JPS63224116A - Manufacture of thin film superconductor - Google Patents

Manufacture of thin film superconductor

Info

Publication number
JPS63224116A
JPS63224116A JP62055635A JP5563587A JPS63224116A JP S63224116 A JPS63224116 A JP S63224116A JP 62055635 A JP62055635 A JP 62055635A JP 5563587 A JP5563587 A JP 5563587A JP S63224116 A JPS63224116 A JP S63224116A
Authority
JP
Japan
Prior art keywords
thin film
sputtering
substrate
superconductor according
film superconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62055635A
Other languages
Japanese (ja)
Inventor
Kentaro Setsune
瀬恒 謙太郎
Hideaki Adachi
秀明 足立
Kiyotaka Wasa
清孝 和佐
Tsuneo Mitsuyu
常男 三露
Shinichiro Hatta
八田 真一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62055635A priority Critical patent/JPS63224116A/en
Publication of JPS63224116A publication Critical patent/JPS63224116A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To form a homogeneous superconductor and to obtain a high precision superconductor by making a compound oxide film of a specific composition adhere on a base substance and heattreating the film in an oxidizing atmosphere. CONSTITUTION:A layer structure in which a ternary compound film with a main constituent as shown in the formula (A1-XBX)2CuO4 is stuck on a base substance surface and further the film is heattreated in an oxidizing atmosphere. A in the formula represents at least a kind of element out of Sc, Y, and lanthanum system elements (atomic No. 57-71) and B represents at lease a kind of element out of 2a group elements such as Ba, Sr, Ca, Be, Mg etc. By making a superconducting material a thin film, the material is pulverized into ultrafine particles of an atomic order and is piled up on the base substance, thereby the composition of the formed superconductor is substantially homogeneous. Thus a high precision superconductor can be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は超電導体の製造方法に関するものである。特に
化合物薄膜超電導体の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing superconductors. In particular, it relates to a method for manufacturing compound thin film superconductors.

従来の技術 高温超電導体として、A15型2元系化合物として窒化
ニオブ(NbN)やゲルマニウムニオブ(NbsGe)
などが知られていたが、これらの材料の超電導転移温度
はたかだか24°にであった。一方、ペロブスカイト系
3元化合物は、さらに高い転移温度が期待され、Ba−
La−Cu−0系の高温超電導体が提案された[ J、
G、 Bend。
Conventional technology Niobium nitride (NbN) and germanium niobium (NbsGe) are used as A15 type binary compounds as high-temperature superconductors.
were known, but the superconducting transition temperature of these materials was at most 24°. On the other hand, perovskite-based ternary compounds are expected to have even higher transition temperatures, and Ba-
A La-Cu-0-based high-temperature superconductor was proposed [J,
G. Bend.

rz  and K、A、Muller、  ツアイト
 シュリフト フェアフィジーク(Zetshrift
 f Q rphysik B)−Condensed
Matter 64.189−193 (1986) 
]。
rz and K, A, Muller, Zetshrift Fair Physique
f Q rphysik B)-Condensed
Matter 64.189-193 (1986)
].

この種の材料の超電導機構の詳細は明らかではないが、
転移温度が液体窒素温度以上に高くなる可能性があり、
高温超電導体として従来の2元系化合物より、より有望
な特性が期待される。
Although the details of the superconducting mechanism of this type of material are not clear,
The transition temperature can be higher than liquid nitrogen temperature,
It is expected to have more promising properties as a high-temperature superconductor than conventional binary compounds.

発明が解決しよとする問題点 しかしながら、Ba−La−Cu−0系の材料は、現在
の技術では焼結という過程でしか形成できないため、セ
ラミックの粉末あるいはブロックの形状でしか得られな
い。一方、この種の材料を実用化する場合、薄膜状に加
工することが強く要望されていが、従来の技術では、薄
膜化は非常に困難とされている。
Problems to be Solved by the Invention However, Ba-La-Cu-0 based materials can only be formed through the process of sintering using current technology, and therefore can only be obtained in the form of ceramic powder or blocks. On the other hand, when this type of material is to be put to practical use, there is a strong demand for processing it into a thin film, but it is considered extremely difficult to form a thin film using conventional techniques.

本発明者らは、この種の材料の薄膜がイオンプロセスに
より付着させると、薄膜状の高温超電体が形成されるこ
とを発見し、これにもとづいて薄膜超電導体の製造方法
を発明した。
The present inventors have discovered that when a thin film of this type of material is deposited by an ion process, a thin film-like high temperature superconductor is formed, and based on this discovery, they have invented a method for producing a thin film superconductor.

