JPH06162843A - Manufacture of bi oxide superconductor - Google Patents

Manufacture of bi oxide superconductor

Info

Publication number
JPH06162843A
JPH06162843A JP5171354A JP17135493A JPH06162843A JP H06162843 A JPH06162843 A JP H06162843A JP 5171354 A JP5171354 A JP 5171354A JP 17135493 A JP17135493 A JP 17135493A JP H06162843 A JPH06162843 A JP H06162843A
Authority
JP
Japan
Prior art keywords
temperature
hours
oxide superconductor
green sheet
based oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5171354A
Other languages
Japanese (ja)
Inventor
Naoki Uno
直樹 宇野
Masanao Mimura
正直 三村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai
Original Assignee
Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai filed Critical Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai
Priority to JP5171354A priority Critical patent/JPH06162843A/en
Publication of JPH06162843A publication Critical patent/JPH06162843A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To easily provide a Bi oxide superconductor excellent in superconductivity. CONSTITUTION:A green sheet 2, composed of a Bi oxide superconductor or its precursor powder, is arranged on a silver sheet to be temperature-increased at 0.1-1 deg.C per minute to 480 deg.C from room temperature in an oxygen atmosphere by using an electric furnace 5 to be kept for 1-8 hours at the temperature, then is temperature-increased to 875-885 deg.C to be kept for 1.5 hours at the temperature, and then is cooled at 200-300 deg.C per hour to below 830 deg.C. After that, the green sheet 2 is kept for 1-8 hours at a temperature below 830 deg.C to be quickly cooled at 300 deg.C per minute or more to 500 deg.C, and this procedure is repeated 5 times or more. Consequently, the quantity of the deposit of a different phase, deposited in a Bi oxide superconductor, and of oxygen, incorporated in a superconductive phase, can be restrained. In particular, crystal organization can be oriented by half-melting heat treatment in Bi oxide superconductor in which Bi:Sr:Ca:Cu=2:2: l:2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はマグネット、コイル、電
力応用導体等に適用可能なBi系酸化物超電導導体の製
造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a Bi type oxide superconducting conductor applicable to magnets, coils, electric power application conductors and the like.

【0002】[0002]

【従来の技術】Y系、Bi系、Tl系に代表される臨界
温度が液体窒素温度を越えるいわゆる酸化物高温超電導
体を線材化、導体化して、マグネット、コイル、種々の
電力応用導体として使用していこうという試みがなされ
ている。
2. Description of the Related Art So-called oxide high-temperature superconductors whose critical temperature exceeds liquid nitrogen temperature, represented by Y, Bi, and Tl systems, are used as magnets, coils, and various electric power application conductors by converting them into conductors and conductors. Attempts have been made to do so.

【0003】このような試みの最も一般的なものとし
て、これらの酸化物超電導体の粉末を銀などの金属シー
ス材中に充填し、これを縮径加工するいわゆるパウダー
・イン・チューブ法による線材作製技術がある。この方
法は線材化における加工性と線材の電磁気的安定性の両
面から他の方法と比較して大きな利点を有している。こ
れら金属シース酸化物超電導線材はすでに単芯の丸線や
テープ、多芯の丸線やテープが考案され、作製されてお
りコイルやケーブル用導体の試作もはじめられている。
The most common of such attempts is to fill the powder of these oxide superconductors in a metal sheath material such as silver and reduce the diameter of the metal sheath material by a so-called powder-in-tube method. There is manufacturing technology. This method has great advantages over other methods in terms of workability in forming a wire and electromagnetic stability of the wire. For these metal sheath oxide superconducting wires, single-core round wires and tapes and multi-core round wires and tapes have already been devised and produced, and trial production of coils and conductors for cables has begun.

【0004】[0004]

【発明が解決しようとする課題】しかるに上述の金属シ
ース酸化物超電導線材では均一な成形体を得ることが困
難である。また外周部が全て金属に覆われているため内
部の酸化物超電導体と雰囲気の酸素との反応が押さえら
れることにより高い超電導特性を得難いという問題点が
ある。
However, it is difficult to obtain a uniform molded body with the above-mentioned metal sheath oxide superconducting wire. Further, since the outer peripheral portion is entirely covered with metal, the reaction between the oxide superconductor inside and oxygen in the atmosphere is suppressed, so that it is difficult to obtain high superconducting characteristics.

