y
<s z : 2<2<8 11a金属としては、マグネシウム、カルシウム、スト
ロンチウム、バリウムの1種以上、そして■a属金金属
しては、スカンジウム、イツトリウム、ランタン系希土
類金属の1種以上の組み合わせが好ましい。
Ax'B+-x'cut'o*---(1) Here, A: I[a metal B: I[Ia metal: Q, l < x < 0.9 y: o, 3 < y
<s z : 2<2<8 11a Metals include one or more of magnesium, calcium, strontium, and barium, and ■a metals include one or more combinations of scandium, yttrium, and lanthanum-based rare earth metals. is preferred.

また、この化合物は層状結晶構造を有し襞間性があるた
め、合成方法を工夫することにより、本発明にとって好
ましい、厚み方向にC軸が揃った鱗片状もしくは板状の
酸化物超電導性セラミックス粉体が得られる。本発明に
好ましい粉体の形状はアスペクト比が3以上で、長手方
向の長さが0゜1μm以上1000μm以下であり、特
に好ましくはアスペクト比が5以上30以下で、長手方
向の長さが1μmから100μmのものである。この様
な粉体は通常の合成方法でも可能であるが、更に融剤と
なるアルカリまたはアルカリ土類金属のハロゲン化物を
加えて焼成し、この焼成物を融剤を溶かしながら粉砕す
ることにより、アスペクト比の大きな焼結用原料が得ら
れる。
In addition, since this compound has a layered crystal structure and has interfold properties, by devising a synthesis method, it is possible to create a scale-like or plate-like oxide superconducting ceramic with the C axis aligned in the thickness direction, which is preferable for the present invention. A powder is obtained. The shape of the powder preferable for the present invention has an aspect ratio of 3 or more and a length in the longitudinal direction of 0°1 μm or more and 1000 μm or less, particularly preferably an aspect ratio of 5 or more and 30 or less and a length in the longitudinal direction of 1 μm. The diameter is 100 μm. Such a powder can be produced by ordinary synthesis methods, but by adding an alkali or alkaline earth metal halide as a flux, firing it, and pulverizing the fired product while dissolving the flux, A raw material for sintering with a large aspect ratio can be obtained.

この様にして得られたアスペクト比の高い酸化物超電導
セラミックス原料粉末を、有機バインダーを加えて混合
したのち、ロール加工やドクターブレード法などにより
機械的ストレスをかけてシート状に成形することによっ
て、原料粒子を厚み方向に対してC軸に配向することが
できる。
The oxide superconducting ceramic raw material powder with a high aspect ratio obtained in this way is mixed with an organic binder, and then formed into a sheet by applying mechanical stress such as roll processing or a doctor blade method. The raw material particles can be oriented along the C axis with respect to the thickness direction.

有機バインダーは有機高分子単体、あるいは更に可塑剤
や溶剤で希釈した通常セラミックスの成形に用いられる
バインダー系が使用可能で特に制約はないが、大気中の
焼成で速やかに分解または燃焼して揮散することが好ま
しく、例えば有機高分子としてポリ酢酸ビニル、ポリエ
チレングリコール、ポリビニルブチラール、ポリグリコ
ール酸、ポリブテン、ポリウレタン、ポリビニルアルコ
ール、ポリエチレン、ポリプロピレン、ポリエチレン酢
酸ビニル共重合体などが挙げられる。また当然ながら、
これにフタル酸エステル等の可塑剤や潤滑剤、有機溶剤
などの成型加工上の添加剤の添加は一向に構わない。
The organic binder can be a single organic polymer or a binder system that is diluted with a plasticizer or solvent and is usually used for molding ceramics, and there are no particular restrictions, but it will quickly decompose or burn and volatilize when fired in the atmosphere. Examples of organic polymers include polyvinyl acetate, polyethylene glycol, polyvinyl butyral, polyglycolic acid, polybutene, polyurethane, polyvinyl alcohol, polyethylene, polypropylene, and polyethylene-vinyl acetate copolymer. Also, of course,
Additives for molding processing such as plasticizers such as phthalate esters, lubricants, and organic solvents may be added to this.