問題点を解決するための手段 本発明の製造方法で形成する薄膜超電導体の基本構成は
、基体表面に主成分が(As−11BI) IIc u
04の3元化合物被膜12を付着させた層状構造を特徴
としている。本発明者らこの種の層状構造超電導体は、
加熱された基体上に、主成分が(A+−1IBx)gc
uoaである複合酸化物被膜を例えば蒸着というプロセ
スで付着させ、さらに酸化性雰囲気で熱処理することに
より、形成されることを見い出し発明に致ったものであ
る。ここにAはSc、Yおよびランタン系列元素(原子
番号57−71)のうちす(な(とも一種、BはBa+
Sr。
Means for Solving the Problems The basic structure of the thin film superconductor formed by the manufacturing method of the present invention is that the main component is (As-11BI) IIc u on the surface of the substrate.
It is characterized by a layered structure to which a ternary compound coating 12 of No. 04 is attached. The present inventors have developed this type of layered structure superconductor.
On the heated substrate, the main component is (A+-1IBx)gc
The present invention was based on the discovery that a composite oxide film, which is UOA, can be formed by depositing it by a process called vapor deposition, for example, and then heat-treating it in an oxidizing atmosphere. Here, A stands for Sc, Y, and lanthanum series elements (atomic number 57-71), and B stands for Ba+.
Sr.

Ca、Be、MgなどIla族元素のうちの少なくとも
一種の元素を示す。
Indicates at least one element among Ila group elements such as Ca, Be, and Mg.

作用 本発明にかかる薄膜超電導体の製造方法は、超電導体を
薄膜化している所に大きな特色がある。
Function: The method for producing a thin film superconductor according to the present invention has a major feature in that the superconductor is made into a thin film.

すなわち、薄膜化は超電導体の素材を原子状態という極
微粒子に分解してから基体上に堆積させるから、形成さ
れた超電導体の組成は本質的に、従来の焼結体に比べて
均質である。したがって非常に高精度の超電導体が本発
明の方法を用いて実現される。
In other words, because film thinning involves decomposing the superconductor material into ultrafine particles in the atomic state and then depositing them on the substrate, the composition of the formed superconductor is essentially more homogeneous than that of conventional sintered bodies. . Superconductors of very high precision are therefore realized using the method of the invention.

実施例 本発明の実施例を図面とともに説明する。Example Embodiments of the present invention will be described with reference to the drawings.

第1図において、3元化合物被膜12は、例えばスパッ
タリング法で形成する。この場合、基体11は、超電導
を示す3元化合物被膜12の保持を目的としている。し
たがって、本発明の超電導体は本質的に層状構造からな
っている。この層状構造は通常数100℃の高温で形成
し、超電導を例えば液体窒素温度(−195℃)の低温
で動作させるため、特に基体11と被ll112の密着
性が悪(なり、しばしば層状構造が破損されることを本
発明者らは確認した。さらに本発明者らは、詳細な基体
の熱的特性を各種の材質について調べた結果、基体の線
熱膨張係数α> 10−64:であれば、上記層状構造
の破損がなく、実用されることを確認した。例えばα<
 l Q−6/仁の石英ガラスを基体に用いると、被8
1112は無数の亀裂が入り不連続な被膜となり、実用
に供しに(いことを本発明者らは確認した。
In FIG. 1, a ternary compound film 12 is formed by, for example, a sputtering method. In this case, the substrate 11 is intended to hold a ternary compound coating 12 exhibiting superconductivity. The superconductor of the invention therefore essentially consists of a layered structure. This layered structure is usually formed at a high temperature of several hundred degrees Celsius, and since superconductivity is operated at a low temperature, for example, liquid nitrogen temperature (-195 degrees Celsius), the adhesion between the substrate 11 and the substrate 112 is particularly poor (and the layered structure is often formed). The inventors have confirmed that the thermal expansion coefficient α of the substrate is greater than 10-64. For example, it was confirmed that there was no damage to the layered structure and that it could be put into practical use.For example, α<
l When Q-6/Jin quartz glass is used as the substrate, the
The inventors have confirmed that 1112 has numerous cracks and becomes a discontinuous film, making it unsuitable for practical use.

