JPH0669919B2 - Manufacturing method of superconducting ceramic thin film - Google Patents

Manufacturing method of superconducting ceramic thin film

Info

Publication number
JPH0669919B2
JPH0669919B2 JP1073875A JP7387589A JPH0669919B2 JP H0669919 B2 JPH0669919 B2 JP H0669919B2 JP 1073875 A JP1073875 A JP 1073875A JP 7387589 A JP7387589 A JP 7387589A JP H0669919 B2 JPH0669919 B2 JP H0669919B2
Authority
JP
Japan
Prior art keywords
thin film
heat treatment
gas
temperature
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1073875A
Other languages
Japanese (ja)
Other versions
JPH02252697A (en
Inventor
糾次 伊藤
裕俊 永田
Original Assignee
住友セメント株式会社
糾次 伊藤
新技術開発事業団
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友セメント株式会社, 糾次 伊藤, 新技術開発事業団 filed Critical 住友セメント株式会社
Priority to JP1073875A priority Critical patent/JPH0669919B2/en
Publication of JPH02252697A publication Critical patent/JPH02252697A/en
Publication of JPH0669919B2 publication Critical patent/JPH0669919B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、超伝導セラミックス薄膜の製法に関する。特
に、そのC軸が基板表面に対して垂直に成長した粒子を
有する超伝導薄膜の製法に関する。
TECHNICAL FIELD The present invention relates to a method for producing a superconducting ceramic thin film. In particular, it relates to a method for producing a superconducting thin film having grains whose C axis grows perpendicularly to the substrate surface.

[従来の技術] 従来、Y−Ba−Cu−O系或いはLa−Ba−Cu−O系などの
超伝導セラミックス材薄膜を作製する上及びその応用を
進めている中で、薄膜表面の平担性及び薄膜結晶の均質
性にすぐれるエピタキシャル成膜を考え、また一方、熱
処理による多結晶薄膜の作製も、重要なものであった。
[Prior Art] Conventionally, the flatness of the thin film surface has been achieved while producing and applying a Y-Ba-Cu-O-based or La-Ba-Cu-O-based superconducting ceramic thin film. In consideration of epitaxial film formation, which has excellent properties and thin film crystal homogeneity, the production of polycrystalline thin films by heat treatment was also important.

熱処理法による場合、基板と薄膜界面の反応を最小限に
することが重要であり、特に、膜厚が数千Å以下になる
と、一般に、Y1Ba2Cu3O7−Zとの反応性が少ないと云
われている、SrTiO3単結晶基板を用いてさえ、電気絶縁
性の第2相が出現し、膜の超伝導特性を阻害するもので
ある。
When using the heat treatment method, it is important to minimize the reaction between the substrate and the thin film interface. Especially, when the film thickness is less than several thousand Å, the reactivity with Y 1 Ba 2 Cu 3 O 7-Z is generally observed. Even if a SrTiO 3 single crystal substrate, which is said to have a low content, is used, an electrically insulating second phase appears, which hinders the superconducting property of the film.

従って、熱処理を行なう温度、時間は、より低くし、よ
り短くすることが重要である。然し乍ら、単に温度を低
くすることのみでは、結晶成長、粒子成長が不充分であ
り、超伝導特性が得られない。Y1Ba2Cu3O7−Z薄膜を
形成する場合、一般にはO2雰囲気中で行なうと、900℃
前後、空気中において850〜900℃付近で行なわなければ
ならない。
Therefore, it is important to lower and shorten the temperature and time for heat treatment. However, if the temperature is simply lowered, the crystal growth and the particle growth are insufficient and the superconducting property cannot be obtained. When a Y 1 Ba 2 Cu 3 O 7-Z thin film is formed, it is generally 900 ° C when performed in an O 2 atmosphere.
Before and after, it must be performed in air at around 850-900 ℃.

[発明が解決しようとする問題点] 本発明は、上記のような技術的課題を解決するために、
即ち、表面の平担性、結晶の均質性等の物性のすぐれた
超伝導薄膜を作製するためには、アモルファス状態から
Y1Ba2Cu3O7−Z結晶相を成長させるための熱処理を、
より低温でしなければならない。より低い温度で熱処理
を行ない、且つ、充分に結晶粒が成長した配向性の良い
薄膜を作製する必要がある。より低い温度で熱処理する
ことにより、基板と薄膜界面での相互反応を、できる限
り少なくすることができ、更に、より低い温度の熱処理
で超伝導特性を有するY1Ba2Cu3O7−Z薄膜を作製する
ことができる製法を提供することを目的にする。その結
果、本発明は、Y1Ba2Cu3O7−Z酸化物超伝導物質の薄
膜化方法を提供することを目的にする。そして、本発明
は、熱処理により、その薄膜結晶のC軸が基板表面に対
して垂直に成長した粒子を有する酸化物超伝導薄膜を作
製し、粒界の弱い結合性を利用したデバイスを提供する
ことができる。
[Problems to be Solved by the Invention] In order to solve the above technical problems, the present invention provides
That is, in order to produce a superconducting thin film with excellent physical properties such as surface flatness and crystal homogeneity
A heat treatment for growing the Y 1 Ba 2 Cu 3 O 7-Z crystal phase,
You have to do it at a lower temperature. It is necessary to carry out heat treatment at a lower temperature and to prepare a thin film with good orientation in which crystal grains have grown sufficiently. By heat treatment at a lower temperature, the interaction between the substrate and the thin film interface can be reduced as much as possible, and further, Y 1 Ba 2 Cu 3 O 7-Z having a superconducting property can be obtained by the heat treatment at a lower temperature. It is an object to provide a production method capable of producing a thin film. As a result, it is an object of the present invention to provide a method for thinning a Y 1 Ba 2 Cu 3 O 7-Z oxide superconducting material. Then, the present invention provides an oxide superconducting thin film having grains in which the C axis of the thin film crystal grows perpendicular to the substrate surface by heat treatment, and provides a device utilizing weak bondability of grain boundaries. be able to.