シート状の成型加工は通常のセラミフクスの成型加工方
法により成型が可能であり、例えばドクターブレード法
、ロール加工、押出し成型法が挙げられ、特に機械的な
シェアーを強くしてなるべ(薄く成型することにより、
鱗片状酸化物超電導性粉末の配向がより向上する。
Sheet-like molding can be done using normal Ceramifukus molding methods, such as the doctor blade method, roll processing, and extrusion molding. By this,
The orientation of the scaly oxide superconducting powder is further improved.

得られたシート状の成形物をそのままか、あるいは更に
リボン状に切断して必要なら線状の基体に巻き付は線状
に成型して焼結させることにより、C軸が放射状に配向
した長尺の線状焼結体が容易に得られる。この際、線状
の基体としては焼結反応時に分解揮散するものか、酸化
物超電導材料と反応しない耐熱性物質から構成されてい
るものが好ましく、例えば分解性の線状体としては、プ
ラスチックスからなる紐状の素材あるいは炭素繊維等が
あり、耐熱性の線状基体としては、セラミックスファイ
バー、金属ワイヤー等がある。また当然ながら、線状基
体は焼結反応前に除去することもできる。特にこの方法
では、内部が中空の超電導セラミックス線状焼結体も容
易に作れ、内部に液体窒素等の冷媒を流すことにより、
冷却効率を向上させることができる長所を有している。
The obtained sheet-like molded product can be used as it is, or it can be further cut into ribbons and if necessary, wrapped around a linear base and then sintered to form a long length with the C-axis oriented radially. A long linear sintered body can be easily obtained. In this case, the linear substrate is preferably one that decomposes and volatilizes during the sintering reaction, or one made of a heat-resistant substance that does not react with the oxide superconducting material. For example, the degradable linear substrate is made of plastic. Examples of heat-resistant linear substrates include ceramic fibers and metal wires. Naturally, the linear substrate can also be removed before the sintering reaction. In particular, with this method, it is easy to create a superconducting ceramic linear sintered body with a hollow interior, and by flowing a coolant such as liquid nitrogen inside,
It has the advantage of improving cooling efficiency.

得られた線状の成型体を酸化性雰囲気、好ましくは大気
中あるいはこれよりも酸素濃度が高い雰囲気中で焼成す
ることにより本発明の線状の焼結体が得られる。焼成温
度は800℃〜1200℃、好ましくは850℃〜10
00℃で、30分以上、特に4時間以上焼成すると結晶
成長が進み、更に臨界電流値の向上が実現できる。
The linear sintered body of the present invention can be obtained by firing the obtained linear molded body in an oxidizing atmosphere, preferably in the atmosphere or in an atmosphere with a higher oxygen concentration. The firing temperature is 800°C to 1200°C, preferably 850°C to 10°C.
When fired at 00° C. for 30 minutes or more, especially 4 hours or more, crystal growth progresses and the critical current value can be further improved.

「実施例」 次に、実施例を以て本発明の更に詳しい説明を行うが、
当然ながら本発明は実施例のみに限定されるものではな
い。
“Examples” Next, the present invention will be explained in more detail with reference to Examples.
Naturally, the present invention is not limited to the examples.

実施例 走査電子顕微鏡による観察で、アスペクト比が約8で長
手方向の長さが約7μmのインドリウム、バリウム、銅
の金属組成比が1:2:3からなる層状ペロブスカイト
型酸化物超電導性粉末にポリ酢酸ビニル溶液を加え攪拌
してペースト状にしたのち、テフロンフィルム上にバー
コーターを用いてコーテイング後乾燥して厚さ約200
μmのフィルムを得た。
Example A layered perovskite-type oxide superconducting powder with an aspect ratio of about 8 and a length in the longitudinal direction of about 7 μm and a metal composition ratio of indium, barium, and copper of 1:2:3 when observed using a scanning electron microscope. After adding polyvinyl acetate solution and stirring to make a paste, it was coated on a Teflon film using a bar coater and dried to a thickness of about 200mm.
A μm film was obtained.