さら、に、本発明者らは、第1図の層状構造の基体11
に機能性から見て、最適の材料があることを見い出した
Furthermore, the present inventors have discovered that the layered structure substrate 11 of FIG.
We have discovered that there is an optimal material in terms of functionality.

すなわち、結晶性の高い3元化合物被膜12を基体11
の表面13に形成させるためには、単結晶の基体が有効
である。本発明者らは3元化合物被膜の超電導体として
有効な組成範囲x=0.05〜0.2について、詳細に
最適基体材料を調べた結果、基体として、酸化マグネシ
ウム、サファイア(α−A 1sos) 、スピネル、
チタン酸ストロンチウユウム、シリコン、ガリウム砒素
等の単結晶が有効であることを確認した。もっとも、こ
れは表面13に効果的に結晶性の高い被膜12を成長さ
せるためのものであるから、少なくとも基体表面13が
単結晶であればよい。
That is, the highly crystalline ternary compound coating 12 is applied to the substrate 11.
A single crystal substrate is effective for forming it on the surface 13 of. The present inventors investigated in detail the optimal substrate material for the composition range x = 0.05 to 0.2, which is effective as a superconductor for a ternary compound film. As a result, we found that magnesium oxide, sapphire (α-A ), spinel,
It was confirmed that single crystals such as strontium titanate, silicon, and gallium arsenide are effective. However, since this is for effectively growing a highly crystalline coating 12 on the surface 13, it is sufficient if at least the substrate surface 13 is a single crystal.

本発明者らは、この種の超電導体を任意の形状例えば円
筒状に加工する場合、基体としては単結晶よりも、所請
焼結磁器が有効であることを確認するともに、最適の磁
器材料を見い出した。すなわち、磁器基体として、アル
ミナ、酸化マグルシウム、酸化ヂルコニウム、ステアタ
イト、ホルステライト、ベリリア、スピネル等が基体の
加工等、超電導波8112の基体11への密着性が最適
であることを本発明者らは確認した。この場合も単結晶
と同様に、基体の表面さえこの種の磁器で構されている
とよい。
The present inventors have confirmed that sintered porcelain is more effective than a single crystal as a substrate when processing this type of superconductor into an arbitrary shape, such as a cylinder, and also found that the most suitable porcelain material I found out. That is, the present inventors have found that alumina, maglucium oxide, zirconium oxide, steatite, forsterite, beryllia, spinel, etc. are used as the porcelain substrate to provide optimal adhesion of the superconducting wave 8112 to the substrate 11, such as by processing the substrate. confirmed. In this case as well, it is preferable that even the surface of the substrate is made of this type of porcelain, as in the case of single crystals.

薄膜超電・導体の形成には、まず(A+−、lB、)z
cu04成分の複合酸化物被膜をスパッタリング蒸着あ
るいは熱蒸着例えば電子ビーム蒸着、レーザビーム蒸着
等の物理的気相成長法で基体上に付着させる。この場合
、複合酸化物被膜は、成分A。
To form a thin film superconductor/conductor, first (A+-, lB,)z
A composite oxide film containing the cu04 component is deposited on the substrate by physical vapor deposition such as sputtering deposition or thermal evaporation, such as electron beam evaporation or laser beam evaporation. In this case, the composite oxide film is composed of component A.

BおよびCuの化学量論比さえ合致していればよく、酸
素量は特に重要ではなとことを本発明者らは確認した。
The present inventors have confirmed that the amount of oxygen is not particularly important, as long as the stoichiometric ratio of B and Cu matches.

その結果複合酸化物被膜の形成法は物理的気相成長法に
限定されたものではなく、化学的気相成長法例えば常圧
あるいは減圧化学的気相成長法、プラズマ化学的気相成
長法、光化学的気相成長法も、合致させれば、有効であ
ることを本発明者らは確認した。
As a result, the method for forming composite oxide films is not limited to physical vapor deposition, but also chemical vapor deposition, such as atmospheric or low pressure chemical vapor deposition, plasma chemical vapor deposition, The present inventors have confirmed that photochemical vapor deposition is also effective if matched.

