JPH0238310A - Production of oxide high temperature superconductive thin film - Google Patents

Production of oxide high temperature superconductive thin film

Info

Publication number
JPH0238310A
JPH0238310A JP63190798A JP19079888A JPH0238310A JP H0238310 A JPH0238310 A JP H0238310A JP 63190798 A JP63190798 A JP 63190798A JP 19079888 A JP19079888 A JP 19079888A JP H0238310 A JPH0238310 A JP H0238310A
Authority
JP
Japan
Prior art keywords
thin film
base plate
film
substrate
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63190798A
Other languages
Japanese (ja)
Inventor
Hajime Yuzurihara
肇 譲原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP63190798A priority Critical patent/JPH0238310A/en
Publication of JPH0238310A publication Critical patent/JPH0238310A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To provide the subject thin film at a low base plate-heating temperature without any heat-treating process by adopting specific conditions in a method of forming the oxide high temperature superconductor thin film with a rf magnetron or opposed target sputter device. CONSTITUTION:In a method of forming the thin film of an oxide high temperature superconductor of AxByCuzOdelta (A and B are selected from Ca, Sr, Ba, etc., in the group IIa, Y and lanthanum in the group IIIa, Bi in the group IIIb, etc.,) or AxByCzCuepsilonOdelta (A-C are selected from the above-mentioned elements) with a rf magnetron or opposed target sputter device, an O2 plasma-generating device 2 is newly disposed on the peripheral portion of a base plate 9 and an oxide sintered product used as a target 4 is spattered in an atmosphere of Ar gas 5 and simultaneously O2 plasma is locally generated on the surface of the base plate 9 to form a <= approximately 1mum thick film on the base plate at a heating temperature of <=600 deg.C. After the electric discharge is stopped, the thin film-formed base plate is gradually cooled to room temperature by supplying plasma-free O2 gas 6 on the thin film or by cooling the base plate to 350-370 deg.C in an atmosphere of O2 gas 6 and subsequently keeping the base plate for several hours.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は酸化物高温超伝導薄膜の製造方法に関し、詳し
くは、rfマグネトロンスパッタ法または対向ターゲッ
トスパッタ法により低基板温度で酸化物高温超伝導体の
単結晶薄膜を製造する方法に関する。
[Detailed Description of the Invention] [Technical Field] The present invention relates to a method for manufacturing an oxide high temperature superconducting thin film, and more specifically, a method for manufacturing an oxide high temperature superconductor thin film at a low substrate temperature by RF magnetron sputtering or facing target sputtering. The present invention relates to a method of manufacturing a crystalline thin film.

〔従来技術〕[Prior art]

rfスパッタ法、rfマグネトロンスパッタ法。 rf sputtering method, rf magnetron sputtering method.

対向ターゲットスパッタ法などによる酸化物超伝導薄膜
の製造は、Y−Ba−Cu−0などをはじめとする希土
類系酸化物、Ba−5r−Cu−0系酸化物、Ba−P
b−B1−0系酸化物を中心とし、更に、その他多くの
酸化物においても随所で行なわれている。
Manufacture of oxide superconducting thin films by facing target sputtering etc. is possible using rare earth oxides such as Y-Ba-Cu-0, Ba-5r-Cu-0 oxides, Ba-P
This process is mainly performed on b-B1-0 type oxides, but also on many other oxides.

