JPS63239742A - Manufacture for film superconductor - Google Patents

Manufacture for film superconductor

Info

Publication number
JPS63239742A
JPS63239742A JP62074716A JP7471687A JPS63239742A JP S63239742 A JPS63239742 A JP S63239742A JP 62074716 A JP62074716 A JP 62074716A JP 7471687 A JP7471687 A JP 7471687A JP S63239742 A JPS63239742 A JP S63239742A
Authority
JP
Japan
Prior art keywords
thin film
substrate
sputtering
film superconductor
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62074716A
Other languages
Japanese (ja)
Inventor
Kentaro Setsune
瀬恒 謙太郎
Hideaki Adachi
秀明 足立
Kiyotaka Wasa
和佐 清高
Tsuneo Mitsuyu
常男 三露
Shinichiro Hatta
八田 真一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62074716A priority Critical patent/JPS63239742A/en
Publication of JPS63239742A publication Critical patent/JPS63239742A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To secure such a superconductor that is homogeneous and excellent in accuracy as compared with the conventional sintered body securable, by sticking a specific complex compound coat onto a substrate, and having this coat subjected to heat treatment in addition. CONSTITUTION:A complex compound coat 12 consisting of (A, B)3Cu2O7-delta in the base is stuck on a surface 13 of the heated substrate 11 by means of vapor deposition, by way of example, and it is subjected to heat treatment at an oxidizing atmosphere. A, said herein, shows at least one type of Sc, Y and lanthanum series elements (atomis number 57-71), and B shows at least one type of IIa group elements such as Ba, Sr, Ca, Be, Mg, etc. With this constitution, such a superconductor that is homogeneous and excellent in accuracy as compared with the conventional sintered body is securable.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は超電導体の製造方法に関するものである。特に
化合物薄膜超電導体の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing superconductors. In particular, it relates to a method for manufacturing compound thin film superconductors.

従来の技術 高温超電導体として、A15型2元系化合物として窒化
ニオブ(NbN)やゲルマニウムニオブ(NbsGe)
などが知られていたが、これらの材料の超電導転移温度
はたかだか24°にであった。一方、ペロブスカイト系
3元化合物は、さらに高い転移温度が期待され、Ba−
La−Cu−0系の高温超電導体が提案された[ J、
 G、 Bend。
Conventional technology Niobium nitride (NbN) and germanium niobium (NbsGe) are used as A15 type binary compounds as high-temperature superconductors.
were known, but the superconducting transition temperature of these materials was at most 24°. On the other hand, perovskite-based ternary compounds are expected to have even higher transition temperatures, and Ba-
A La-Cu-0-based high-temperature superconductor was proposed [J,
G. Bend.

rz and K、A、Muller、ツァイト シコ
リフト フェアフィジーク(Ze tshrift f
口rphysik B)−Condensed Mat
ter 64.189−193 (1986) ]。さ
らに、]Y−Ba−Cu−0がより高温の超電導材料で
あることが、最近提案された。(文献)  [M、 K
、 Wu等。
rz and K, A, Muller, Ze tshrift f.
Mouth Rphysik B) - Condensed Mat
ter 64.189-193 (1986)]. Additionally, ]Y-Ba-Cu-0 was recently proposed to be a higher temperature superconducting material. (Reference) [M, K
, Wu et al.

フィジカル レビュー レターズ(Physical 
Review Letters) Vol、58 No
9.908−910 (1987) ]]Y−Ba−C
u−0の材料の超電導機構の詳細は明らかではないが、
転移温度が液体窒素温度以上に高くなる可能性があり、
高温超電導体として従来の2元系化合物より、より有望
な特性が期しかしながら、Y−Ba−Cu−0系の材料
は、現在の技術では焼結という過程でしか形成できない
ため、セラミックの粉末あるいはブロックの形状でしか
得られない。一方、この種の材料を実用化する場合、薄
膜状に加工することが強く要望されているが、従来の技
術では、薄膜化は非常に困難とされている。
Physical Review Letters
Review Letters) Vol, 58 No.
9.908-910 (1987) ]]Y-Ba-C
Although the details of the superconducting mechanism of the u-0 material are not clear,
The transition temperature can be higher than liquid nitrogen temperature,
However, Y-Ba-Cu-0 materials are expected to have more promising properties as high-temperature superconductors than conventional binary compounds. Can only be obtained in block form. On the other hand, when this type of material is to be put to practical use, there is a strong demand for processing it into a thin film, but with conventional techniques, it is considered very difficult to process the material into a thin film.

本発明者らは、この種の材料の薄膜をイオンプロセスに
より付着させると、薄膜状の高温超電体が形成されるこ
とを発見し、これにもとづいて薄膜超電導体の製造方法
を発明した。
The present inventors have discovered that when a thin film of this type of material is deposited by an ion process, a thin film-like high temperature superconductor is formed, and based on this discovery, they have invented a method for producing a thin film superconductor.