本発明者らは複合酸化物被膜を基体110表面13に付
着させる場合、 基体の最適の温度範囲が存在することを本発明者らは確
認した。すなわち基体ま最適温度範囲は200〜100
0℃である。なお、200℃以下では、基体表面への複
合酸化物被膜の付着性が悪くなる。また、1000℃以
上では複合酸化物被膜中の成分A、BおよびCuの化学
量論比からのずれが大きくなる。
The present inventors have confirmed that when a composite oxide film is attached to the surface 13 of the base 110, there is an optimal temperature range for the base. In other words, the optimum temperature range for the substrate is 200 to 100
It is 0°C. Note that below 200°C, the adhesion of the composite oxide film to the substrate surface deteriorates. Moreover, at 1000° C. or higher, the deviation from the stoichiometric ratio of components A, B, and Cu in the composite oxide film increases.

さらに、複合酸化物被膜を付着させる時の基体の温度は
とりわけ500〜700℃の範囲がこの種の蒸着装置の
機能、複合酸化物被膜の特性の再現性が見て最適である
ことを本発明者らは確認した。この場合、形成された複
合酸化物被膜は、超電導を示す(A+−、B、l)gc
uo4焼結体の層状ペロブスカイト構造と類似の構造を
示す。
Furthermore, the present invention has shown that the temperature of the substrate when depositing the composite oxide film is particularly in the range of 500 to 700°C, in view of the functionality of this type of vapor deposition apparatus and the reproducibility of the properties of the composite oxide film. They confirmed. In this case, the formed composite oxide film exhibits superconductivity (A+-, B, l)gc
It shows a structure similar to the layered perovskite structure of the uo4 sintered body.

しかしながら意外にもこの種の被膜は半導体的な特性を
示し、超電導は液体He温度(4’ K)K)でも見ら
れない。
Surprisingly, however, this type of coating exhibits semiconducting properties and no superconductivity is observed even at liquid He temperatures (4'K).

本発明者らはこの種の複合酸化物被膜をさらに常圧の空
気、アルゴンと酸素の混合ガスあるいは純酸素などの酸
化物性雰囲気で熱処理することにより、超電導が発生す
ることを発見した。この場合最適の熱処理温度は900
〜1000℃、熱処理時間は10〜100時間であり、
特に熱処理時間が薄膜材料の常識を破る長時間が特徴的
である。熱処理時間が10時間以下になると半導体特性
が再現性よく超電導特性が得られない。また、100時
間以上になると抵抗率が高くなるとともに、被膜の特性
が不安定になる。
The present inventors have discovered that superconductivity can be generated by further heat-treating this type of composite oxide film in an oxidic atmosphere such as air at normal pressure, a mixed gas of argon and oxygen, or pure oxygen. In this case, the optimal heat treatment temperature is 900
~1000°C, heat treatment time is 10 to 100 hours,
In particular, it is characterized by a long heat treatment time, which is unconventional for thin film materials. If the heat treatment time is less than 10 hours, superconducting properties cannot be obtained with good reproducibility of semiconductor properties. Moreover, when the time is longer than 100 hours, the resistivity becomes high and the characteristics of the film become unstable.

以下本発明の内容をさらに深く理解されるために、さら
に具体的な具体実施例を示す。
In order to further understand the content of the present invention, more specific examples will be shown below.

(具体実施例) 酸化マグネシウム単結晶(100)面を基体11として
用い、高周波ブレナーマグネトロンスパッタにより、焼
結した(Lao、*S ro、+) ecuO4ターゲ
ット(x=0.1.A=La、B=Sr)をArガス雰
囲気でスパッタリング蒸着して、上記基体上に結晶性の
(Lao、9S ro、+) 2Cub4被膜として付
着させ層状構造を形成した。
(Specific Example) A (Lao, *S ro, +) ecuO4 target (x=0.1.A=La, B=Sr) was deposited by sputtering in an Ar gas atmosphere to form a layered structure on the substrate as a crystalline (Lao, 9S ro, +) 2Cub4 coating.

この場合、Arガス圧力は0.5Pa、スパッタリング
電力150W、スパッタリング時間10時間、被膜の膜
厚6μm、基体温度600℃であった。形成された層状
構造をさらに空気中で900℃70時間熱処理した。被
膜の室温抵抗率は100μΩ備、超電導転移温度28°
にであった。
In this case, the Ar gas pressure was 0.5 Pa, the sputtering power was 150 W, the sputtering time was 10 hours, the film thickness was 6 μm, and the substrate temperature was 600° C. The formed layered structure was further heat-treated at 900° C. for 70 hours in air. The room temperature resistivity of the coating is 100μΩ, and the superconducting transition temperature is 28°.
It was.