ところで、前記の各スパッタ法によって酸化物高温超伝
導薄膜を製造するには、例えばArガス:0□ガス49
 : 1(圧力比)の混合ガス雰囲気中で、基板温度6
50 ’C〜700℃で成膜した後、電気炉にて空気中
又は酸素ガス雰囲気のもとて基板温度以上で焼鈍し、し
かる後徐冷せしめるようにすれば高い臨界温度(Y−B
a−Cu−0系で86〜88K)をもつ単結晶(C軸配
向)膜が得られる。だが、この高温基板加熱の手段が採
用されるとどうしても、製造された薄膜の質が悪くなり
、基板を構成している元素が薄膜に拡散したり、更には
、クラック等の問題を引起すようになる。
By the way, in order to manufacture an oxide high temperature superconducting thin film by each of the above-mentioned sputtering methods, for example, Ar gas: 0□ gas 49
: In a mixed gas atmosphere with a pressure ratio of 1 (pressure ratio), the substrate temperature is 6
After forming a film at 50'C to 700°C, it is annealed in an electric furnace in air or in an oxygen gas atmosphere above the substrate temperature, and then slowly cooled to achieve a high critical temperature (Y-B
A single crystal (C-axis oriented) film with a-Cu-0 system (86 to 88 K) is obtained. However, if this high-temperature substrate heating method is adopted, the quality of the manufactured thin film inevitably deteriorates, elements that make up the substrate diffuse into the thin film, and problems such as cracks may occur. become.

一方、前記方法において、500℃〜600℃で基板加
熱して製膜した場合には、それだけでは薄膜は超伝導現
象を示さず、結局、後の熱処理を十分行なければ高い臨
界温度が得られない。従って、低い基板温度でスパッタ
して製膜されたものは、空気中又は酸素ガス雰囲気の電
気炉等において焼鈍することなしに、超伝導現象を示し
かつ高い臨界温度をもっことの例はほとんど見当らない
のが実情である。
On the other hand, in the above method, when a film is formed by heating the substrate at 500°C to 600°C, the thin film does not exhibit superconductivity phenomenon by itself, and a high critical temperature cannot be obtained unless the subsequent heat treatment is performed sufficiently. do not have. Therefore, there are almost no examples of films formed by sputtering at low substrate temperatures that exhibit superconductivity and have a high critical temperature without being annealed in air or in an electric furnace in an oxygen gas atmosphere. The reality is that there is not.

Er、 Ba、 Cu4. 、 Oxターゲットを用い
、Arガス:0□ガス″:4:1(圧力比)、ガス圧約
3 mtorrでMgO基板を650℃に加熱してスパ
ッタ後、酸素ガス雰囲気で室温まで急冷して製造した薄
膜が約86にで抵抗0となった例(App Q 、Ph
ys、Lett。
Er, Ba, Cu4. The MgO substrate was sputtered by heating it to 650°C using an Ox target, Ar gas: 0□ gas'': 4:1 (pressure ratio), and a gas pressure of about 3 mtorr, and then rapidly cooling it to room temperature in an oxygen gas atmosphere. An example where the resistance of the thin film becomes 0 at about 86% (App Q, Ph
ys, Lett.

51(26) 19872263)が報告されているが
、ここでは薄膜の臨界温度は基板とターゲットとの間の
距離に大きく依存しており、その距離が35mmで86
Kを示し、その距離が40nw++になると約60〜7
0Kを示すが、薄膜はC軸配向した結晶膜である。
51 (26) 19872263), but here the critical temperature of the thin film largely depends on the distance between the substrate and the target, and when the distance is 35 mm, the critical temperature of the thin film is 86 mm.
K, and when the distance is 40nw++, it is about 60~7
Although it shows 0K, the thin film is a C-axis oriented crystal film.

なお、CVD法で酸化物高温超伝導薄膜を製造する方法
も多く提案されているが、この方法では基板の選択の幅
が拡がる点での有利さはあるが、基板温度を700℃以
上に加熱しなければならず、薄膜も多結晶になり勝ちで
ある。また、電子ビーム°蒸着法やクラスターイオンビ
ーム法などによる酸化物高温超伝導薄膜の製造法も提案
されているが、これらの方法でも薄膜を単結晶で得るた
めには高温で基板加熱したり、電気炉での熱処理を必要
としており、従って良質の膜は得られにくいといった不
都合を有している。
Note that many methods have been proposed for manufacturing oxide high-temperature superconducting thin films using the CVD method, but although this method has the advantage of expanding the range of substrate selection, it requires heating the substrate temperature to over 700°C. Therefore, the thin film is likely to be polycrystalline. In addition, methods for manufacturing oxide high-temperature superconducting thin films using electron beam evaporation and cluster ion beam methods have also been proposed, but even with these methods, in order to obtain single crystal thin films, it is necessary to heat the substrate at high temperatures, It requires heat treatment in an electric furnace, and therefore has the disadvantage that it is difficult to obtain a film of good quality.