問題点を解決するための手段 本発明の製造方法で形成する薄膜超電導体の基本構成は
、基体表面に主成分が(A、B)scugo7−8の3
元化合物被膜12を付着させた層状構造を特徴としてい
る。本発明者らこの種の層状構造超電導体は、加熱され
た基体上に、主成分が(A、B)sCuzo7−δであ
る複合化合物被膜を例えば蒸着というプロセスで付着さ
せ、さらに酸化性雰囲気で熱処理することにより、形成
されることを見い出し発明に致ったものである。ここに
AはSc、Yおよびランタン系列元素(原子番号57−
71)のうちすくなくとも一種、BはB a、Sr、C
a、Be、MgなどIla族元素のうちの少なくとも一
種の元素を示す。
Means for Solving the Problems The basic structure of the thin film superconductor formed by the manufacturing method of the present invention is that the main components (A, B) are
It is characterized by a layered structure to which the original compound coating 12 is attached. The present inventors have developed this type of layered structure superconductor by depositing a composite compound film whose main components are (A, B) sCuzo7-δ on a heated substrate, for example, by a process called vapor deposition, and then depositing it in an oxidizing atmosphere. The present invention was based on the discovery that it can be formed by heat treatment. Here, A is Sc, Y, and lanthanum series elements (atomic number 57-
At least one of 71), B is B a, Sr, C
Indicates at least one element of group Ila elements such as a, Be, and Mg.

作用 本発明にかかる薄膜超電導体の製造方法は、超電導体を
薄膜化している所に大きな特色がある。
Function: The method for producing a thin film superconductor according to the present invention has a major feature in that the superconductor is made into a thin film.

すなわち、薄膜化は超電導体の素材を原子状態という極
微粒子に分解してから基体上に堆積させるから、形成さ
れた超電導体の組成は本質的に、従来の焼結体に比べて
均質である。したがって非常に高精度の超電導体が本発
明の方法を用いて実現される。
In other words, because film thinning involves decomposing the superconductor material into ultrafine particles in the atomic state and then depositing them on the substrate, the composition of the formed superconductor is essentially more homogeneous than that of conventional sintered bodies. . Superconductors of very high precision are therefore realized using the method of the invention.

実施例 本発明の実施例を図面とともに説明する。Example Embodiments of the present invention will be described with reference to the drawings.

第1図において、3元化合物被膜12は、例えばスパッ
タリング法で形成する。この場合、基体11は、超電導
を示す3元化合物被膜12の保持を目的としている。し
たがって、本発明の超電導体は本質的に層状構造からな
っている。この層状構造は通常数100℃の高温で形成
し、超電導を例えば液体窒素温度(−195℃)の低温
で動作させるため、特に基体11と被膜12の密着性が
悪(なり、しばしば層状構造が破損されることを本発明
者らは確認した。さらに本発明者らは、詳細な基体の熱
的特性を各種の材質について調べた結果、基体の線熱膨
張係数α> 10−6’eであれば、上記層状構造の破
損がな(、実用されることを確認した。例えばα<10
〜6/fiの石英ガラスを基体に用いると、被膜12は
無数の亀裂が入り不連続な被膜となり、実用に供しに(
いことを本発明者らは確認した。
In FIG. 1, a ternary compound film 12 is formed by, for example, a sputtering method. In this case, the substrate 11 is intended to hold a ternary compound coating 12 exhibiting superconductivity. The superconductor of the invention therefore essentially consists of a layered structure. This layered structure is usually formed at a high temperature of several hundred degrees Celsius, and since superconductors are operated at a low temperature of, for example, liquid nitrogen temperature (-195 degrees Celsius), the adhesion between the substrate 11 and the coating 12 is particularly poor (and the layered structure is often formed). The inventors have confirmed that the thermal expansion coefficient α of the substrate is greater than 10-6'e. If there is, there is no damage to the layered structure (it has been confirmed that it is practical. For example, α<10
If quartz glass with a ratio of ~6/fi is used as the substrate, the coating 12 will have numerous cracks and become a discontinuous coating, making it difficult to put it into practical use (
The present inventors have confirmed that this is true.

さらに、本発明者らは、第1図の層状構造の基体1工に
機能性から見て、最適の材料があることを見い出した。
Furthermore, the present inventors have discovered that there is an optimal material for the layered structure substrate 1 shown in FIG. 1 from the viewpoint of functionality.

すなわち、結晶性の高い3元化合物被膜12を基体11
の表面13に形成させるためには、単結晶の基体が有効
である。本発明者らは詳細に最適基体材料を調べた結果
、基体11として、酸化マグネシウム、サファイア(α
−Al2O3)、スピネル、チタン酸ストロンチウユウ
ム、シリコン、ガリウム砒素等の単結晶が有効であるこ
とを確認した。もっとも、これは表面13に効果的に結
晶性の高い被膜12を成長させるためのものであるから
、少なくとも基体表面13が単結晶であればよい。
That is, the highly crystalline ternary compound coating 12 is applied to the substrate 11.
A single crystal substrate is effective for forming it on the surface 13 of. As a result of detailed investigation into the optimal substrate material, the present inventors found that the substrate 11 was made of magnesium oxide, sapphire (α
-Al2O3), spinel, strontium titanate, silicon, gallium arsenide, and other single crystals were confirmed to be effective. However, since this is for effectively growing a highly crystalline coating 12 on the surface 13, it is sufficient if at least the substrate surface 13 is a single crystal.

本発明者らは、この種の超電導体を任意の形状例えば円
筒状に加工する場合、基体としては単結晶よりも、所謂
焼結磁器が有効であることを確認するともに、最適の磁
器材料を見い出した。すなわち、磁器基体として、アル
ミナ、酸化マグルシウム、酸化ヂルコニウム、ステアタ
イト、ホルステライト、ベリリア、スピネル等が基体の
加工等、超電導被膜12の基体11への密着性が最適で
あることを本発明者らは確認した。この場合も単結晶と
同様に、基体の表面さえこの種の磁器で構されていると
よい。
The present inventors have confirmed that so-called sintered porcelain is more effective as a substrate than a single crystal when processing this type of superconductor into an arbitrary shape, such as a cylinder, and have also found the most suitable porcelain material. I found it. That is, the present inventors have found that alumina, maglucium oxide, zirconium oxide, steatite, forsterite, beryllia, spinel, etc. are used as the porcelain substrate to provide optimal adhesion of the superconducting coating 12 to the substrate 11 during processing of the substrate. confirmed. In this case as well, it is preferable that even the surface of the substrate is made of this type of porcelain, as in the case of single crystals.