[発明の構成] [問題点を解決するための手段] 本発明は、上記の技術的な課題の解決のために、Y−Ba
−Cu−O系(Y1Ba2Cu3O7−Z)薄膜を基板上に生成
し、生成されたこの組成のアモルファス薄膜をN2気流中
で熱処理することにより、薄膜を結晶化せしめ、次に、
熱処理の冷却過程をO2気流中雰囲気のみで行なうことに
より、生成結晶化薄膜に超伝導性を付与することを特徴
とする超伝導セラミックス薄膜の製法を提供する。ま
た、その場合において、N2気流中熱処理を780〜820℃の
温度範囲で5分以上保持することにより行ない、所定温
度範囲への昇温も同じく、N2気流中で行ない、熱処理終
了後、N2ガスをO2ガスに切り換え、400℃以下まで、O2
ガス気流中で3時間以上かけて冷却することが好適であ
る。
[Structure of the Invention] [Means for Solving Problems] In order to solve the above technical problems, the present invention provides Y-Ba.
-Cu-O system and (Y 1 Ba 2 Cu 3 O 7-Z) thin film produced on a substrate, the resulting amorphous thin film of this composition by heat treatment in an N 2 stream, the thin film was allowed to crystallize, next,
Provided is a method for producing a superconducting ceramic thin film, which is characterized by imparting superconductivity to a crystallized thin film produced by performing a cooling process of heat treatment in an atmosphere of O 2 gas only. In that case, heat treatment in a N 2 gas stream is carried out by maintaining the temperature range of 780 to 820 ° C. for 5 minutes or more, and the temperature rise to a predetermined temperature range is also carried out in a N 2 gas stream. Switch the N 2 gas to O 2 gas and keep the O 2
It is preferable to cool in a gas stream for 3 hours or more.

本発明による酸化物超伝導薄膜の作製方法の1つによる
と、スパッタリング法により、陽イオンの組成がY:Ba:C
u=1:2:3であるようなアモルファス薄膜を基板(例え
ば、SrTiO3、MgO)上に作製し、熱処理を行なう。
According to one of the methods for producing an oxide superconducting thin film according to the present invention, the composition of cations is Y: Ba: C by the sputtering method.
An amorphous thin film with u = 1: 2: 3 is formed on a substrate (for example, SrTiO 3 , MgO), and heat treatment is performed.

即ち、本発明によると、熱処理により最終的にY1Ba2Cu3
O7−Z結晶薄膜を得、その薄膜が充分な超伝導性を有
して作製するために、所定の陽イオン組成比で得られる
ものであれば、出発薄膜の作製法は、スパッタリング法
以外の方法でも利用できる。また、本発明により熱処理
されるべき対象薄膜は、アモルファスであってもよい。
That is, according to the present invention, the heat treatment finally leads to Y 1 Ba 2 Cu 3
In order to obtain an O 7 -Z crystalline thin film and obtain the thin film with sufficient superconductivity, a starting thin film is prepared by a method other than the sputtering method as long as it can be obtained with a predetermined cation composition ratio. Can also be used. Also, the target thin film to be heat treated according to the present invention may be amorphous.

本発明による“熱処理”は、Y1Ba2Cu3O7−Z結晶の成
長を、780〜820℃で純N2ガスから純O2ガス気流中に替
え、400℃以下になるまで、3〜4時間かけて除冷する
ことにより、生成Y1Ba2Cu3O7−Z薄膜中に酸素を取り
込ませることにより、生成薄膜にすぐれた超伝導性を与
えることができる。
The “heat treatment” according to the present invention is to change the growth of Y 1 Ba 2 Cu 3 O 7-Z crystal at 780 to 820 ° C. from pure N 2 gas into a pure O 2 gas stream until the temperature becomes 400 ° C. or less. It is possible to impart excellent superconductivity to the produced thin film by incorporating oxygen into the produced Y 1 Ba 2 Cu 3 O 7-Z thin film by cooling for 4 hours.

N2ガス気流中でY1Ba2Cu3O7−Z薄膜結晶の成長を行な
うことにより、O2ガス中で行なう場合と比べて約100
℃、空気中で行なう場合に比べて約50℃、結晶化のため
の熱処理温度を低下させることができる。
By growing the Y 1 Ba 2 Cu 3 O 7-Z thin film crystal in N 2 gas flow, the growth is about 100% compared to that in O 2 gas.
The temperature of the heat treatment for crystallization can be lowered by about 50 ° C. as compared with the case of performing in air.