酸化物高温超伝導薄膜がC軸にエピタキシャル成長した
単結晶膜として製造されるのは超伝導トランジスタ、D
C−8QUID等や超低温の光エレクトロニクス用材料
の素子として望ましいことである。
Superconducting transistors, D
This is desirable as an element for C-8QUID or other ultra-low-temperature optoelectronic materials.

〔目  的〕〔the purpose〕

本発明は、従来法においてなされていた高温での基板加
熱及び/又は薄膜の高温熱処理(後処理)を行なうこと
なく、C軸配向の単結晶で高い臨界温度を示す膜が製膜
しつる酸化物高温超伝導薄膜の製造方法を提供するもの
である。
The present invention is capable of forming a film with a C-axis oriented single crystal and exhibiting a high critical temperature without heating the substrate at high temperatures and/or high-temperature heat treatment (post-treatment) of the thin film, which was done in the conventional method. The present invention provides a method for manufacturing a high-temperature superconducting thin film.

〔構  成〕〔composition〕

本発明は、酸化物高温超伝導体AxByCuzOδ(A
、BはIra族であるCa、Sr、Baなど、ma族で
あるY及びランタン系など、IIIb族であるBiなど
から二種選択して組合わせる)或いはAxByCzCU
εOδ(A 、 B 、 Cは前記元素のうちから三種
選択して組合わせる)の酸化物高温超伝導薄膜をrfマ
グネトロンスパッタ装置又は対向ターゲットスパッタ装
置により製膜する方法において、新たに酸素プラズマ発
生装置を基板周込部に設け、酸化物焼結体をArガス雰
囲気中でスパッタし、それと同時に、基板表面上部に局
部的に酸素プラズマを発生させて、基板加熱温度600
℃以下で厚さ約1μm以下の膜を成膜せしめた後放電を
停止させ、その膜面に前記酸素プラズマ発生装置からプ
ラズマ状態でない酸素ガスを供給し、前記膜を室温まで
徐冷するか、又は、前記の放電を停止させた後350℃
〜370℃まで酸素ガス雰囲気中で前記膜を冷却し、そ
の温度で数時間維持してから室温まで徐冷することを特
徴としている。
The present invention provides an oxide high temperature superconductor AxByCuzOδ(A
, B is a combination of two selected from Ca, Sr, Ba, etc. of the Ira group, Y of the ma group, Bi, etc. of the IIIb group, such as lanthanum type), or AxByCzCU
In the method of forming an oxide high temperature superconducting thin film of εOδ (A, B, and C are selected and combined from three of the above elements) using an RF magnetron sputtering device or a facing target sputtering device, an oxygen plasma generation device is newly added. is provided around the substrate, and the oxide sintered body is sputtered in an Ar gas atmosphere. At the same time, oxygen plasma is locally generated on the upper surface of the substrate to heat the substrate to a temperature of 600.
After forming a film with a thickness of about 1 μm or less at a temperature of 0.degree. Or 350℃ after stopping the above discharge.
It is characterized in that the film is cooled to ~370°C in an oxygen gas atmosphere, maintained at that temperature for several hours, and then slowly cooled to room temperature.

ちなみに、本発明者は従来より用いられてきたスパッタ
装置の特定位置に新たに酸素プラズマ発生装置を配設せ
しめたもので酸化物高温超伝導薄膜の製造を行なえば、
前記目的が達成されることを確めた。本発明方法はこれ
に基づいてなされたものである。
Incidentally, the present inventor has discovered that if an oxide high-temperature superconducting thin film is manufactured using a new oxygen plasma generator installed in a specific position of a conventionally used sputtering apparatus,
It was confirmed that the above objectives were achieved. The method of the present invention is based on this.