第2図は、酸化マグネシウム単結晶(100)面を基体
11に用い、スパッタリング蒸着法で主成分が(A I
−X B X ) 2 Cu O4(X =0.1 *
 A =La、B=Sr)の3元化合物被膜12を付着
させた時の実施例における3元化合物被膜12のX線回
折スペクトルを示す。第2図において、スペクトル21
は被膜12から得たものであり、スペクトル22は超電
導を示す層状ペロブスカイト構造から得たものを示す。
In FIG. 2, a magnesium oxide single crystal (100) plane is used as the substrate 11, and the main component is (A I
-X B X ) 2 Cu O4 (X = 0.1 *
The X-ray diffraction spectrum of the ternary compound film 12 in an example when the ternary compound film 12 of A=La, B=Sr) is attached is shown. In FIG. 2, spectrum 21
is obtained from coating 12, and spectrum 22 is obtained from a layered perovskite structure exhibiting superconductivity.

同図が示すごとく、被膜スペクトル21は層状ペロブス
カイトのスペクトル22と類似しており、被膜12も第
3図の電気抵抗の温度変化31に見られるごとく、超電
導が発生した。
As shown in the figure, the coating spectrum 21 is similar to the spectrum 22 of layered perovskite, and superconductivity occurred in the coating 12 as well, as seen in the temperature change 31 of electrical resistance in FIG.

この実施例では被膜12の膜厚は6μ−であるが、膜厚
は0.1μmかそれ以下の薄い場合、10μ園以上の厚
い場合も超電導が発生することを確認した。さらに、こ
の例では3元化合物の組成比をX=O,tの場合を示し
たが、Xの値の変化は超電導転移温度の変化を引きおこ
すみで、本質的な差異はX=0.05〜0.2の範囲で
はない。ただX<0.01でき超電導が顕著でない。
In this example, the film thickness of the coating 12 is 6 μm, but it has been confirmed that superconductivity occurs even when the film thickness is as thin as 0.1 μm or less, or as thick as 10 μm or more. Furthermore, this example shows the case where the composition ratio of the ternary compound is X = O, t, but a change in the value of X causes a change in the superconducting transition temperature, and the essential difference is X = 0.05. It is not in the range of ~0.2. However, since X<0.01, superconductivity is not significant.

本発明者らは、酸化マグネシウム以外の結晶性基体につ
いての有効性を詳細に実験的に調べた。
The present inventors experimentally investigated in detail the effectiveness of crystalline substrates other than magnesium oxide.

第4図は、サファイア、スピネル単結晶基体上に、(A
 I−X B * ) e Cu 04構造(x=0.
1.A=La、B=Sr)の被膜を、マグネシウム単結
晶の場合と同様にスパッタリング蒸着法で付着させ、こ
れらの被膜から得たX線回折スペクトルを示す。
Figure 4 shows (A
I-X B * ) e Cu 04 structure (x=0.
1. Films of A=La, B=Sr) were deposited by sputtering deposition method as in the case of the magnesium single crystal, and the X-ray diffraction spectra obtained from these films are shown.

同図スペクトル、41(サファイア)、42(スピネル
)の各特性は、第3U421.22のスペクトルと類似
している。これらの基体以外に、チタン酸ストロンチュ
ウム、シリコン、ガリウム砒素単結晶についても調べた
が、同様のX線回折スペクトルが得られた。これらの場
合、いずれも超電導を示すことが確認された。
The characteristics of spectra 41 (sapphire) and 42 (spinel) in the figure are similar to the spectra of No. 3U421.22. In addition to these substrates, strontium titanate, silicon, and gallium arsenide single crystals were also investigated, and similar X-ray diffraction spectra were obtained. It was confirmed that all of these cases exhibited superconductivity.

この種の酸化物被膜のスパッタリング蒸着では例えばA
rと01との混合ガスをスパッタリングガスに用いるが
02ガスの存在は形成された酸化物被膜の結晶体を悪(
するとともに、抵抗率を高め超電導体を形成しがたい事
を本発明者らは見い出した。実験的に、Art Xe+
 Ne、Krのような不活性ガスあるいはこれらの不活
性ガスの混合ガスがスパッタリングガスとして有効であ
ることを本発明者らは確認した。
In sputtering deposition of this type of oxide film, for example, A
A mixed gas of r and 01 is used as the sputtering gas, but the presence of 02 gas may damage the crystalline structure of the formed oxide film (
At the same time, the present inventors have found that resistivity is increased and it is difficult to form a superconductor. Experimentally, Art Xe+
The present inventors have confirmed that inert gases such as Ne and Kr, or mixed gases of these inert gases, are effective as sputtering gases.