【0005】本発明は上記従来技術の問題点に鑑み鋭意
検討の結果なされたもので、その目的とするところは、
超電導特性に優れたBi系酸化物超電導導体の製造方法
を提供することにある。
The present invention has been made as a result of extensive studies in view of the above problems of the prior art.
It is intended to provide a method for producing a Bi-based oxide superconducting conductor having excellent superconducting properties.

【0006】[0006]

【課題を解決するための手段】本発明のBi系酸化物超
電導導体の製造方法では、前記した目的を達成するため
に、図1に示すように、Bi系酸化物超電導体またはそ
の前駆体粉末を用いてドクターブレード法によりグリー
ンシート2を作製し、前記グリーンシート2を銀シート
上に配した後、酸素雰囲気中で室温から480℃まで
0. 1〜1℃毎分で昇温し、前記温度にて1〜8時間保
持した後875〜885℃まで昇温し、前記温度にて
1. 5時間保持した後830℃未満まで200〜300
℃毎時にて冷却し、しかる後に前記830℃未満の温度
にて1〜8時間保持し、300℃毎分以上で500℃ま
で急冷する工程を5回以上繰り返す。
In order to achieve the above-mentioned object, in the method for producing a Bi-based oxide superconductor according to the present invention, as shown in FIG. 1, a Bi-based oxide superconductor or its precursor powder is used. To prepare a green sheet 2 by a doctor blade method, laying the green sheet 2 on a silver sheet, and then raising the temperature from room temperature to 480 ° C. at 0.1 to 1 ° C. per minute in an oxygen atmosphere, After holding at the temperature for 1 to 8 hours, the temperature is raised to 875 to 885 ° C, and after holding at the temperature for 1.5 hours, the temperature is lower than 830 ° C to 200 to 300 ° C.
The process of cooling every hour at 0 ° C., then holding at a temperature of less than 830 ° C. for 1 to 8 hours, and rapidly cooling to 500 ° C. at 300 ° C./minute or more is repeated five times or more.

【0007】次に、本発明のBi系酸化物超電導導体の
製造方法の一例を、具体的に説明する。本発明のBi系
酸化物超電導導体の製造方法で使用するBi系酸化物超
電導導体またはその前駆体粉末は、所定の分散剤を添加
したアルコール混合溶液を加えて混練後、バインダーと
してポリビニルブチラールを、可塑剤としてフタル酸エ
チルを加えて混練し、所定粘度のスラリー1とする。
Next, an example of the method for producing the Bi-based oxide superconducting conductor of the present invention will be specifically described. The Bi-based oxide superconducting conductor or its precursor powder used in the method for producing a Bi-based oxide superconducting conductor of the present invention is prepared by adding an alcohol mixed solution containing a predetermined dispersant and kneading it, and then using polyvinyl butyral as a binder. Ethyl phthalate is added as a plasticizer and kneaded to obtain a slurry 1 having a predetermined viscosity.

【0008】ドクターブレード成形の工程では、図1に
示したドクターブレーディング装置を使用して、前記ス
ラリー1をシリコン塗布してあるキャリングテープ4上
に幅300mm、厚さ500〜700μmに成形する。
In the doctor blade molding step, the slurry 1 is molded on the carrying tape 4 coated with silicon to have a width of 300 mm and a thickness of 500 to 700 μm by using the doctor blading apparatus shown in FIG.

【0009】成形した前記スラリー1を室温で風乾後、
30℃〜40℃で20〜30分乾燥するとグリーンシー
ト2が得られる。
After air-drying the molded slurry 1 at room temperature,
The green sheet 2 is obtained by drying at 30 ° C. to 40 ° C. for 20 to 30 minutes.