薄膜超電導体の形成には、まず(A、B)3cug07
−6成分の複合化合物被膜をスパッタリング蒸着あるい
は熱蒸着例えば電子ビーム蒸着、レーザビーム蒸着等の
物理的気相成長法で基体上に付着させる。この場合、複
合化合物被膜は、成分A。
To form a thin film superconductor, first (A, B) 3cug07
- A six-component composite compound coating is deposited on the substrate by physical vapor deposition methods such as sputtering or thermal evaporation, e.g. electron beam evaporation, laser beam evaporation. In this case, the composite compound coating is component A.

BおよびCuの化学量論比さえ合致していればよく、酸
素量は特に重要ではなとことを本発明者らは確認した。
The present inventors have confirmed that the amount of oxygen is not particularly important, as long as the stoichiometric ratio of B and Cu matches.

その結果複合化合物被膜の形成法は物理的気相成長法に
限定されたものではなく、化学的気相成長法例えば常圧
あるいは減圧化学的気相成長法、プラズマ化学的気相成
長法、光化学的気相成長法も、合致させれば、有効であ
ることを本発明者らは確認した。
As a result, methods for forming composite compound films are not limited to physical vapor deposition, but also chemical vapor deposition, such as atmospheric or reduced pressure chemical vapor deposition, plasma chemical vapor deposition, photochemical vapor deposition, and photochemical vapor deposition. The present inventors have confirmed that a chemical vapor phase growth method is also effective if matched.

本発明者らは複合化合物被膜を基体11の表面13に付
着させる場合、基体の最適の温度範囲が存在することを
本発明者らは確認した。すなわち基体最適温度範囲は1
00〜1000℃である。
The present inventors have confirmed that when a composite compound coating is applied to the surface 13 of the substrate 11, there is an optimum temperature range for the substrate. In other words, the optimum temperature range for the substrate is 1
00-1000°C.

なお、100℃以下では、基体表面への複合酸化物被膜
の付着性が悪くなる。また、1000℃以上では複合酸
化物被膜中の成分A、BおよびCuの化学量論比からの
ずれが太き(なる。
Note that below 100°C, the adhesion of the composite oxide film to the substrate surface deteriorates. Moreover, at temperatures above 1000° C., the deviation from the stoichiometric ratio of components A, B, and Cu in the composite oxide film increases (becomes large).

さらに、複合化合物被膜を付着させる時の基体の温度は
とりわけ200〜500℃の範囲がこの種の蒸着装置の
機能、複合酸化物被膜の特性の再現性から見て最適であ
ることを本発明者らは確認した。この場合、形成された
複合化合物被膜は、アモルファスあるいは、超電導を示
す(A、B ) 3Cu20y−aなどの微結晶から構
成されている。
Furthermore, the present inventors have found that a temperature range of 200 to 500°C for the substrate when depositing the composite compound film is optimal in terms of the functionality of this type of vapor deposition equipment and the reproducibility of the properties of the composite oxide film. confirmed. In this case, the formed composite compound film is amorphous or composed of microcrystals such as (A,B)3Cu20y-a which exhibit superconductivity.

しかしながら意外にもこの種の被膜は半導体的な特性を
示し、超電導は液体He温度(4°K)でも見られない
However, surprisingly, this type of coating exhibits semiconducting properties, and no superconductivity is observed even at liquid He temperatures (4°K).

本発明者らはこの種の複合化合物、被膜をさらに常圧の
空気、アルゴンと酸素の混合ガスあるいは純酸素などの
酸化物性雰囲気で熱処理することにより、超電導が発生
することを発見した。この場合最適の熱処理温度は70
0〜1000℃、熱処理時間は1〜100時間であり、
特に熱処理時間が薄膜材料の常識を破る長時間であるこ
とと熱処理後の除冷が特徴的である。熱処理時間が1時
間以下になると半導体特性が再現性よく超電導特性が得
られない。また、100時間以上になると抵抗率が高く
なるとともに、被膜の特性が不安定になり。急峻な超電
導を示さない。例えば20時間以上の除冷時間が超電導
を得るには必要である。
The present inventors have discovered that superconductivity can be generated by further heat-treating this type of composite compound or film in an oxidizing atmosphere such as air at normal pressure, a mixed gas of argon and oxygen, or pure oxygen. In this case, the optimal heat treatment temperature is 70
0 to 1000°C, heat treatment time is 1 to 100 hours,
In particular, it is characterized by a long heat treatment time, which is unconventional for thin film materials, and by slow cooling after heat treatment. If the heat treatment time is less than 1 hour, superconducting properties cannot be obtained with good reproducibility of semiconductor properties. Moreover, when the time exceeds 100 hours, the resistivity becomes high and the characteristics of the film become unstable. Does not exhibit steep superconductivity. For example, an annealing time of 20 hours or more is required to obtain superconductivity.

以下本発明の内容をさらに深く理解されるために、さら
に具体的な具体実施例を示す。
In order to further understand the content of the present invention, more specific examples will be shown below.