以下に、本発明方法を添付の図面に従がいながららさら
に詳細に説明するが、先に触れたとおり、本発明方法で
製造される酸化物高温超伝導薄膜は前記式 %式% 前記式(1)においてのA、Bの組合わせでは特に(Y
、Ba)、(Larsr)、(La、Ba)などが好ま
しく、またxrYrZ*δは1≦XyytZ+δ≦20
の実数である。
The method of the present invention will be explained in more detail below with reference to the accompanying drawings, but as mentioned earlier, the oxide high temperature superconducting thin film produced by the method of the present invention has the formula % formula % the formula ( Especially in the combination of A and B in 1), (Y
, Ba), (Larsr), (La, Ba), etc. are preferable, and xrYrZ*δ is 1≦XyytZ+δ≦20
is a real number.

前記式(2)においてのA、B、Cの組合わせでは特に
(Bi、Sr、Ca)、(T Q 、Ba、Ca)、(
Bi、Ba、Ca)などが好ましく、またX+y+Z+
ε、δは前記式(1)と同様1≦x+y+Z+ε、δ≦
20の実数である。
In particular, the combinations of A, B, and C in formula (2) include (Bi, Sr, Ca), (T Q , Ba, Ca), (
Bi, Ba, Ca) etc. are preferable, and X+y+Z+
ε, δ are the same as the above formula (1), 1≦x+y+Z+ε, δ≦
It is a real number of 20.

このため1本発明方法にあっては、前記式(1)又は(
2)と同じか又はほぼ同様な組成の酸化物焼結体がター
ゲットとして用いられる。
Therefore, in the method of the present invention, the formula (1) or (
An oxide sintered body having the same or almost the same composition as in 2) is used as a target.

第1図は本発明方法の実施に適したrfマグネトロンス
パッタ装置の概略図である。図中、1及び11は高周波
電源、2は酸素プラズマ発生用高周波電源、3はSm−
Goなどの磁石を有する電極部、4はターゲット、5は
Arガス噴出口、6は0□ガス噴出口、7は電極(例え
ば銅製のもの)、8はカンタル線が巻いである基板加熱
用ヒータ、9は基板、10は電極である。ここで、高周
波電源1,11及び2の周波数はともに同じで13.5
6KHzである。また、電極10はそれに磁石を取付け
ることで酸素のプラズマ化を促進するのが有利である。
FIG. 1 is a schematic diagram of an RF magnetron sputtering apparatus suitable for carrying out the method of the present invention. In the figure, 1 and 11 are high frequency power supplies, 2 is a high frequency power supply for oxygen plasma generation, and 3 is Sm-
An electrode part having a magnet such as Go, 4 a target, 5 an Ar gas outlet, 6 a 0□ gas outlet, 7 an electrode (for example, made of copper), and 8 a heater for heating the substrate wound with a Kanthal wire. , 9 is a substrate, and 10 is an electrode. Here, the frequencies of high frequency power supplies 1, 11 and 2 are all the same, 13.5
It is 6KHz. It is also advantageous to attach a magnet to the electrode 10 to promote the plasma formation of oxygen.

ターゲット4と基板9とは対向にして配置されており、
基板9の表面側方に酸素プラズマ発生用電源2に接続し
た電極10が配置されている。酸素ガス噴出口6は第1
図では電極10の上部に取付けられているが、要は基板
9表面に0□ガスを供給できれば足りることから、電極
10の下部に取付けられていてもかまわない。更には、
第2図にみられるように、電極10を酸素ガス噴出口6
の内部に配置し、このものを基板9の表面側方に配設し
てもかわない、 Arガス噴出口5はターゲット4と基
板9との間に配置されている。
The target 4 and the substrate 9 are arranged facing each other,
An electrode 10 connected to an oxygen plasma generation power source 2 is arranged on the side of the surface of the substrate 9. The oxygen gas outlet 6 is the first
In the figure, it is attached to the upper part of the electrode 10, but since it is sufficient to supply 0□ gas to the surface of the substrate 9, it may be attached to the lower part of the electrode 10. Furthermore,
As shown in FIG. 2, the electrode 10 is connected to the oxygen gas outlet 6.
The Ar gas ejection port 5 is arranged between the target 4 and the substrate 9, and may be arranged on the side of the surface of the substrate 9.