熱処理温度780〜820℃でのY1Ba2Cu3O7−Zの結晶化
は、熱処理時間が長くなるにつれ、当然、粒子成長が進
むが、膜厚1μm以下の薄膜の場合、30分間の保持時間
で、充分にその効果が得られる。更に、薄膜結晶中に酸
素を取り込ませるための除冷過程は、3〜4時間かけて
行なうことが好適である。然し乍ら、熱処理時間につい
ては、薄膜の厚さ、面積等に大きく依存するために、そ
れらにより適切に選択する必要があり、厚さ、面積を特
定する必要がない。
Crystallization of Y 1 Ba 2 Cu 3 O 7-Z at a heat treatment temperature of 780 to 820 ° C. naturally leads to grain growth as the heat treatment time becomes longer, but in the case of a thin film with a thickness of 1 μm or less, it takes 30 minutes. The holding time is sufficient to obtain the effect. Further, the cooling process for incorporating oxygen into the thin film crystal is preferably performed for 3 to 4 hours. However, the heat treatment time depends largely on the thickness, area, etc. of the thin film, so it is necessary to select it appropriately, and it is not necessary to specify the thickness, area.

一方、本発明の方法によると、熱処理過程中の最高温度
での保持を、非酸化雰囲気中で行なうことが重要であ
り、酸化雰囲気で特に薄膜との相互反応が促進される基
板、例えば、シリコン基板、金属基板等の上に酸化物超
伝導薄膜を形成したような場合の熱処理方法にも応用す
ることができる。
On the other hand, according to the method of the present invention, it is important that the holding at the maximum temperature during the heat treatment process is performed in a non-oxidizing atmosphere, and a substrate, for example, a silicon substrate, in which the interaction with the thin film is particularly promoted in the oxidizing atmosphere. It can also be applied to a heat treatment method when an oxide superconducting thin film is formed on a substrate, a metal substrate or the like.

また、超伝導薄膜と基板界面における熱処理過程中の層
間反応をできる限り少なくするために、熱処理時間を更
に短くする必要がある。
Further, the heat treatment time needs to be further shortened in order to minimize interlayer reaction during the heat treatment process at the interface between the superconducting thin film and the substrate.

本発明に用いる基板には、Si、MgO、SrTiO3の単結晶或
いはZrO2又は金属基板を利用でき、超電導物質の結晶特
性と適合性がよいものが好適である。この基板には、多
結晶体又は単結晶を利用できる。
As the substrate used in the present invention, a single crystal of Si, MgO, SrTiO 3 or ZrO 2 or a metal substrate can be used, and a substrate having good compatibility with the crystal characteristics of the superconducting substance is preferable. A polycrystalline body or a single crystal can be used for this substrate.

基板上への超伝導組成物薄膜の初期の形成法は、基板表
面上に、MBE法、スパッタリング法等の物理蒸着法によ
って行なわれ得る。
The initial formation method of the superconducting composition thin film on the substrate can be performed on the substrate surface by physical vapor deposition such as MBE or sputtering.

[作用] 本発明により利用される熱処理は、N2ガス気流中で行な
い、冷却工程に移行するときに、O2ガス雰囲気中で除冷
を行ない、従来の超伝導薄膜作製法よりも、50〜100℃
低い熱処理温度で行ない、C軸配向性の良好な超伝導薄
膜が得られたものである。
[Operation] The heat treatment used according to the present invention is performed in an N 2 gas stream, and is cooled in the O 2 gas atmosphere when shifting to the cooling step. ~ 100 ° C
The superconducting thin film having a good C-axis orientation was obtained at a low heat treatment temperature.

本発明の酸化物超伝導薄膜の作製方法は、更に、例え
ば、ジョセフソン接合、赤外線検出器、光スイッチのよ
うな製品のための超伝導結晶薄膜の形成にも用いること
ができる。
The method for producing an oxide superconducting thin film of the present invention can be further used for forming a superconducting crystal thin film for products such as Josephson junctions, infrared detectors, and optical switches.

次に、本発明の超伝導セラミックス薄膜の作製方法を具
体的に実施例により説明するが、本発明はそれらによっ
て限定されるものではない。
Next, the method for producing the superconducting ceramic thin film of the present invention will be specifically described by way of examples, but the present invention is not limited thereto.

[実施例1] SrTiO3の(100)面上に、高周波スパッタリング法によ
り、Y1Ba2Cu3O7−Z焼結体をスパッタリングターゲッ
トとして用い、Y1Ba2Cu3O7−Z薄膜を厚さ1μmに形
成した。このときのスパッタリングガス圧は、20ミリト
ール(mTorr)で、90%Ar+10%O2の混合ガスを用い
た。基板加熱は特に行なわず、生成された薄膜はアモル
ファス状態であり、絶縁体であった。
Example 1 A Y 1 Ba 2 Cu 3 O 7-Z thin film was formed on a (100) plane of SrTiO 3 by a high frequency sputtering method using a Y 1 Ba 2 Cu 3 O 7-Z sintered body as a sputtering target. Was formed to a thickness of 1 μm. The sputtering gas pressure at this time was 20 mTorr, and a mixed gas of 90% Ar + 10% O 2 was used. The substrate was not particularly heated, and the formed thin film was in an amorphous state and was an insulator.