(具体実施例) 酸化マグネシウム単結晶(100)面を基体11として
用い、高周波プレナーマグネトロンスパッタにより、焼
結した( Y 、 B a ) 3Cu 20 ?ター
ゲットをArガス雰囲気でスパッタリング蒸着して、上
記基体上に結晶性の(Y、Ba)sCuzot被膜とし
て付着させ層状構造を形成した。
(Specific Example) Using a magnesium oxide single crystal (100) plane as the substrate 11, (Y, B a ) 3Cu 20 ? was sintered by high-frequency planar magnetron sputtering. The target was deposited by sputtering in an Ar gas atmosphere to form a layered structure on the substrate as a crystalline (Y,Ba)sCuzot film.

この場合、Arガス圧力は0.5Pa、スパッタリング
電力150W、スパッタリング時間10時間、被膜の膜
厚6μI、基体温度250℃であった。形成された層状
構造をさらに空気中で900℃70時間熱処理後24時
間で除冷した。
In this case, the Ar gas pressure was 0.5 Pa, the sputtering power was 150 W, the sputtering time was 10 hours, the film thickness was 6 μI, and the substrate temperature was 250° C. The formed layered structure was further heat-treated at 900° C. for 70 hours in air, and then slowly cooled for 24 hours.

第2図は、サファイアR面を基体11に用い、スパッタ
リング蒸着法で主成分が(Y、Ba)3cu 207の
3元化合物被膜12を付着させた時の実施例における3
元化合物被l112のX線回折スペクトルを示す。第2
図において、スペクトルaは被膜12から得たものであ
り、スペクトルbは超電導を示す層状ペロブスカイト構
造から得たものを示す。同図が示すごと(、被膜スペク
トルaは層状ペロブスカイトのスペクトルbと類似し超
電導が発生した。
FIG. 2 shows an example 3 in which a sapphire R surface is used as the substrate 11 and a ternary compound coating 12 whose main components are (Y, Ba) 3 cu 207 is deposited by sputtering deposition method.
The X-ray diffraction spectrum of the original compound 1112 is shown. Second
In the figure, spectrum a is obtained from the coating 12, and spectrum b is obtained from the layered perovskite structure exhibiting superconductivity. As shown in the figure (the coating spectrum a is similar to the spectrum b of layered perovskite, superconductivity occurred).

被膜の超電導転移温度45°にであった。The superconducting transition temperature of the coating was 45°.

この実施例では被膜12の膜厚は6μ馬であるが、膜厚
は0.1μmかそれ以下の薄い場合、10μm以上の厚
い場合も超電導が発生することを確認した。
In this example, the film thickness of the coating 12 is 6 μm, but it has been confirmed that superconductivity occurs even when the film thickness is as thin as 0.1 μm or less, or as thick as 10 μm or more.

本発明者らは、サファイア以外の結晶性基体についての
有効性を詳細に実験的に調べた。酸化マグネシウム、ス
ピネル単結晶基体上に、(Y、 Ba)3cug07構
造の被膜を、サファイア単結晶の場合と同様にスパッタ
リング蒸着法で付着させ、これらの被膜を空気中で90
0℃70時間熱処理後24時間除冷するといずれも超電
導を示すことが確認された。また、チタン酸ストロンチ
ュウム、シリコン、ガリウム砒素単結晶についても同様
の結果が得られた。
The present inventors experimentally investigated in detail the effectiveness of crystalline substrates other than sapphire. A film with the (Y, Ba)3cug07 structure was deposited on a magnesium oxide, spinel single crystal substrate by sputtering vapor deposition in the same manner as for the sapphire single crystal, and these films were heated in air for 90 minutes.
It was confirmed that all of the samples exhibited superconductivity when they were heat-treated at 0° C. for 70 hours and then slowly cooled for 24 hours. Similar results were also obtained for strontium titanate, silicon, and gallium arsenide single crystals.

(Y、Ba)3cuzo7系の超電導材料は、2層ペロ
ブスカイト構造になっているともいわれ、構造は複雑で
ある。単結晶基体に基体温度をエピタキシャル温度以上
にあげて、単結晶被膜を高めると正方晶ペロブスカイト
構造が生成し易(、再現性よく層状ペロブスカイト構造
が得られない場合が多い。したがって、本発明の実施例
に述べたごとく、基体温度はむしろ低い範囲に選らびア
モルファスないしは微結晶構造の複合化合物被膜を形成
した後熱処理により結晶化する方が再現性よく層状ペロ
ブスカイト構造が得られることを本発明者らは実験的に
確認した。
The (Y,Ba)3cuzo7-based superconducting material is said to have a two-layer perovskite structure, and the structure is complex. When the substrate temperature is raised to above the epitaxial temperature on a single crystal substrate to enhance the single crystal coating, a tetragonal perovskite structure is likely to be formed (in many cases, a layered perovskite structure cannot be obtained with good reproducibility. Therefore, it is difficult to carry out the present invention. As mentioned in the example, the present inventors have found that a layered perovskite structure can be obtained with better reproducibility by selecting the substrate temperature in a rather low range, forming a composite compound film with an amorphous or microcrystalline structure, and then crystallizing it by heat treatment. was confirmed experimentally.

この場合、単結晶構造の基体は熱処理過程において、被
膜の固相エピタキシャル成長を助は有効である。特に基
体上にアモルファス状態の被膜をあらかじめ形成し、こ
れを熱処理すると結晶性基体表面により効果的に結晶性
の被膜が固相工とタキシャルし、超電導特性の優れた薄
膜の形成に有効であることを本発明者らは確認した。な
お、超電導被膜の結晶性が特に要求されない場合(急峻
な超電導転位が不要の時)は、多結晶の磁器基体が有効
である。
In this case, the substrate having a single crystal structure is effective in assisting the solid phase epitaxial growth of the coating during the heat treatment process. In particular, if an amorphous film is formed on the substrate in advance and then heat treated, the crystalline film will be more effectively taxially formed on the surface of the crystalline substrate, and this will be effective in forming a thin film with excellent superconducting properties. The present inventors confirmed that. Note that when crystallinity of the superconducting film is not particularly required (when steep superconducting dislocations are not required), a polycrystalline ceramic substrate is effective.