【0010】このグリーンシート2を所定のサイズに切
断してAgテープ上に配し、複合体とする。前記グリー
ンシート2とAgテープの複合体を、前記グリーンシー
ト2からバインダーを除去するため、350〜480℃
(より好ましくは450℃)まで0. 1〜1℃毎分(よ
り好ましくは0.3℃毎分)で昇温し、前記温度で1〜
8時間(より好ましくは8時間)保持する。
The green sheet 2 is cut into a predetermined size and placed on an Ag tape to form a composite. In order to remove the binder from the green sheet 2, the composite of the green sheet 2 and the Ag tape is 350 to 480 ° C.
(More preferably 450 ° C.) at a temperature of 0.1 to 1 ° C. per minute (more preferably 0.3 ° C. per minute), and the temperature is 1 to 1 ° C.
Hold for 8 hours (more preferably 8 hours).

【0011】本発明において、バインダーを除去する工
程を350〜480℃で1〜8時間としたのは、350
℃未満及び1時間未満では、バインダーが充分除去され
ないためである。また、480℃及び8時間を越えると
バインダーは完全に除去されるが、Bi系酸化物超電導
体の相変化により異相の析出量が多くなり、超電導特性
が低下するからである。また、昇温速度を0. 1〜1℃
毎分としたのは0. 1℃毎分未満では所定温度に達する
までにBi系酸化物超電導体の相変化により異相の析出
量が多くなり、超電導特性が低下するからである。また
1℃毎分を越えるとバインダーが充分に除去されないか
らである。
In the present invention, the step of removing the binder is 350 to 480 ° C. for 1 to 8 hours,
This is because the binder is not sufficiently removed at a temperature of less than 0 ° C and less than 1 hour. Further, when the temperature exceeds 480 ° C. for 8 hours, the binder is completely removed, but the phase change of the Bi-based oxide superconductor increases the amount of precipitation of different phases and deteriorates the superconducting properties. In addition, the rate of temperature rise is 0.1 to 1 ° C.
The reason for setting every minute is that if the temperature is less than 0.1 ° C. per minute, the amount of precipitation of different phases increases due to the phase change of the Bi-based oxide superconductor before the temperature reaches the predetermined temperature, and the superconducting characteristics deteriorate. Also, if it exceeds 1 ° C. per minute, the binder is not sufficiently removed.

【0012】前記グリーンシート2からバインダー除去
後、前記グリーンシート2を875〜885℃(より好
ましくは880℃)まで昇温し、前記温度にて1. 5時
間保持する。このように所定時間保持後、830℃未満
まで200〜300℃毎時にて冷却し、前記温度にて1
〜8時間保持し、その後500℃まで毎分300℃以上
で急冷する工程を5回以上(好ましくは8回)繰り返し
てた後、室温まで冷却する。
After removing the binder from the green sheet 2, the temperature of the green sheet 2 is raised to 875 to 885 ° C. (more preferably 880 ° C.) and kept at the temperature for 1.5 hours. After holding for a predetermined time in this way, it is cooled to less than 830 ° C. every 200 to 300 ° C. every hour and kept at 1
The step of holding for ~ 8 hours and then rapidly cooling to 500 ° C at 300 ° C / min or more is repeated 5 times or more (preferably 8 times), and then cooled to room temperature.

【0013】本発明において保持温度を875〜885
℃としたのは、875℃未満の温度では半溶融量が少な
くなり、また、885℃を越えるとほとんど全部が溶融
状態となり、いずれの場合も超電導特性を低下させるか
らである。
In the present invention, the holding temperature is 875-885.
The reason why the temperature is set to be 0 ° C is that the semi-molten amount becomes small at a temperature lower than 875 ° C, and almost all becomes a molten state at a temperature higher than 885 ° C, and in any case, the superconducting property is deteriorated.

【0014】さらに、830℃まで200〜300℃毎
時にて冷却し、前記温度にて1〜8時間保持し、その後
500℃まで毎分300℃以上で急冷することとしたの
は、半溶融熱処理後の超電導相への相変化を必要かつ十
分に行なわしめるためである。
Further, the semi-molten heat treatment is performed by cooling to 830 ° C. at 200 to 300 ° C. every hour, holding at the temperature for 1 to 8 hours, and then rapidly cooling to 500 ° C. at 300 ° C. or more per minute. This is because a later phase change to a superconducting phase is necessary and sufficient.