熱処理は、N2ガス気流雰囲気中で行ない、即ち、予めN2
ガスを流しながら、850℃に加熱しておいた管状炉中
に、前記のように作製した薄膜を設置した。このとき、
管状炉の温度は、約15分で850℃まで昇温した。850℃で
の保持時間は、1時間とし、この間にN2ガスを流し続け
た。保持終了直後、炉内に導入するガスをN2ガスからO2
ガスに切り換え、O2ガス気流中で、約4時間かけて400
℃以下になるまで除冷した。その後、ヒータースイッチ
を切り、200℃まで炉内放置冷却した後、取り出した。
ガス流量は、N2、O2ガスいずれも250cc/分とした。
The heat treatment is performed in an N 2 gas stream atmosphere, i.e., pre-N 2
The thin film prepared as described above was placed in a tubular furnace heated to 850 ° C. while flowing a gas. At this time,
The temperature of the tubular furnace was raised to 850 ° C in about 15 minutes. The holding time at 850 ° C. was 1 hour, and N 2 gas was kept flowing during this time. Immediately after holding, the gas to be introduced into the furnace was changed from N 2 gas to O 2 gas.
Switch to gas and in an O 2 gas stream, 400 for about 4 hours
It was cooled to below ℃. After that, the heater switch was turned off, the furnace was left to cool to 200 ° C., and then taken out.
The gas flow rate was 250 cc / min for both N 2 and O 2 gas.

次に、比較例として、以上の熱処理を空気中で同じ熱処
理サイクルで行なった。
Next, as a comparative example, the above heat treatment was performed in air in the same heat treatment cycle.

第1図に熱処理した後の薄膜のX線回折の結果を示す。
その内、上の回折図は、N2ガス中熱処理したもので、下
の回折図は、比較例の空気中熱処理したものである。
FIG. 1 shows the result of X-ray diffraction of the thin film after heat treatment.
Among them, the upper diffractogram is heat treated in N 2 gas, and the lower diffractogram is heat treated in air of the comparative example.

熱処理により、C軸が基板表面に垂直に配向したY1Ba2C
u3O7−Z相と同様にC軸配向していると考えられる未
知相が成長したことが分かる。未知相は、基板SrTiO3
の反応により生成した相と考えられる。この反応相は、
熱処理温度を下げることにより、またMgO基板を用いる
ことにより消滅した。
Y 1 Ba 2 C with C axis oriented perpendicular to the substrate surface by heat treatment
It can be seen that an unknown phase, which is considered to be C-axis oriented, has grown like the u 3 O 7-Z phase. The unknown phase is considered to be the phase generated by the reaction with the substrate SrTiO 3 . This reaction phase is
It disappeared by lowering the heat treatment temperature and by using the MgO substrate.

第1図より、N2ガス気流中熱処理と空気中熱処理の薄膜
を比較すると、N2ガス気流中の方が、Y1Ba2Cu3O7−Z
結晶の回折ピークが非常に顕著になり、本発明により、
熱処理雰囲気を空気中のものからN2ガス気流中のものに
変更することにより、超伝導薄膜の結晶化が促進されて
いることが分かる。
From FIG. 1, comparing the thin films of N 2 gas flow heat treatment and air heat treatment, Y 1 Ba 2 Cu 3 O 7-Z was found in the N 2 gas air flow.
The diffraction peak of the crystal becomes very remarkable, and according to the present invention,
It can be seen that the crystallization of the superconducting thin film is promoted by changing the heat treatment atmosphere from that in the air to that in the N 2 gas stream.

更に、これに対して、O2ガス気流熱処理では、同様の温
度条件では、Y1Ba2Cu3O7−Z結晶の成長は、更に不充
分で、更に高い温度(900℃以上)で熱処理する必要が
ある。
On the other hand, in the O 2 gas stream heat treatment, under the same temperature condition, the growth of Y 1 Ba 2 Cu 3 O 7-Z crystal was further insufficient, and the heat treatment was performed at a higher temperature (900 ° C or higher). There is a need to.

第2図は、N2ガス気流中及び空気気流中熱処理の各々の
薄膜の電気抵抗率の温度依存性を示す。即ち、空気熱処
理した試料薄膜では、液体ヘリウム温度以上では、超伝
導特性を示さなかった。N2ガス気流中熱処理した試料薄
膜では、58Kで超伝導特性を示した。Tcが低いことは、
基板との反応物によるものであろう。
FIG. 2 shows the temperature dependence of the electrical resistivity of each thin film subjected to heat treatment in N 2 gas stream and air stream. That is, the air-heat treated sample thin film did not exhibit superconducting properties above the liquid helium temperature. The sample thin film heat-treated in N 2 gas flow showed superconducting properties at 58K. Low Tc means
It may be due to the reaction product with the substrate.

[実施例2] 実施例1と同様な超伝導組成物の薄膜形成と熱処理を行
なうが、N2ガス気流中熱処理の後の、O2ガスを導入する
時期について検討比較した。
[Example 2] A thin film of a superconducting composition and heat treatment similar to those in Example 1 are performed, but the timing of introducing O 2 gas after heat treatment in a N 2 gas stream was examined and compared.