この種の酸化物被膜のスパッタリング蒸着では例えばA
rと02との混合ガスをスパッタリングガスに用いるが
02ガスの存在は抵抗率を高め超電導体を形成しがたい
場合のある事を本発明者らは見い出した。実験的に、A
r、Xe、Ne、Krのような不活性ガスあるいはこれ
らの不活性ガスの混合ガスがスパッタリングガスとして
有効であることを本発明者らは確認した。
In sputtering deposition of this type of oxide film, for example, A
Although a mixed gas of r and 02 is used as a sputtering gas, the present inventors have found that the presence of 02 gas increases the resistivity and makes it difficult to form a superconductor. Experimentally, A
The present inventors have confirmed that inert gases such as r, Xe, Ne, and Kr, or mixed gases of these inert gases, are effective as sputtering gases.

スパッタリング蒸着方式も、高周波二極スパッタ、直流
二極スパッタ、マグネトロンスパッタいずれも有効であ
ることを本発明者らは確認した。
The present inventors have confirmed that all sputtering vapor deposition methods, such as high-frequency bipolar sputtering, direct current bipolar sputtering, and magnetron sputtering, are effective.

特に直流スパッタの場合、スパッタリングターゲットの
抵抗率を10−3Ωcm以下に低くする事が必要で、こ
れ以上の抵抗率では、充分なスパッタリング放電が発生
しない。なお、ターゲットの抵抗率の調整は通常ターゲ
ットの焼結条件によって行う。
Particularly in the case of DC sputtering, it is necessary to lower the resistivity of the sputtering target to 10 -3 Ωcm or less; if the resistivity is higher than this, sufficient sputtering discharge will not occur. Note that the resistivity of the target is usually adjusted by adjusting the sintering conditions of the target.

特にこの種の装置では、直流スパッタがスパッタ電力等
の精密制御に有効であり、また直流マグネトロンスパッ
タ、あるいは直流マグネトロンスパッタガンなどが特に
有効であることを本発明者らは確認した。
Particularly in this type of apparatus, the present inventors have confirmed that DC sputtering is effective for precise control of sputtering power, etc., and that DC magnetron sputtering or a DC magnetron sputter gun is particularly effective.

なお、基体表面に複合化合物被膜の形成法として、金属
主成分を物理的気相成長法で基体上に付着させ、さらに
酸素ビームあるいは酸素イオンを被膜形成中に被膜に照
射し、基体表面で金属主成分を酸化させることも可能で
ある。物理的気相成長法としては、スパッタリング以外
に熱蒸着例えば電子ビームを照射しながら、複合酸化物
被膜の合金主成分をターゲットとしてスパッタリング蒸
着する。この場合複合酸化物ターゲットとしてスパッタ
リング蒸着するよりも被膜形成速度が1桁以上速い特長
を示し、工業的により有効である。
In addition, as a method for forming a composite compound film on the surface of a substrate, the main component of the metal is deposited on the substrate by physical vapor deposition, and the film is further irradiated with an oxygen beam or oxygen ions during film formation. It is also possible to oxidize the main component. In addition to sputtering, the physical vapor deposition method includes thermal evaporation, for example, sputtering deposition using the main alloy component of the composite oxide film as a target while irradiating with an electron beam. In this case, the film formation rate is more than an order of magnitude faster than sputtering vapor deposition using a composite oxide target, and it is industrially more effective.

この種の被膜の結晶構造など詳細な特性は、基体上に被
膜が拘束されているため、被膜内には通常の焼結体では
存在しない様な大きな歪とか欠陥が存在する。このため
、焼結体の製造方法から被膜の製造方法を類推できるも
のでない。なお、被膜の熱処理の物理的な意味の詳細は
明らかではないが、おおよそつぎにように考えられる。
The detailed characteristics of this type of coating, such as its crystal structure, are such that because the coating is constrained on the substrate, there are large strains and defects within the coating that do not exist in ordinary sintered bodies. For this reason, it is not possible to infer the method of manufacturing the coating from the method of manufacturing the sintered body. Although the details of the physical meaning of the heat treatment of the film are not clear, it can be roughly considered as follows.

すなわち、スパッタリング蒸着等で基体上に付着させた
複合化合物被膜では、(A*B)sCuto7という化
合物を形成していない。この場合、例えばBCLI03
正方晶のペロブスカイト構造のネットワーク中にA元素
の酸化物が分散した複合酸化物を形成している。超電導
は、層状ペロブスカイト構造の発生に起因し、この過程
が熱処理に関連する。
That is, the compound (A*B)sCuto7 is not formed in the composite compound film deposited on the substrate by sputtering vapor deposition or the like. In this case, for example, BCLI03
A composite oxide is formed in which the oxide of element A is dispersed in a network of a tetragonal perovskite structure. Superconductivity results from the generation of layered perovskite structures, and this process is associated with heat treatment.