【0015】同様に、200℃毎時未満の冷却速度及び
8時間を越える保持時間では、異相の生成量が増大し、
また、300℃毎時を越える冷却速度及び1時間未満の
保持時間では、超電導相変化が十分に起こらないからで
ある。
Similarly, at a cooling rate of less than 200 ° C./hour and a holding time of more than 8 hours, the amount of heterogeneous phase increases,
Further, if the cooling rate exceeds 300 ° C./hour and the holding time is less than 1 hour, the superconducting phase change does not sufficiently occur.

【0016】ここで830℃で1〜8時間保持し、50
0℃まで毎分300℃以上で急冷することを5回以上繰
り返す理由は、この繰り返しにより超電導相の成長や成
長率が向上するからである。
Here, the temperature is maintained at 830 ° C. for 1 to 8 hours, and then 50
The reason why the rapid cooling to 0 ° C. at 300 ° C./min or more is repeated five times or more is that the growth and the growth rate of the superconducting phase are improved by this repetition.

【0017】なお上記温度に保持後急冷するのは、徐冷
すると超電導相中に取り込まれる酸素の量が増加し、臨
界温度の低下とそれに伴う臨界電流密度の低下を引き起
こすからである。
The reason why the material is rapidly cooled after being kept at the above temperature is that when gradually cooled, the amount of oxygen taken into the superconducting phase increases, causing a decrease in the critical temperature and a consequent decrease in the critical current density.

【0018】[0018]

【作用】本発明のBi系酸化物超電導導体の製造方法で
は、有機バインダーを含む有機溶剤にBi系酸化物超電
導導体またはその前駆体の粉末を分散させ、ドクターブ
レード法によりグリーンシート2とし、これを銀シート
上に配して複合体とした後、脱バインダー工程によりグ
リーンシート2に含まれる有機物を除去し、ついでこの
グリーンシート2を昇温速度、保持時間、冷却速度等を
厳密に調整しつつ熱処理し、しかる後室温まで急冷する
ので、Bi系酸化物超電導導体中に析出する異相の析出
と超電導相中に取り込まれる酸素の量を抑制できる。特
にBi:Sr:Ca:Cu=2:2:1:2 であるB
i系酸化物超電導体は、半溶融熱処理によって結晶組織
を配向させることができる。
In the method for producing the Bi-based oxide superconducting conductor of the present invention, the powder of the Bi-based oxide superconducting conductor or its precursor is dispersed in the organic solvent containing the organic binder, and the green sheet 2 is formed by the doctor blade method. Is placed on a silver sheet to form a composite, the organic matter contained in the green sheet 2 is removed by a binder removal step, and then the temperature rising rate, holding time, cooling rate, etc. of the green sheet 2 are strictly adjusted. Meanwhile, the heat treatment is performed, and then the material is rapidly cooled to room temperature. Therefore, it is possible to suppress the precipitation of a heterogeneous phase in the Bi-based oxide superconducting conductor and the amount of oxygen taken in the superconducting phase. In particular, B is Bi: Sr: Ca: Cu = 2: 2: 1: 2.
The crystal structure of the i-based oxide superconductor can be oriented by the half-melt heat treatment.

【0019】[0019]

【実施例】【Example】

(実施例1)Bi2 3 、SrCO3 、CaCO3 、及
びCuOの粉末をモル比でBi:Sr:Ca:Cu=
2:2:1:2となるように配合、混合した混合粉を大
気中で800℃、50時間仮焼し、その後粉砕し、仮焼
粉末とする。
Bi (Example 1) Bi 2 O 3, SrCO 3, CaCO 3, and powder molar ratio of CuO: Sr: Ca: Cu =
The mixed powder mixed and mixed so as to be 2: 2: 1: 2 is calcined in the air at 800 ° C. for 50 hours, and then pulverized to obtain a calcined powder.