いま、この装置(第1図のもの)により、到達真空度I
 X IF’ torrからArガス圧:0□ガス≠9
=1.4:1あるいは1:1の割合で混合ガス圧2 X
 10−3〜10 X 1O−3torrの真空状態に
して電力1〜5W/ajで成膜を行なう。その際、基板
は5rTi03単結晶、MgO単結晶などが用いられ6
00℃以下好ましくは400℃〜600℃に加熱され、
基板表面付近に存在する酸素プラズマで製膜されていく
膜の酸化反応を行なう。
Now, with this device (the one in Figure 1), the ultimate vacuum degree I
X IF' torr to Ar gas pressure: 0□Gas≠9
= 1.4:1 or 1:1 ratio of mixed gas pressure 2
The film is formed in a vacuum state of 10-3 to 10.times.10-3 torr with a power of 1 to 5 W/aj. At that time, the substrate used is 5rTi03 single crystal, MgO single crystal, etc.6
heated to 00°C or lower, preferably 400°C to 600°C,
The oxidation reaction of the film being formed is carried out using oxygen plasma present near the surface of the substrate.

堆積速度は20〜100人/minが適当で、厚さ約1
μm以下の膜にした後、放電を停止しArガスの供給を
止め、0□ガスを通したまま室温まで冷却してから、直
ぐにチャンバー内を大気圧に戻す。また、前記の堆積膜
が約1μm以下となったところでArガスの供給を止め
放電を停止し、酸素プラズマ状態はそのままにして基板
温度が350℃〜360℃付近になるまで冷却した後、
酸素ガスを流したまま室温まで冷却するようにしてもよ
い。
The appropriate deposition rate is 20 to 100 people/min, and the thickness is about 1
After forming a film of .mu.m or less, the discharge is stopped, the supply of Ar gas is stopped, and the chamber is cooled to room temperature while passing 0□ gas, and the inside of the chamber is immediately returned to atmospheric pressure. Further, when the deposited film becomes about 1 μm or less, the supply of Ar gas is stopped and the discharge is stopped, and the oxygen plasma state is left as it is and the substrate temperature is cooled to around 350°C to 360°C.
It may be cooled to room temperature while flowing oxygen gas.

かかる手段によれば、従来650℃〜700℃の基板加
熱温度を必要としていたものが、膜表面に存在する酸素
プラズマにより低い基板加熱温度で製膜でき、しかも、
膜冷却の間常に酸素ガス雰囲気にしておくことで従来行
なわれていた後の熱処理をしないで超伝導を示す薄膜作
製が可能となる。
According to this means, a film that conventionally required a substrate heating temperature of 650° C. to 700° C. can be formed at a lower substrate heating temperature due to the oxygen plasma present on the film surface.
By keeping the film in an oxygen gas atmosphere during film cooling, it is possible to produce a thin film exhibiting superconductivity without the need for post-heat treatment, which is conventionally performed.

第2図は本発明方法の実施に適した対向ターゲットスパ
ッタ装置の概略図である。図中、1から11までの番号
は第1図のものと同じ意味であるが、ここでの高周波電
源1は負極、高周波電源11は陽極(アース)になって
いる。
FIG. 2 is a schematic diagram of a facing target sputtering apparatus suitable for carrying out the method of the present invention. In the figure, the numbers 1 to 11 have the same meanings as in FIG. 1, but the high frequency power source 1 here is the negative electrode, and the high frequency power source 11 is the anode (ground).

また、二つのターゲット4は対向され基板9に対して垂
直になるように配置されている。
Further, the two targets 4 are arranged to face each other and to be perpendicular to the substrate 9.