アモルファス薄膜は、SrTiO3結晶の(100)面上に、実
施例1と同様な方法で作製した。熱処理は、800℃まで1
5分で昇温し、800℃で30分間保持し、次に、500℃まで6
0分で降温し、500℃で30分間保持した後に、200℃まで1
20分かけて降温し、熱処理した結晶薄膜を取り出した。
The amorphous thin film was formed on the (100) plane of the SrTiO 3 crystal by the same method as in Example 1. Heat treatment up to 800 ℃ 1
Heat up in 5 minutes, hold at 800 ° C for 30 minutes, then raise to 500 ° C 6
Lower the temperature at 0 minutes, hold at 500 ℃ for 30 minutes, and then increase to 200 ℃ 1
The temperature was lowered over 20 minutes, and the heat-treated crystalline thin film was taken out.

IIの熱処理雰囲気は、昇温→800℃保持→降温までをN2
ガス気流中で行ない、500℃保持以後を、O2ガス気流中
で行なったもので、Iは、昇温→800℃保持までをN2
ス気流中、降温→500℃保持→降温をO2ガス気流中で行
なったものであり、2つを比較検討した。
As for the heat treatment atmosphere of II, N 2
It was carried out in a gas stream and was held in an O 2 gas stream after the temperature was kept at 500 ° C. I: Temperature increase → 800 ° C hold in a N 2 gas stream, temperature decrease → 500 ° C hold → temperature decrease by O 2 It was carried out in a gas stream, and the two were compared and examined.

いずれの熱処理で作製した超伝導結晶薄膜でも、Y1Ba2C
u3O7−Z相が成長していた。X線回折観察の結果から
は、両者において差異が見られなかった。
Y 1 Ba 2 C
u 3 O 7-Z phase was grown. From the result of X-ray diffraction observation, no difference was observed between the two.

第1表に各々の場合に得られた薄膜の電気特性を示す。
即ち、Iは、800℃保持直後にO2ガスを導入した処理の
もので、IIは、500℃保持時にO2ガス導入した処理のも
のを示す。
Table 1 shows the electrical properties of the thin films obtained in each case.
That is, I indicates a treatment in which O 2 gas was introduced immediately after holding at 800 ° C., and II indicates a treatment in which O 2 gas was introduced during holding at 500 ° C.

表中、Tc、onsetは電気抵抗率が落ち始める温度を意味
し、Tc、zeroは電気抵抗率が1×10-4mΩ・cm以下にな
る温度を意味する。
In the table, Tc and onset mean the temperature at which the electric resistivity begins to fall, and Tc and zero mean the temperature at which the electric resistivity becomes 1 × 10 −4 mΩ · cm or less.

第1表 II Tc、onset 約90K 約90K Tc、zero 41K 超伝導性を示さない 室温抵抗値 9mΩ・cm 50mΩ・cm 第1表より、800℃直後、即ち結晶化のための最高温度
での保持終了直後にO2ガスを導入した方が、超伝導特性
が得られることが分かった。
Table 1 I II Tc, onset About 90K About 90K Tc, zero 41K No superconductivity Room temperature resistance value 9mΩ ・ cm 50mΩ ・ cm From Table 1, immediately after 800 ℃, that is, at the maximum temperature for crystallization. It was found that the superconducting property can be obtained by introducing O 2 gas immediately after the end of holding.

[実施例3] 次に、結晶化のための熱処理温度を、750℃、800℃、85
0℃に変化させて比較した。
[Example 3] Next, the heat treatment temperature for crystallization was set to 750 ° C, 800 ° C, 85 ° C.
The temperature was changed to 0 ° C. for comparison.

超伝導組成物薄膜は、実施例1と同様な方法でSrTiO3
晶の(100)面上に作製し、上記の3種類の熱処理温度
で熱処理した。
The superconducting composition thin film was formed on the (100) plane of the SrTiO 3 crystal in the same manner as in Example 1 and heat-treated at the above-mentioned three heat treatment temperatures.

熱処理は、実施例1と同様なサイクルでN2ガス気流中で
各保持温度まで約15分で昇温し、最高温度(熱処理温
度)に30分間保持した後、N2ガスをO2ガスに切り換え、
O2ガス気流中で400℃以下まで3〜4時間かけて降温
し、更に200℃以下に冷却した後、熱処理した超伝導薄
膜を取り出した。
The heat treatment was carried out in the same cycle as in Example 1 by raising the temperature to each holding temperature in about 15 minutes in a N 2 gas stream and holding at the maximum temperature (heat treatment temperature) for 30 minutes, then converting the N 2 gas to O 2 gas. switching,
The temperature was lowered to 400 ° C. or lower in an O 2 gas stream over 3 to 4 hours, further cooled to 200 ° C. or lower, and the heat-treated superconducting thin film was taken out.

第2表に熱処理後の薄膜特性を示す。Table 2 shows the thin film characteristics after the heat treatment.

但し、*1は、常伝導状態での電気抵抗率の温度変化に
対する傾きであり、負はいわゆる半導体的で正は金属的
といわれる伝導性質に対応するものであることを示す。
However, * 1 is the slope of the electrical resistivity in the normal conduction state with respect to temperature change, and indicates that negative corresponds to the so-called semiconducting property and positive corresponds to the metallic property.

*2は、X線回折の回折ピーク強度から判断した結果
で、×、△、〇、◎の順に、その生成量が多いことを示
している。
* 2 is a result determined from the diffraction peak intensity of X-ray diffraction, and shows that the production amount is large in the order of ×, Δ, ◯, ⊚.