【0020】前記仮焼粉末100gに、分散剤0. 1%
を添加した混合アルコール溶液30gを加え、さらにバ
インダーとしてポリビニルブチラール(PVB)3gと
可塑剤としてフタル酸エチル0. 3gを加えて20時間
混練した。得られたスラリー1の粘度は3000ポアズ
であった。
A dispersant of 0.1% was added to 100 g of the calcined powder.
30 g of the mixed alcohol solution added with was added, 3 g of polyvinyl butyral (PVB) as a binder and 0.3 g of ethyl phthalate as a plasticizer were further added, and the mixture was kneaded for 20 hours. The viscosity of the obtained slurry 1 was 3000 poise.

【0021】前記スラリー1を図1に示したドクターブ
レーディング装置を使用して、シリコン塗布してあるキ
ャリングテープ4上に幅300mm、厚さ600μmに
成形した。成形した前記スラリー1を幅10mmに切断
し、室温で30分風乾後、30℃〜40℃で25分乾燥
してグリーンシート2とした。
The slurry 1 was molded into a width of 300 mm and a thickness of 600 μm on a carrying tape 4 coated with silicon by using the doctor blading device shown in FIG. The formed slurry 1 was cut into a width of 10 mm, air-dried at room temperature for 30 minutes, and then dried at 30 ° C to 40 ° C for 25 minutes to obtain a green sheet 2.

【0022】乾燥後の前記グリーンシート2を厚さ15
0μm、幅10mmの銀テープ上に配し、電気炉を用い
て酸素雰囲気中で0.3℃毎分の昇温速度で450℃ま
で昇温し、この温度で8時間保持した。保持後連続して
880℃まで昇温し、この温度に90分間保持した。さ
らに、連続して830℃まで200℃毎時の冷却速度で
冷却し、この温度で8時間保持し、ついで500℃まで
300℃毎分で急冷した。さらに前記830℃で8時間
保持し、ついで500℃まで300℃毎分で急冷する工
程を合計8回繰り返した後、電気炉から取り出して大気
中で冷却した。
The green sheet 2 after drying has a thickness of 15
It was placed on a silver tape having a width of 0 μm and a width of 10 mm, heated to 450 ° C. at a temperature rising rate of 0.3 ° C./minute in an oxygen atmosphere using an electric furnace, and kept at this temperature for 8 hours. After the holding, the temperature was continuously raised to 880 ° C. and the temperature was held for 90 minutes. Further, it was continuously cooled to 830 ° C. at a cooling rate of 200 ° C./hour, kept at this temperature for 8 hours, and then rapidly cooled to 500 ° C. at 300 ° C./min. Further, the process of holding at 830 ° C. for 8 hours and then rapidly cooling to 500 ° C. at 300 ° C./min was repeated 8 times in total, and then taken out from the electric furnace and cooled in the atmosphere.

【0023】得られた導体のJcは77K、0Tで45
000A/cm2 、77K、1Tで8000A/c
2 、4.2K、10Tで70000A/cm2 であっ
た。
Jc of the obtained conductor was 45 at 77K and 0T.
8,000A / c at 000A / cm 2 , 77K, 1T
It was 70000 A / cm 2 at m 2 , 4.2 K, and 10 T.

【0024】(比較例1)実施例1と同様の方法でBi
2 Sr2 CaCu2 x の仮焼粉を作製し、内径25m
m、外径40mmの銀パイプに充填し、しかる後に伸線
機と平ロール圧延により幅13mm厚さ0. 15mmま
で加工した。この線材を大気中で実施例1と同じ時間、
温度パターンで熱処理した。
(Comparative Example 1) Bi was prepared in the same manner as in Example 1.
A calcined powder of 2 Sr 2 CaCu 2 O x was prepared and had an inner diameter of 25 m.
It was filled in a silver pipe having an outer diameter of 40 mm and an outer diameter of 40 mm, and then processed into a width of 13 mm and a thickness of 0.15 mm by a wire drawing machine and flat roll rolling. This wire in the air for the same time as in Example 1,
It heat-processed by the temperature pattern.