いま、この装置(第2図のもの)により、1X IF’
torrの到達真空度からArガス圧二02ガス圧岬4
:1あるいは1:1の割合で混合ガス圧I X 10−
’ 〜5 X 1O−3torrの真空状態にして電力
1.0〜1.51/a#、基板加熱温度600℃以下(
好ましくは400〜600℃)、堆積速度10〜80人
/winで成膜を行なう。その際、堆積・製膜されてい
く膜の表面を酸素プラズマ中で酸化しながら厚さ約1μ
冨以下を膜にする。その後、放電を停止しArガスの供
給を止め、02ガス雰囲気中で室温まで徐冷するか、又
は、350〜360℃付近まで酸素プラズマ中で冷却し
た後室温まで酸素ガス雰囲気中で冷してから、チャンバ
ー内を大気に戻す。
Now, with this device (shown in Figure 2), 1X IF'
From the ultimate vacuum of torr, Ar gas pressure 202 gas pressure Cape 4
:1 or 1:1 ratio of mixed gas pressure I
'~5 X 1O-3 torr vacuum state, power 1.0~1.51/a#, substrate heating temperature 600℃ or less (
(preferably 400 to 600° C.) and a deposition rate of 10 to 80 people/win. At that time, the surface of the film being deposited and formed is oxidized in oxygen plasma to a thickness of approximately 1 μm.
Make a film from the bottom. Thereafter, the discharge is stopped, the supply of Ar gas is stopped, and the temperature is slowly cooled to room temperature in an 02 gas atmosphere, or the temperature is cooled to around 350 to 360°C in oxygen plasma, and then cooled to room temperature in an oxygen gas atmosphere. Then, return the chamber to atmosphere.

かかる手段によれば、前記第1図のrfマグネトロンス
パッタ方式と同様効果が得られる上、更に、ターゲット
組成と製造された薄膜組成とのずれが少ないという利点
がもたらされる。
According to this method, the same effects as the RF magnetron sputtering method shown in FIG. 1 can be obtained, and there is also the advantage that there is little deviation between the target composition and the manufactured thin film composition.

本発明は酸化物高温超伝導薄膜の製造法であるが、この
技術は5QUID (超伝導量子干渉素子)、赤外線セ
ンサ、超伝導トランジスタなどの製造にも応用しうるち
のである。
The present invention is a method for producing a high-temperature superconducting oxide thin film, but this technology can also be applied to producing 5QUIDs (superconducting quantum interference devices), infrared sensors, superconducting transistors, and the like.

実施例I Y、O,、BaCO3,CuOの各粉末をY:Ba:C
u= 1 :2:3の重量割合で秤量して、よく混合し
、950℃で8時間焼結し、再び粉砕・混合して約1μ
m以下の粒径にした後、非水バインダー(PVB 1%
溶液)を加え、200kg/cd(7)圧力で直径10
】、厚さ2ma+の円板状に固め、930℃で6時間焼
結し、これをターゲットにした。
Example I Each powder of Y, O, BaCO3, CuO was converted into Y:Ba:C
Weighed at a weight ratio of u = 1:2:3, mixed well, sintered at 950°C for 8 hours, crushed and mixed again to about 1μ
After reducing the particle size to less than m, a non-aqueous binder (PVB 1%
solution) and 200 kg/cd (7) pressure to make a diameter 10
] was solidified into a disk shape with a thickness of 2 ma+, sintered at 930°C for 6 hours, and used as a target.

このターゲット及びMg0(100)単結晶基板を用い
て、第2図に示した対向ターゲットスパッタ方式により
、到達真空度l X 10−’ torr 。
Using this target and an Mg0 (100) single crystal substrate, an ultimate vacuum level of l x 10-' torr was obtained by the facing target sputtering method shown in FIG.