なお、熱処理時間が1時間以下で超電導性が得られない
のは、層状へロブスカイト構造の生成が不充分であった
事に起因していると考えられる。なお、熱処理は通常の
ヒータ加熱炉により行なったが、レーザ光、赤外線等の
工学的熱処理方法あるいは電子線による加熱方法等が応
用可能である。
Note that the reason why superconductivity cannot be obtained when the heat treatment time is 1 hour or less is considered to be due to insufficient formation of the layered helobskite structure. Although the heat treatment was carried out using an ordinary heater heating furnace, it is also possible to apply an engineering heat treatment method using laser light, infrared rays, etc., or a heating method using an electron beam.

この種の3元化合物超電導体ABzCusOrの構成元
素AおよびBの変化による超電導特性の変化の詳細は明
らかではない。ただAは、3価、Bは2価を示している
のは事実ではある。A元素としてYについて例をあげて
説明したが、ScやLa、さらにランタン系列の元素(
原子番号57〜71)でも、超電導転移温度が変化する
程度で本質的な発明の層状構造の特性を変えるものでは
ない。
Details of changes in superconducting properties due to changes in constituent elements A and B of this type of ternary compound superconductor ABzCusOr are not clear. However, it is true that A indicates trivalence and B indicates divalence. Although Y was explained as an example of element A, Sc, La, and even lanthanum series elements (
Even if the atomic number is 57 to 71), the superconducting transition temperature changes, but the essential properties of the layered structure of the invention do not change.

また、B元素においても、Sr、Ca、Ba等IIa族
元素の変化は超電導転移温度を10″に程度変化させる
が、本質的に本発明層状構造の特性を変えるものではな
い。
Also, regarding B elements, changes in group IIa elements such as Sr, Ca, and Ba change the superconducting transition temperature by about 10'', but this does not essentially change the characteristics of the layered structure of the present invention.

なお、ここで示した超電導材料は、2層構造ペロブスカ
イト構造であるが、さらに3層構造、4層構造など多層
(0層)構造のこの種のペロブスカイト構造超電導材料
(A 、 B ) n++ Cu nosn++につい
ても、本発明と同様の製造方法で形成でき、超電導材料
として実用され得る。
The superconducting material shown here has a two-layer perovskite structure, but this type of perovskite-structure superconducting material having a multilayer (zero layer) structure such as a three-layer structure or a four-layer structure (A, B) n++ Cu nosn++ can also be formed by the same manufacturing method as the present invention, and can be put to practical use as a superconducting material.

発明の効果 とりわけ、本発明にかかる超電導体は、超電導体を薄膜
化している所に大きな特色がある。すなわち、薄膜化は
超電導体の素材を原子状態という極微粒子に分解してか
ら、基体上に堆積させるから、形成された超電導体の組
成は本質的に、従来の焼結体に比べて均質である。した
がって、非常に高精度の超電導体が本発明で実現される
Effects of the Invention Particularly, the superconductor according to the present invention has a great feature in that the superconductor is made into a thin film. In other words, in thin film formation, the superconductor material is decomposed into ultrafine particles in the atomic state and then deposited on the substrate, so the composition of the formed superconductor is essentially more homogeneous than that of conventional sintered bodies. be. Therefore, a superconductor with very high precision is realized with the present invention.

以上の説明のごと(本発明の薄膜超電導体の製造方法に
よると、例えば結晶性基体上に薄膜状で形成されるので
焼結体より本質的により精度が高い上SiあるいはGa
Asなどのデバイスとの集積化が可能であるとともに、
ジョセフソン素子など各種の超電導デバイスの製造に実
用される。特にこの種の化合物超電導体の転移温度が室
温になる可能性もあり、従来の実用の範囲は広く、本発
明の工業的価値は高い。
As explained above (according to the method for manufacturing a thin film superconductor of the present invention), for example, since it is formed in the form of a thin film on a crystalline substrate, it is essentially more precise than a sintered body, and is made of Si or Ga.
It is possible to integrate devices such as As, and
It is used in the production of various superconducting devices such as Josephson elements. In particular, the transition temperature of this type of compound superconductor may be room temperature, so the range of conventional practical use is wide, and the industrial value of the present invention is high.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の薄膜超電導体の製造方法で
形成した薄膜超電導体の基本構成図、第2図は本発明の
薄膜超電導体の基本特性図である。 11・・・基体、12・・・3元化合物被膜。
FIG. 1 is a basic configuration diagram of a thin film superconductor formed by a method for producing a thin film superconductor according to an embodiment of the present invention, and FIG. 2 is a diagram of basic characteristics of the thin film superconductor of the present invention. 11...Substrate, 12...Ternary compound coating.

Claims (16)