以上の結果から、800℃が適当な熱処理温度であること
が明らかにされた。850℃熱処理では絶縁性になってし
まう理由は、SrTiO3基板との反応物が生じるためであ
り、基板をMgOに替えることで、同じ850℃熱処理でも、
Tc、zeroが47Kを示す薄膜を得ることができた。
From the above results, it was clarified that 800 ° C is an appropriate heat treatment temperature. The reason why the heat treatment at 850 ° C. becomes insulating is that a reaction product with the SrTiO 3 substrate is generated, and by changing the substrate to MgO, the same heat treatment at 850 ° C.
It was possible to obtain a thin film in which Tc and zero were 47K.

[実施例4] 基板にMgO結晶の(100)面を用いて、熱処理温度750、7
80、800、850℃で各々、本発明に従い熱処理を行なっ
た。その得られた結果を比較した。即ち、実施例3と同
様な作製方法でMgO結晶の(100)面の上にアモルファス
薄膜を厚さ5000Åになるように作製した。
Example 4 Using a (100) plane of MgO crystal as a substrate, heat treatment temperatures of 750 and 7
Heat treatment was carried out at 80, 800 and 850 ° C. according to the present invention. The obtained results were compared. That is, an amorphous thin film was formed on the (100) plane of the MgO crystal so as to have a thickness of 5000 Å by the same production method as in Example 3.

次に、熱処理は、実施例3と同様に各々の熱処理温度ま
で、N2ガス気流中で約15分間で昇温し、30〜60分間保持
した後、N2ガスをO2ガスに切り替え、O2ガス気流中で40
0℃以下になるまで3〜4時間かけて降温し、更に、200
℃以下にまで放冷した後、取り出した。
Next, in the heat treatment, as in Example 3, the temperature was raised to the respective heat treatment temperatures in the N 2 gas stream for about 15 minutes and kept for 30 to 60 minutes, and then the N 2 gas was changed to the O 2 gas, 40 in O 2 gas stream
Decrease the temperature over 3 to 4 hours until the temperature drops below 0 ℃, and then add 200
After cooling to below ℃, it was taken out.

得られた薄膜の電気特性を第3表に示す。The electric characteristics of the obtained thin film are shown in Table 3.

以上の結果から、熱処理温度800℃、保持時間30〜60分
間の熱処理により、70Kで超伝導性を有する結晶薄膜が
得られることが明らかにされた。Tc、onsetは、いずれ
の薄膜でも約90Kで、X線回折線の観察では、C軸が基
板表面に対してほぼ垂直に配向した膜が得られた。超伝
導薄膜粒子は、2〜3μmの板状のものであった。
From the above results, it was clarified that a crystalline thin film having superconductivity at 70K can be obtained by heat treatment at a heat treatment temperature of 800 ℃ and a holding time of 30 to 60 minutes. The Tc and onset were about 90 K for both thin films, and by observation of X-ray diffraction lines, a film in which the C axis was oriented substantially perpendicular to the substrate surface was obtained. The superconducting thin film particles were in the form of plates of 2 to 3 μm.

[実施例5] スパッタリングターゲットとして、BaCu合金、金属Y、
金属Cuを用いた多元rfマグネトロンスパッタリング法に
より、SrTiO3結晶の(100)面上に、陽イオンの比が、
Y:Ba:Cu=1:2:3になる組成物の薄膜を形成した。基板の
加熱は行なわない。スパッタリングガス圧は、Ar4Pa
で、作製した超伝導薄膜中にO2を強制的に取り込ませる
ことはしなかった。得られた薄膜は黒色を呈しており、
絶縁体であった。その膜厚は、3000Åであった。
Example 5 As a sputtering target, BaCu alloy, metal Y,
By the multi-source rf magnetron sputtering method using metallic Cu, the ratio of cations on the (100) plane of SrTiO 3 crystal is
A thin film of a composition of Y: Ba: Cu = 1: 2: 3 was formed. The substrate is not heated. Sputtering gas pressure is Ar4Pa
Therefore, O 2 was not forcibly incorporated into the prepared superconducting thin film. The obtained thin film has a black color,
It was an insulator. The film thickness was 3000Å.

この薄膜を本発明による熱処理を行なうことにより超伝
導特性を得た。熱処理は、N2ガス気流中で800℃まで15
分間で昇温し、60分間保持した後、雰囲気ガスをO2ガス
に切り替え、O2ガス気流中で400℃まで3〜4時間をか
けて降温し、更に、200℃まで放冷して試料薄膜を取り
出した。
Superconducting properties were obtained by subjecting this thin film to the heat treatment according to the present invention. Heat treatment up to 800 ℃ in N 2 gas flow 15
After heating for 60 minutes and holding for 60 minutes, the atmospheric gas is switched to O 2 gas, the temperature is lowered to 400 ° C in an O 2 gas stream over 3 to 4 hours, and then the sample is allowed to cool to 200 ° C. The thin film was taken out.

熱処理した後の薄膜特性は、室温抵抗率1.8mΩ・cmで、
Tc、onset、85Kで、Tc、zero73Kであった。
The thin film characteristics after heat treatment are room temperature resistivity 1.8 mΩ ・ cm,
It was Tc, onset, 85K, and Tc, zero 73K.