Arガス圧1.8X10−’torr、 0.ガス圧0
,2 X 1O−3torr 、電力約1す/altの
条件で、酸素プラズマ中で500℃〜550℃で基板加
熱しなから製膜を行ない、約4時間抜放電を停止し、A
rガスの供給を止め、5 X IF3torrの酸素ガ
ス雰囲気中で室温まで冷やし、基板温度約25℃になっ
た時、チャンバー内を大気圧に戻した。このとき、膜(
酸化物高温超伝導薄膜)の厚さは約0.8μmであった
Ar gas pressure 1.8 x 10-'torr, 0. Gas pressure 0
, 2 X 1O-3 torr and a power of about 1 s/alt, the substrate was heated at 500 to 550 degrees Celsius in oxygen plasma, and then the film was formed, and the discharge was stopped for about 4 hours.
The supply of r gas was stopped, and the substrate was cooled to room temperature in an oxygen gas atmosphere of 5×IF 3 torr. When the substrate temperature reached about 25° C., the inside of the chamber was returned to atmospheric pressure. At this time, the membrane (
The thickness of the oxide high temperature superconducting thin film was approximately 0.8 μm.

この薄膜を、Auを電極として4端子法で電気抵抗を測
定したところ、電気抵抗Oになる臨界温度Tcは88に
であった。また、この薄膜はX線解析データから、C軸
配向した単結晶膜であり、磁化率測定からマイスナー効
果も確認された。
When the electrical resistance of this thin film was measured by a four-terminal method using Au as an electrode, the critical temperature Tc at which the electrical resistance became O was found to be 88. Furthermore, X-ray analysis data showed that this thin film was a C-axis oriented single crystal film, and magnetic susceptibility measurements confirmed the Meissner effect.

〔効  果〕〔effect〕

本発明方法によれば、基板加熱温度が600℃以下と低
くて済むため緻密で表面が平滑な酸化物高温超伝導薄膜
(最高90にで電気抵抗O)が得られる。加えて、従来
法のごとき電気炉を用いての空気中、酸素中での焼鈍処
理は不要である。
According to the method of the present invention, since the substrate heating temperature can be as low as 600° C. or less, a dense high-temperature superconducting oxide thin film with a smooth surface (electrical resistance at a maximum of 90° C.) can be obtained. In addition, there is no need for annealing in air or oxygen using an electric furnace as in the conventional method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明方法の実施に好適な装置の二
側の概略図である。 1.11・・・高周波電源 2・・・酸素プラズマ発生用高周波電源3・・・電極部 5・・・Arガス噴出口 ア、10・・・電 極 9・・・基 板
1 and 2 are schematic views of two sides of an apparatus suitable for carrying out the method of the invention. 1.11...High frequency power supply 2...High frequency power supply for oxygen plasma generation 3...Electrode part 5...Ar gas outlet a, 10...Electrode 9...Substrate

Claims (1)

【特許請求の範囲】[Claims] 1、酸化物高温超伝導体AxByCuzOδ(A、Bは
IIa族であるCa、Sr、Baなど、IIIa族であるY
及びランタン系など、IIIb族であるBiなどから二種
選択して組合わせる)或いはAxByCzCuεOδ(
A、B、Cは前記元素のうちから三種選択して組合わせ
る)の薄膜をrfマグネトロンスパッタ装置又は対向タ
ーゲットスパッタ装置により製膜する方法において、新
たに酸素プラズマ発生装置を基板周込部に設け、酸化物
焼結体をArガス雰囲気中でスパッタし、それと同時に
、基板表面上部に局部的に酸素プラズマを発生させて、
基板加熱温度600℃以下で厚さ約1μm以下の膜を成
膜せしめた後放電を停止させ、その膜面に前記酸素プラ
ズマ発生装置からプラズマ状態でない酸素ガスを供給し
、前記膜を室温まで徐冷するか、又は前記の放電を停止
させた後350℃〜370℃まで酸素ガス雰囲気中で前
記膜を冷却し、その温度で数時間維持してから室温まで
徐冷することを特徴とする酸化物高温超伝導薄膜の製造
方法。
1. Oxide high temperature superconductor AxByCuzOδ (A, B are
Group IIa such as Ca, Sr, Ba, etc., Group IIIa Y
or AxByCzCuεOδ(
In the method of forming a thin film of three elements A, B, and C selected and combined from the above-mentioned elements using an RF magnetron sputtering device or a facing target sputtering device, an oxygen plasma generator is newly installed in the peripheral part of the substrate. , sputtering the oxide sintered body in an Ar gas atmosphere, and at the same time generating oxygen plasma locally on the upper surface of the substrate,
After forming a film with a thickness of about 1 μm or less at a substrate heating temperature of 600°C or less, the discharge is stopped, and oxygen gas that is not in a plasma state is supplied from the oxygen plasma generator to the film surface, and the film is slowly heated to room temperature. or cooling the film in an oxygen gas atmosphere to 350°C to 370°C after stopping the discharge, maintaining it at that temperature for several hours, and then slowly cooling it to room temperature. Method for manufacturing high-temperature superconducting thin films.
JP63190798A 1988-07-29 1988-07-29 Production of oxide high temperature superconductive thin film Pending JPH0238310A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63190798A JPH0238310A (en) 1988-07-29 1988-07-29 Production of oxide high temperature superconductive thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63190798A JPH0238310A (en) 1988-07-29 1988-07-29 Production of oxide high temperature superconductive thin film