次に、このフィルムを幅IQmにカットしてテープ状に
した後、直径1■のポリプロピレン製のワイヤーに約5
鶴のピッチで3層巻きつけた後、ポリプロピレン製のワ
イヤーを抜取り、線状の成型体を作り、そしてこの成型
体を酸化雰囲気で950℃5時間焼成して、直径約1f
iで長さが約20cmの中空な線状の焼結体を得た。
Next, this film was cut into a tape shape with a width of IQm, and then attached to a polypropylene wire with a diameter of 1 cm.
After wrapping three layers with crane pitch, the polypropylene wire was pulled out to make a linear molded body, and this molded body was fired at 950°C for 5 hours in an oxidizing atmosphere to create a diameter of approximately 1 f.
A hollow linear sintered body with a length of about 20 cm was obtained.

この線状焼結体を長さ5cmに切出して両端及び中間部
分の4ケ所に銀電極を取り付け、直流四端子法により導
電性の温度変化を測定したところ、97にで抵抗の急激
な低下が始まり92にで測定器の検出限界を超える低い
電気抵抗となり、超電導状態に達したものと判断した。
This linear sintered body was cut into a length of 5 cm, silver electrodes were attached to both ends and the middle part, and the temperature change in conductivity was measured using the DC four-terminal method. At the beginning of 92, the electrical resistance became low, exceeding the detection limit of the measuring device, and it was judged that a superconducting state had been reached.

また液状窒素中(77K)試料を入れ、臨界電流値を測
定したところ、4.5Aで超電導状態が壊れ、臨界電流
値で約590 A/cdであった。
Further, when a sample was placed in liquid nitrogen (77K) and the critical current value was measured, the superconducting state was broken at 4.5 A, and the critical current value was approximately 590 A/cd.

また、同一組成で、アスペクト比が3未満の常法による
酸化物超電導性粉末を用いて同様な方法にて線状の焼結
体を作り、同じく液体窒素中の臨界雷流値を測定したと
ころ、約80A/adであった。
In addition, a linear sintered body was made using a conventional method using oxide superconducting powder with the same composition and an aspect ratio of less than 3, and the critical lightning current value in liquid nitrogen was also measured. , about 80 A/ad.

「作用・効果」 叙上のように、本発明の酸化物超電導性セラミックス線
状焼結体は臨界電流値が向上する。
"Action/Effect" As described above, the oxide superconducting ceramic linear sintered body of the present invention has an improved critical current value.

Claims (1)

【特許請求の範囲】 1、電流を流す方向に対して放射状にC軸が配向されて
いることを特徴とする、IIa金属、IIIa金属、銅から
構成された層状のペロブスカイト型構造を有する酸化物
超電導性セラミックス線状焼結体。 2、アスペクト比が3以上で長手方向の長さが0.1μ
m以上1000μm以下のIIa金属、IIIa属金属、銅
から構成された層状のペロブスカイト型構造を有する酸
化物超電導性セラミックス粉体を、有機バインダーに混
合した後シート状に成形して粉体を配向させ、次いで前
記シートを線状に巻いて焼結させることを特徴とする酸
化物超電導性セラミックス線状焼結体の製造方法。
[Claims] 1. An oxide having a layered perovskite structure composed of IIa metal, IIIa metal, and copper, characterized in that the C-axis is oriented radially with respect to the direction of current flow. Superconducting ceramic linear sintered body. 2. Aspect ratio is 3 or more and longitudinal length is 0.1μ
An oxide superconducting ceramic powder having a layered perovskite structure composed of IIa metal, IIIa group metal, and copper with a diameter of 1000 μm or more is mixed with an organic binder and then formed into a sheet to orient the powder. 1. A method for producing an oxide superconducting ceramic linear sintered body, the method comprising: then winding the sheet into a linear shape and sintering it.
JP62112721A 1987-05-08 1987-05-08 Oxide superconductive ceramic linear sintered material and production thereof Pending JPS63277554A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62112721A JPS63277554A (en) 1987-05-08 1987-05-08 Oxide superconductive ceramic linear sintered material and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62112721A JPS63277554A (en) 1987-05-08 1987-05-08 Oxide superconductive ceramic linear sintered material and production thereof