【0025】得られた導体のJcは77K、0Tで20
000A/cm2 、77K、1Tで1500A/c
2 、4.2K、10Tで40000A/cm2 であ
り、実施例1よりも低いものであった。
Jc of the obtained conductor is 77K, 20 at 0T.
1500A / c at 000A / cm 2 , 77K, 1T
It was 40,000 A / cm 2 at m 2 , 4.2 K, and 10 T, which was lower than that in Example 1.

【0026】[0026]

【発明の効果】以上説明したように、本発明のBi系酸
化物超電導導体の製造方法では、Bi系酸化物超電導導
体またはその前駆体の粉末からなるグリーンシート2を
銀シート上に配した後、脱バインダー工程により含有有
機物を除去し、ついでこれを昇温速度、保持時間、冷却
速度等を厳密に調整しつつ熱処理し、しかる後室温まで
急冷するので、Bi系酸化物超電導導体中に析出する異
相の析出と超電導相中に取り込まれる酸素の量を抑制で
きる。特にBi:Sr:Ca:Cu=2:2:1:2
であるBi系酸化物超電導体は、半溶融熱処理によって
結晶組織を配向させることができる。従って、本発明の
Bi系酸化物超電導導体の製造方法によれば、超電導性
に優れたBi系酸化物超電導導体を容易に作製できる。
As described above, in the method for producing a Bi-based oxide superconducting conductor of the present invention, after the green sheet 2 made of the Bi-based oxide superconducting conductor or its precursor powder is placed on the silver sheet. Since the organic substance contained is removed by the binder removal step and then heat-treated while strictly adjusting the temperature rising rate, holding time, cooling rate, etc., and then rapidly cooled to room temperature, it is precipitated in the Bi-based oxide superconductor. It is possible to suppress the precipitation of different phases and the amount of oxygen taken into the superconducting phase. Especially Bi: Sr: Ca: Cu = 2: 2: 1: 2
In the Bi-based oxide superconductor, the crystal structure can be oriented by the semi-melting heat treatment. Therefore, according to the method for producing a Bi-based oxide superconducting conductor of the present invention, a Bi-based oxide superconducting conductor having excellent superconductivity can be easily produced.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、本発明で使用するドクターブレーディ
ング装置の概略図である。
FIG. 1 is a schematic view of a doctor blading device used in the present invention.

【符号の説明】 1 スラリー 2 グリーンシート 3 ドクターブレード 4 キャリングテープ 5 電気炉[Explanation of symbols] 1 Slurry 2 Green sheet 3 Doctor blade 4 Carrying tape 5 Electric furnace

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 Bi系酸化物超電導体またはその前駆体
粉末を用いてドクターブレード法によりグリーンシート
(2)を作製し、前記グリーンシート(2)を銀シート
上に配した後、酸素雰囲気中で室温から480まで0.
1〜1℃毎分で昇温し、前記温度にて1〜8時間保持し
た後875〜885℃まで昇温し、前記温度にて1. 5
時間保持した後830℃未満まで200〜300℃毎時
にて冷却し、しかる後に前記830℃未満の温度にて1
〜8時間保持し、300℃毎分以上で500℃まで急冷
することを5回以上繰り返すことを特徴とする酸化物超
電導導体の製造方法。
1. A green sheet (2) is produced by a doctor blade method using a Bi-based oxide superconductor or a precursor powder thereof, and the green sheet (2) is placed on a silver sheet and then in an oxygen atmosphere. From room temperature to 480.
The temperature is raised at 1 to 1 ° C. per minute, held at the temperature for 1 to 8 hours, and then raised to 875 to 885 ° C., and the temperature is set to 1.5.
After holding for a period of time, it is cooled to below 830 ° C. every 200 to 300 ° C. every hour, and then at a temperature below 830 ° C. for 1 hour.
A method for producing an oxide superconducting conductor, characterized by holding for 8 hours and rapidly cooling to 300 ° C. per minute or more to 500 ° C. five times or more.
【請求項2】 Bi系酸化物超電導体またはその前駆体
粉末の組成が、Bi:Sr:Ca:Cu=2:2:1:
2であることを特徴とする請求項1記載の酸化物超電導
導体の製造方法。
2. The composition of the Bi-based oxide superconductor or its precursor powder is Bi: Sr: Ca: Cu = 2: 2: 1:
2. The method for producing an oxide superconducting conductor according to claim 1, wherein the number is 2.
JP5171354A 1992-09-22 1993-07-12 Manufacture of bi oxide superconductor Pending JPH06162843A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5171354A JPH06162843A (en) 1992-09-22 1993-07-12 Manufacture of bi oxide superconductor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4-252548 1992-09-22
JP25254892 1992-09-22
JP5171354A JPH06162843A (en) 1992-09-22 1993-07-12 Manufacture of bi oxide superconductor