[実施例6] 実施例5と同様な多元スパッタリング法でMgO結晶の(1
00)面上に厚さ5000Åの合金薄膜を作製した。
[Example 6] The MgO crystal (1
An alloy thin film with a thickness of 5000Å was prepared on the (00) surface.

熱処理は、実施例5と同様なサイクルで、800℃での保
持時間を、15、30、60分間に変化させて、各々薄膜を作
製した。また、比較例として、保持時間30分間のサイク
ルで途中からO2ガスを導入せずに、最後までN2ガス気流
中で熱処理して得た薄膜を作製した。
The heat treatment was the same cycle as in Example 5, and the holding time at 800 ° C. was changed to 15, 30, and 60 minutes to form thin films. In addition, as a comparative example, a thin film obtained by performing a heat treatment in a N 2 gas stream until the end without introducing O 2 gas in a cycle with a holding time of 30 minutes was produced.

それらの結果を第4表に示す。The results are shown in Table 4.

但し、*1の単位は、mΩ・cmであり、*2は、X線回
折図で(005)回折線ピークから計算したものである。
However, the unit of * 1 is mΩ · cm, and * 2 is calculated from the (005) diffraction line peak in the X-ray diffraction diagram.

第4表から、800℃で、30〜60分間の熱処理で、良好なT
c、zeroの超伝導薄膜が得られたことが明らかにされ
た。O2ガス導入なしで熱処理した超伝導薄膜が、低い超
伝導特性である理由は、結晶中の酸素不足のためであろ
う。
From Table 4, a good T can be obtained by heat treatment at 800 ° C for 30 to 60 minutes.
It was revealed that a superconducting thin film of c and zero was obtained. The reason why the superconducting thin film heat-treated without introducing O 2 gas has poor superconducting properties may be due to lack of oxygen in the crystal.

[発明の効果] 本発明のセラミックス超伝導薄膜の作製方法により、次
のような顕著な技術的効果が得られた。
[Effects of the Invention] The following remarkable technical effects were obtained by the method for producing a ceramics superconducting thin film of the present invention.

第1に、従来の熱処理法では850〜900℃と高い熱処理温
度が一般的であったが、本発明による熱処理では、N2
流中で熱処理し、次いでO2気流に切り替えて冷却するこ
とにより、従来より、50〜100℃低い熱処理温度の800℃
前後での熱処理により、良好な超伝導特性を有し、C軸
配向性の良好な超伝導薄膜が得られた。
First, in the conventional heat treatment method, a high heat treatment temperature of 850 to 900 ° C. is generally used, but in the heat treatment according to the present invention, the heat treatment is performed in an N 2 gas flow, and then by switching to an O 2 gas flow and cooling. , Heat treatment temperature of 800 ℃, which is 50-100 ℃ lower than before
By heat treatment before and after, a superconducting thin film having good superconducting properties and good C-axis orientation was obtained.

第2に、熱処理温度を下げることにより、基板と薄膜と
の相互作用(化学反応)を低減することができた。
Secondly, the interaction (chemical reaction) between the substrate and the thin film could be reduced by lowering the heat treatment temperature.

第3に、N2とO2という非常に一般的で安価なガスを熱処
理に用いることのみで、熱処理プロセスが改善され、得
られる薄膜の結晶性が向上した。
Third, the heat treatment process was improved and the crystallinity of the obtained thin film was improved only by using a very general and inexpensive gas of N 2 and O 2 for the heat treatment.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明により熱処理した超伝導薄膜と空気中
で熱処理した薄膜のX線回折図を各々に示す。 第2図は、第1図と同様に熱処理した薄膜について、各
々電気抵抗率を測定し、その温度依存性を示すものであ
る。
FIG. 1 shows X-ray diffraction patterns of a superconducting thin film heat-treated according to the present invention and a thin film heat-treated in air, respectively. FIG. 2 shows the temperature dependence of the electrical resistivity of each thin film heat-treated in the same manner as in FIG.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】Y−Ba−Cu−O系(Y1Ba2Cu3O7−Z)酸
化物超伝導薄膜を基板上に生成し、生成されたこの組成
のアモルファス薄膜をN2気流中で熱処理することによ
り、薄膜を結晶化せしめ、次に、熱処理の冷却過程をO2
気流中雰囲気のみで行なうことにより、生成結晶化薄膜
に超伝導性を付与することを特徴とする超伝導セラミッ
クス薄膜の製法。
1. A Y-Ba-Cu-O system (Y 1 Ba 2 Cu 3 O 7-Z) oxide superconductor thin film was produced on a substrate, the generated this composition amorphous thin film N 2 stream by heat treatment in, allowed crystallize the film, then, the cooling process of the heat treatment O 2
A method for producing a superconducting ceramic thin film, which is characterized by imparting superconductivity to a crystallized thin film produced by performing only in an atmosphere of air flow.
【請求項2】請求項第1項記載の製法において、N2気流
中熱処理を780〜820℃の温度範囲で5分以上保持するこ
とにより行ない、所定温度範囲への昇温も同じく、N2
流中で行ない、熱処理終了後、N2ガスをO2ガスに切り換
え、400℃以下まで、O2ガス気流中で3時間以上かけて
冷却することを特徴とする請求項第1項記載の超伝導セ
ラミックス薄膜の製法。
2. A process according the one of claims performs by holding 5 minutes or more N 2 gas stream heat treated at a temperature in the range of seven hundred eighty to eight hundred twenty ° C., again be heating to a predetermined temperature range, N 2 2. The method according to claim 1, wherein the N 2 gas is switched to O 2 gas after the heat treatment is completed in an air stream and the temperature is cooled to 400 ° C. or lower in the O 2 gas stream for 3 hours or more. Manufacturing method of conductive ceramic thin film.
【請求項3】前記の熱処理サイクルを1回以上行なうこ
とを特徴とする請求項第1項記載の超伝導セラミックス
薄膜の製法。
3. The method for producing a superconducting ceramic thin film according to claim 1, wherein the heat treatment cycle is performed once or more.
【請求項4】該基板は、Si、MgO、SrTiO3の単結晶或い
はZrO2である請求項第3項記載の薄膜の製法。
4. The method for producing a thin film according to claim 3 , wherein the substrate is a single crystal of Si, MgO, SrTiO 3 or ZrO 2 .
JP1073875A 1989-03-28 1989-03-28 Manufacturing method of superconducting ceramic thin film Expired - Lifetime JPH0669919B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1073875A JPH0669919B2 (en) 1989-03-28 1989-03-28 Manufacturing method of superconducting ceramic thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1073875A JPH0669919B2 (en) 1989-03-28 1989-03-28 Manufacturing method of superconducting ceramic thin film