Publications (1)

Publication Number Publication Date
JPH0238310A true JPH0238310A (en) 1990-02-07

Family

ID=16263918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63190798A Pending JPH0238310A (en) 1988-07-29 1988-07-29 Production of oxide high temperature superconductive thin film

Country Status (1)

Country Link
JP (1) JPH0238310A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03257017A (en) * 1990-03-05 1991-11-15 Fuji Electric Co Ltd Production of oxide superconducting thin film
US7338581B2 (en) 2003-07-16 2008-03-04 Matsushita Electric Industrial Co., Ltd. Sputtering apparatus
JP2019201193A (en) * 2018-05-10 2019-11-21 株式会社アルバック Manufacturing method of resistor film and resistor film

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03257017A (en) * 1990-03-05 1991-11-15 Fuji Electric Co Ltd Production of oxide superconducting thin film
US7338581B2 (en) 2003-07-16 2008-03-04 Matsushita Electric Industrial Co., Ltd. Sputtering apparatus
CN100378245C (en) * 2003-07-16 2008-04-02 松下电器产业株式会社 Sputtering apparatus
JP2019201193A (en) * 2018-05-10 2019-11-21 株式会社アルバック Manufacturing method of resistor film and resistor film

Similar Documents

Publication Publication Date Title
JPH029717A (en) Method for producing a superconductive oxide film on a substrate of silicon and silicon dioxide
CA1330548C (en) Method and apparatus for producing thin film of compound having large area
JPH0238310A (en) Production of oxide high temperature superconductive thin film
JPH05116940A (en) Process for forming thin film of metal oxide on substrate
JPS63239742A (en) Manufacture for film superconductor
JPS63270450A (en) Production of thick film oxide super conductor
JPH02243504A (en) Production of high temperature superconductive thin film
US5141919A (en) Superconducting device and method of producing superconducting thin film
JPH02252697A (en) Production of superconducting ceramic thin film
JP2716138B2 (en) Method and apparatus for forming composite oxide superconducting thin film by facing target type sputtering method
JP2525852B2 (en) Preparation method of superconducting thin film
JPH01201008A (en) Production of thin film of oxide superconductor
JP2567446B2 (en) Preparation method of superconducting thin film
JP2668532B2 (en) Preparation method of superconducting thin film
JP3428054B2 (en) Heater for producing oxide superconducting tape and method for producing oxide superconducting tape
JPH01212752A (en) Apparatus for producing thin superconducting film
JP2501616B2 (en) Preparation method of superconducting thin film
JP2639510B2 (en) Preparation method of superconducting thin film
JP2501615B2 (en) Preparation method of superconducting thin film
JPH03197306A (en) Equipment for producing oxide superconducting thin film and method therefor
JP2501614B2 (en) Preparation method of superconducting thin film
JPH0714816B2 (en) Method for forming superconducting oxide thin film containing rare earth element
JPH05330992A (en) Production of yttrium-based oxide superconducting film
JPH01294504A (en) Production of thin-film superconductor
JPH01125879A (en) Manufacture of oxide superconductor thin film