Publications (1)

Publication Number Publication Date
JPH06162843A true JPH06162843A (en) 1994-06-10

Family

ID=26494108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5171354A Pending JPH06162843A (en) 1992-09-22 1993-07-12 Manufacture of bi oxide superconductor

Country Status (1)

Country Link
JP (1) JPH06162843A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3821454A1 (en) * 1987-06-24 1989-02-09 Hitachi Ltd METHOD FOR PROCESSING USED ELECTROPHORESE GELS FOR REUSE
DE4230354B4 (en) * 1991-09-13 2004-08-12 Hitachi, Ltd. electrophoresis
US8514050B1 (en) 2009-08-28 2013-08-20 Murata Manufacturing Co., Ltd. Thermistor and method for manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3821454A1 (en) * 1987-06-24 1989-02-09 Hitachi Ltd METHOD FOR PROCESSING USED ELECTROPHORESE GELS FOR REUSE
DE4230354B4 (en) * 1991-09-13 2004-08-12 Hitachi, Ltd. electrophoresis
US8514050B1 (en) 2009-08-28 2013-08-20 Murata Manufacturing Co., Ltd. Thermistor and method for manufacturing the same
US8598975B2 (en) 2009-08-28 2013-12-03 Murata Manufacturing Co., Ltd. Thermistor and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JPH0494019A (en) Manufacture of bismuth-based oxide superconductor
JP3089294B2 (en) Manufacturing method of superconducting tape material
JPH04292819A (en) Manufacture of oxide superconductive wire
JPH06162843A (en) Manufacture of bi oxide superconductor
JPH04121912A (en) Manufacture of oxide high temperature superconductive conductor
JPH0669919B2 (en) Manufacturing method of superconducting ceramic thin film
JP3590567B2 (en) Manufacturing method of oxide superconducting wire and oxide superconducting wire
JP3181642B2 (en) Manufacturing method of oxide superconducting wire
JPS63239740A (en) Manufacture for superconductive compound thin film
KR100821209B1 (en) Manufacturing method of high temperature superconductor thick films by using cu-free precursors on ni substrates
KR100600058B1 (en) Manufacture Mehtod of Cu-Sheathed Superconductor Thick Film
JPH06342607A (en) Manufacture of oxide superconductive wire rod
JPH06139849A (en) Manufacture of bi oxide superconducting molding
JP2567967B2 (en) Manufacturing method of oxide superconducting wire
JP4153651B2 (en) Seed crystal of oxide superconducting material and manufacturing method of oxide superconducting material using the same
JP3149170B2 (en) Method for producing bismuth-based oxide superconductor
JPH02253516A (en) Ceramics superconducting line and manufacture thereof
JPH03122918A (en) Manufacture of ceramics superconductive conductor
JP2891365B2 (en) Manufacturing method of ceramic superconductor
JPH03112810A (en) Production of oxide superconducting film
JPH04296408A (en) Oxide superconducting wire rod and manufacture thereof
JPH02253515A (en) Ceramics superconducting line and manufacture thereof
JPH04295080A (en) Production of bi-containing oxide superconductor
JPH06203669A (en) Manufacture of bi oxide superconductor
JPH02252210A (en) Manufacture of oxide superconducting coil