Publications (2)

Publication Number Publication Date
JPH02252697A JPH02252697A (en) 1990-10-11
JPH0669919B2 true JPH0669919B2 (en) 1994-09-07

Family

ID=13530810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1073875A Expired - Lifetime JPH0669919B2 (en) 1989-03-28 1989-03-28 Manufacturing method of superconducting ceramic thin film

Country Status (1)

Country Link
JP (1) JPH0669919B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9054137B2 (en) 2009-06-30 2015-06-09 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9093262B2 (en) 2009-11-20 2015-07-28 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9299807B2 (en) 2009-06-30 2016-03-29 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR920009653B1 (en) * 1990-07-12 1992-10-22 재단법인 한국전자통신연구소 Lanthanum aluminate thin film manufacture method
KR101808198B1 (en) * 2010-05-21 2017-12-12 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for manufacturing semiconductor device

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9576795B2 (en) 2009-06-30 2017-02-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9985118B2 (en) 2009-06-30 2018-05-29 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9136115B2 (en) 2009-06-30 2015-09-15 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9299807B2 (en) 2009-06-30 2016-03-29 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9412768B2 (en) 2009-06-30 2016-08-09 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US11417754B2 (en) 2009-06-30 2022-08-16 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US10790383B2 (en) 2009-06-30 2020-09-29 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9831101B2 (en) 2009-06-30 2017-11-28 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9054137B2 (en) 2009-06-30 2015-06-09 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US20180233589A1 (en) 2009-06-30 2018-08-16 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US10090171B2 (en) 2009-06-30 2018-10-02 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US10418467B2 (en) 2009-06-30 2019-09-17 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US10186619B2 (en) 2009-11-20 2019-01-22 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9093262B2 (en) 2009-11-20 2015-07-28 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9461181B2 (en) 2009-11-20 2016-10-04 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device

Also Published As

Publication number Publication date
JPH02252697A (en) 1990-10-11

Similar Documents

Publication Publication Date Title
Li et al. Preparation of perovskite conductive LaNiO3 films by metalorganic decomposition
JPH029717A (en) Method for producing a superconductive oxide film on a substrate of silicon and silicon dioxide
JPH10223070A (en) Manufacture of superconducting tape material
JPH0669919B2 (en) Manufacturing method of superconducting ceramic thin film
JPH07267791A (en) Production of oxide superconductor thin film and oxide superconductor thin film laminate
JPH04300292A (en) Film forming method for multicomponent oxide film superconducting film
JPS63239742A (en) Manufacture for film superconductor
JP2814563B2 (en) Manufacturing method of oxide superconducting film
US5306698A (en) Methods for producing Tl2 Ca2 Ba2 Cu3 oxide superconductors
JPH0218974A (en) Supeconducting device and its manufacture
JPH01208327A (en) Production of thin film of superconductor
JPS63225599A (en) Preparation of oxide superconductive thin film
JP2832002B2 (en) Method for producing Bi-Sr-Ca-Ci-O-based superconducting thin film
JP3353871B2 (en) Oxide superconductor thin film laminate and method for producing oxide superconductor thin film laminate
JP2702711B2 (en) Manufacturing method of thin film superconductor
JPH04342497A (en) Method for forming complex oxide superconducting thin film
JPH0238310A (en) Production of oxide high temperature superconductive thin film
JPS6042298A (en) Manufacture of thin film of single crystal of barium lead bismuthate
JP4153651B2 (en) Seed crystal of oxide superconducting material and manufacturing method of oxide superconducting material using the same
JPH06162843A (en) Manufacture of bi oxide superconductor
JP2840475B2 (en) Method for producing oxide superconducting thin film
JP2525842B2 (en) Superconducting wire and its manufacturing method
JP2847769B2 (en) Method for producing Bi-based superconductor thin film
JPH03112810A (en) Production of oxide superconducting film
JPH03261607A (en) Manufacture of high-temperature superconducting thin film