Publications (1)

Publication Number Publication Date
JPS63277554A true JPS63277554A (en) 1988-11-15

Family

ID=14593863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62112721A Pending JPS63277554A (en) 1987-05-08 1987-05-08 Oxide superconductive ceramic linear sintered material and production thereof

Country Status (1)

Country Link
JP (1) JPS63277554A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6454611A (en) * 1987-08-24 1989-03-02 Mitsubishi Electric Corp Superconductive wire
JPH04104409A (en) * 1990-08-22 1992-04-06 Hitachi Ltd Oxide superconductor, manufacture thereof, and superconducting coil
JP2008130938A (en) * 2006-11-22 2008-06-05 Idemitsu Kosan Co Ltd Conductive molding, electronic component, electric device, electrical characteristics recognition device and method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6454611A (en) * 1987-08-24 1989-03-02 Mitsubishi Electric Corp Superconductive wire
JPH04104409A (en) * 1990-08-22 1992-04-06 Hitachi Ltd Oxide superconductor, manufacture thereof, and superconducting coil
US5798312A (en) * 1990-08-22 1998-08-25 Hitachi, Ltd. Elongate superconductor elements comprising oxide superconductors, superconducting coils and methods of making such elements
JP2008130938A (en) * 2006-11-22 2008-06-05 Idemitsu Kosan Co Ltd Conductive molding, electronic component, electric device, electrical characteristics recognition device and method

Similar Documents

Publication Publication Date Title
JP3089294B2 (en) Manufacturing method of superconducting tape material
JPH06500426A (en) Method for forming high temperature oxide superconductor tape
JPS63277554A (en) Oxide superconductive ceramic linear sintered material and production thereof
JPS63277555A (en) Oxide superconductive ceramic sintered material and production thereof
JPH0780710B2 (en) Manufacturing method of oxide high temperature superconductor
JP3120110B2 (en) Oxide superconducting tape material and manufacturing method thereof
Nies et al. Glass-bonded composites containing superconducting YBa2Cu3O9− y for levitation and magnetic shielding applications
US5260263A (en) Superconductive ceramic wire and method for producing the same
JPS63256564A (en) Superconductive ceramic of scalelike oxide and its production
JP3219563B2 (en) Metal oxide and method for producing the same
JP2899510B2 (en) Oxide superconductor and manufacturing method thereof
WO1993010047A1 (en) Method of fabricating thallium-containing ceramic superconductors
JPH0816022B2 (en) Method for manufacturing oxide superconductor
JP2829383B2 (en) Method for manufacturing superconducting polycrystalline wire
JP2855123B2 (en) Oxide superconductor
JP2590370B2 (en) Superconducting material and manufacturing method thereof
JP3590567B2 (en) Manufacturing method of oxide superconducting wire and oxide superconducting wire
Sah et al. Comparative studies of pure YBa2Cu3O7-ẟ prepared by modified thermal decomposition method against thermal treatment method
JP2855128B2 (en) Oxide superconductor
JPS63308812A (en) Manufacture of superconductive ceramics wire material
JPH06162843A (en) Manufacture of bi oxide superconductor
JP2855126B2 (en) Oxide superconductor
JP2822328B2 (en) Superconductor manufacturing method
JP2855124B2 (en) Oxide superconductor
JPH02239103A (en) Precursor solution for superconducting ceramics