【特許請求の範囲】[Claims] (1)基体上に主成分が(A、B)_3Cu_2O_7
_−_δである複合化合物被膜を付着させ、さらに上記
被膜を熱処理することを特徴とする薄膜超電導体の製造
方法。 ここに、AはSc、Yおよびランタン系列元素(原子番
号57〜71)のうちすくなくとも一種、BはIIa族元
素のうちのすくなくとも一種の元素を示す。δは、0≦
δ≦7。
(1) Main components (A, B)_3Cu_2O_7 on the substrate
A method for producing a thin film superconductor, comprising: depositing a composite compound film of ____δ, and further heat-treating the film. Here, A represents at least one kind of Sc, Y, and lanthanum series elements (atomic numbers 57 to 71), and B represents at least one kind of group IIa elements. δ is 0≦
δ≦7.
(2)基体を、線膨脹係数α>10^−^6/℃の材質
で構成したことを特徴とする特許請求の範囲第1項記載
の薄膜超電導体の製造方法。
(2) The method for manufacturing a thin film superconductor according to claim 1, wherein the substrate is made of a material having a coefficient of linear expansion α>10^-^6/°C.
(3)基体を、酸化マグネシウム、サファイア(α−A
l_2O_3)、スピネル、チタン酸ストロンチュウム
、シリコン、ガリウム砒素等の単結晶の少なくとも一種
で構成したことを特徴とする特許請求の範囲第1項記載
の薄膜超電導体の製造方法。
(3) The substrate is magnesium oxide, sapphire (α-A
2. The method for producing a thin film superconductor according to claim 1, wherein the thin film superconductor is made of at least one of single crystals such as 1_2O_3), spinel, strontium titanate, silicon, and gallium arsenide.
(4)基体を、アルミナ、酸化マグネシウム、酸化ヂル
コニウム、ステアタイト、ホルステライト、ベリリア、
スピネル等の磁器で構成したことを特徴とする特許請求
の範囲第1項記載の薄膜超電導体の製造方法。
(4) The base material is alumina, magnesium oxide, zirconium oxide, steatite, forsterite, beryllia,
A method for manufacturing a thin film superconductor according to claim 1, characterized in that the thin film superconductor is made of porcelain such as spinel.
(5)複合化合物被膜を、スパッタリング蒸着、熱蒸着
等の物理的気相成長法で基体上に付着させることを特徴
とする特許請求の範囲第1項記載の薄膜超電導体の製造
方法。
(5) A method for producing a thin film superconductor according to claim 1, characterized in that the composite compound film is deposited on the substrate by a physical vapor deposition method such as sputtering vapor deposition or thermal vapor deposition.
(6)複合化合物被膜を、常圧あるいは減圧化学的気相
成長法、プラズマ化学的気相成長法、光化学的気相成長
法等の化学的気相成長法で基体上に付着させることを特
徴とする特許請求の範囲第1項記載の薄膜超電導体の製
造方法。
(6) The composite compound coating is deposited on the substrate by a chemical vapor deposition method such as normal pressure or reduced pressure chemical vapor deposition method, plasma chemical vapor deposition method, or photochemical vapor deposition method. A method for manufacturing a thin film superconductor according to claim 1.
(7)スパッタリング蒸着において、被膜蒸着中基体温
度を100〜1000℃の範囲内に設定することを特徴
とする特許請求の範囲第5項記載の薄膜超電導体の製造
方法。
(7) The method for producing a thin film superconductor according to claim 5, characterized in that in sputtering deposition, the substrate temperature is set within a range of 100 to 1000°C during film deposition.
(8)スパッタリング蒸着において、被膜蒸着中基体温
度を200〜500℃の範囲内に設定することを特徴と
する特許請求の範囲第5項記載の薄膜超電導体の製造方
法。
(8) The method for producing a thin film superconductor according to claim 5, characterized in that in sputtering deposition, the substrate temperature is set within a range of 200 to 500°C during film deposition.
(9)熱処理において、雰囲気として常圧空気または純
酸素を用いることを特徴とする特許請求の範囲第1項記
載の薄膜超電導体の製造方法。
(9) The method for producing a thin film superconductor according to claim 1, wherein normal pressure air or pure oxygen is used as an atmosphere in the heat treatment.
(10)スパッタリング蒸着において、主成分が(A、
B)_3Cu_2O_7_−_δである複合化合物ター
ゲットをスパッタリング蒸着することを特徴とする特許
請求の範囲第5項記載の薄膜超電導体の製造方法。
(10) In sputtering deposition, the main components are (A,
B) The method for manufacturing a thin film superconductor according to claim 5, characterized in that a composite compound target of _3Cu_2O_7_-_δ is sputter-deposited.
(11)スパッタリング蒸着において、Ar、Xe、N
e、Krのうち少なくとも一種あるいはこれらの混合ガ
スでスパッタリング蒸着することを特徴とする特許請求
の範囲第5項記載の薄膜超電導体の製造方法。
(11) In sputtering deposition, Ar, Xe, N
6. The method for producing a thin film superconductor according to claim 5, wherein the thin film superconductor is deposited by sputtering using at least one of E, Kr, or a mixed gas thereof.
(12)スパッタリング蒸着を少なくとも二極スパッタ
、直流二極スパッタ、マグネトロンスパッタのうちいず
れか一種で行うことを特徴とする特許請求の範囲第5項
記載の薄膜超電導体の製造方法。
(12) The method for producing a thin film superconductor according to claim 5, wherein the sputtering deposition is performed by at least one of bipolar sputtering, DC bipolar sputtering, and magnetron sputtering.
(13)スパッタリング蒸着において、複合化合物ター
ゲットの電気抵抗率を10^−^3Ωcm以下にするこ
とを特徴とする特許請求の範囲第5項記載の薄膜超電導
体の製造方法。
(13) The method for producing a thin film superconductor according to claim 5, wherein the electrical resistivity of the composite compound target is set to 10^-^3 Ωcm or less in sputtering deposition.
(14)物理的気相成長法において、複合化合物被膜の
金属主成分を基体上に付着させ、さらに酸素ビームある
いは酸素イオンを被膜形成中に照射し、基体表面で金属
主成分を酸化させることを特徴とする特許請求の範囲第
5項記載の薄膜超電導体の製造方法。
(14) In the physical vapor deposition method, the main metal component of the composite compound film is deposited on the substrate, and then oxygen beam or oxygen ions are irradiated during film formation to oxidize the main metal component on the surface of the substrate. A method for producing a thin film superconductor according to claim 5.
(15)物理的気相成長法において、基体上に酸素イオ
ンを照射しながら複合化合物被膜の合金主成分をターゲ
ットとしてスパッタリング蒸着することを特徴とする特
許請求の範囲第5項記載の薄膜超電導体の製造方法。
(15) The thin film superconductor according to claim 5, wherein the thin film superconductor according to claim 5 is deposited by sputtering using the main alloy component of the composite compound film as a target while irradiating oxygen ions onto the substrate in the physical vapor deposition method. manufacturing method.
(16)結晶性基体上に固相エピタキシャル法により、
主成分が(A、B)_3Cu_2O_7である複合酸化
物被膜を付着させることを特徴とする薄膜超電導体の製
造方法。
(16) By solid phase epitaxial method on a crystalline substrate,
A method for producing a thin film superconductor, which comprises depositing a composite oxide film whose main components are (A, B)_3Cu_2O_7.
JP62074716A 1987-03-27 1987-03-27 Manufacture for film superconductor Pending JPS63239742A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62074716A JPS63239742A (en) 1987-03-27 1987-03-27 Manufacture for film superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62074716A JPS63239742A (en) 1987-03-27 1987-03-27 Manufacture for film superconductor

Publications (1)

Publication Number Publication Date
JPS63239742A true JPS63239742A (en) 1988-10-05

Family

ID=13555223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62074716A Pending JPS63239742A (en) 1987-03-27 1987-03-27 Manufacture for film superconductor

Country Status (1)

Country Link
JP (1) JPS63239742A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63250877A (en) * 1987-04-08 1988-10-18 Sumitomo Electric Ind Ltd Superconducting member
JPS63264819A (en) * 1987-04-22 1988-11-01 Hitachi Ltd Forming method for oxide superconductor thin film
JPS63274024A (en) * 1987-04-30 1988-11-11 Sumitomo Electric Ind Ltd Manufacture of superconductive membrane
JPS63274027A (en) * 1987-05-01 1988-11-11 Sumitomo Electric Ind Ltd Manufacture of superconductive material
JPS6433005A (en) * 1987-03-04 1989-02-02 Masumoto Takeshi Production of metal oxide superconducting material
JPS6442307A (en) * 1987-04-18 1989-02-14 Sumitomo Electric Industries Preparation of superconducting thin film
WO1989008605A1 (en) * 1988-03-16 1989-09-21 Kabushiki Kaisha Toshiba Process for producing thin-film oxide superconductor
JPH03170665A (en) * 1989-11-28 1991-07-24 Anelva Corp Method and device for sputtering

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6433005A (en) * 1987-03-04 1989-02-02 Masumoto Takeshi Production of metal oxide superconducting material
JPH0577602B2 (en) * 1987-03-04 1993-10-27 Masumoto Takeshi
JPS63250877A (en) * 1987-04-08 1988-10-18 Sumitomo Electric Ind Ltd Superconducting member
JPS6442307A (en) * 1987-04-18 1989-02-14 Sumitomo Electric Industries Preparation of superconducting thin film
JPS63264819A (en) * 1987-04-22 1988-11-01 Hitachi Ltd Forming method for oxide superconductor thin film
JPS63274024A (en) * 1987-04-30 1988-11-11 Sumitomo Electric Ind Ltd Manufacture of superconductive membrane
JPS63274027A (en) * 1987-05-01 1988-11-11 Sumitomo Electric Ind Ltd Manufacture of superconductive material
WO1989008605A1 (en) * 1988-03-16 1989-09-21 Kabushiki Kaisha Toshiba Process for producing thin-film oxide superconductor
US5158931A (en) * 1988-03-16 1992-10-27 Kabushiki Kaisha Toshiba Method for manufacturing an oxide superconductor thin film
US5284824A (en) * 1988-03-16 1994-02-08 Kabushiki Kaisha Toshiba Method for manufacturing an oxide superconductor thin film
JPH03170665A (en) * 1989-11-28 1991-07-24 Anelva Corp Method and device for sputtering

Similar Documents

Publication Publication Date Title
JP2923372B2 (en) Manufacturing method of oxide superconductor film
US4874741A (en) Non-enhanced laser evaporation of oxide superconductors
JPS63224116A (en) Manufacture of thin film superconductor
JPS63239742A (en) Manufacture for film superconductor
US5361720A (en) Epitaxial deposition
JPH01208327A (en) Production of thin film of superconductor
JPH02141567A (en) Manufacture of the thin layer of high temperature superconductor
JP2702711B2 (en) Manufacturing method of thin film superconductor
JPS63239738A (en) Superconductor wire and manufacture thereof
JP3037514B2 (en) Thin film superconductor and method of manufacturing the same
JPS63306676A (en) Josephson element
JPS63299019A (en) Manufacture of thin film superconductive material
JP2594271B2 (en) Superconductor thin film manufacturing apparatus and superconductor thin film manufacturing method
JPH0375204A (en) Production of oxide superconductive film pattern
JP2742097B2 (en) Method for producing oxide superconducting thin film
JPS63292524A (en) Manufacture of superconductive film
JPS63306677A (en) Superconducting device and manufacture thereof
JPH012218A (en) Manufacturing method of thin film superconductor
JPS63224113A (en) Superconductor
JPH01105416A (en) Manufacture of thin film superconductor
JPH02311396A (en) Thin-film superconductor and its production
JPH01239004A (en) Oxide high-temperature superconductor and thin film superconductor therefrom and sputtering target therefor
JPH0244782A (en) Superconductive element and manufacture thereof
JPS63298920A (en) Manufacture of membranous superconductor
JPS63247362A (en) Sputtering target