スパッタリング蒸着方式も、高周波二極スパッタ、直流
二極スパッタ、マグネトロンスパッタいずれも有効であ
ることを本発明者らは確認した。
The present inventors have confirmed that all sputtering vapor deposition methods, such as high-frequency bipolar sputtering, direct current bipolar sputtering, and magnetron sputtering, are effective.

特に直流スパッタの場合、スパッタリングターゲットの
抵抗率を1O−3Ω(至)以下に低くする事が必要で、
これ以上の抵抗率では、充分なスパッタリング放電が発
生しない。なお、ターゲットの抵抗率の調整の通常ター
ゲットの焼結条件によって行う。
Especially in the case of DC sputtering, it is necessary to lower the resistivity of the sputtering target to below 1O-3Ω.
If the resistivity is higher than this, sufficient sputtering discharge will not occur. Note that the resistivity of the target is adjusted by adjusting the normal target sintering conditions.

第5図は本発明者らにより改良されたスパッタリング蒸
着法を示す。すなわち、上記スパッタリング蒸着を、少
なくとも一つのターゲットの化学組成が興なる複数個の
ターゲット(AI−18,11)+1CuO4I(A1
−.2B、2)IICu04・・・(AI−1lllB
8n)gcu04を同時にスパッタリング蒸着すること
を特徴としている。この場合、各・ターゲットへのスパ
ッタリング電力を変えることにより、スパッタリングに
より形成した複合酸化物被膜の化学組成を与えることが
できる。
FIG. 5 shows the sputtering deposition method improved by the inventors. That is, the sputtering deposition is carried out using a plurality of targets (AI-18, 11) + 1CuO4I (A1
−. 2B, 2) IICu04... (AI-1llllB
8n) gcu04 is simultaneously deposited by sputtering. In this case, by changing the sputtering power applied to each target, the chemical composition of the composite oxide film formed by sputtering can be changed.

したがって、被膜の化学組成の積極的な調整、人工格子
などの人工的な化学組成のゆらぎを形成が可能になる。
Therefore, it becomes possible to actively adjust the chemical composition of the film and create artificial fluctuations in the chemical composition, such as an artificial lattice.

特にこの種の装置では、直流スパッタがスパッタ電力等
の精密制御に有効であり、また直流マグネトロンスパッ
タ、あるいは直流マグネトロンスパッタガンなどが特に
有効であることを本発明者らは確認した。
Particularly in this type of apparatus, the present inventors have confirmed that DC sputtering is effective for precise control of sputtering power, etc., and that DC magnetron sputtering or a DC magnetron sputter gun is particularly effective.

なお、基体表面に複合酸化物被膜の形成法として、金属
主成分を物理的気相成長法で基体上に付着させ、さらに
酸素ビームあるいは酸素イオンを被膜形成中に被膜に照
射し、基体表面で金属主成分を酸化させることも可能で
ある。物理的気相成長法としては、スパッタリング以外
に熱蒸着例えば電子ビームを照射しながら、複合酸化物
被膜の合金主成分をターゲットとしてスパッタリング蒸
着する。この場合複合酸化物ターゲットとしてスパッタ
リング蒸着するよりも被膜形成速度が1桁以上速い特長
を示し、工業的により有効である。
In addition, as a method for forming a composite oxide film on the substrate surface, the main metal component is deposited on the substrate by physical vapor deposition, and the coating is irradiated with an oxygen beam or oxygen ions during film formation, so that the coating is formed on the substrate surface. It is also possible to oxidize the metal main component. In addition to sputtering, the physical vapor deposition method includes thermal evaporation, for example, sputtering deposition using the main alloy component of the composite oxide film as a target while irradiating with an electron beam. In this case, the film formation rate is more than an order of magnitude faster than sputtering vapor deposition using a composite oxide target, and it is industrially more effective.

この種の被膜の結晶構造など詳細な特性は、基体上に被
膜が拘束されているため、被膜内には通゛常の焼結体で
は存在しない様な大きな歪とか欠陥が存在する。このた
め、被膜の製造方法から被膜、の製造方法を類推できる
ものでない。なお、被膜の熱処理の物理的な意味の詳細
は明らかではないが、おおよそつぎにように考えられる
。すなわち、スパッタリング蒸着等で基体上に付着させ
た複合酸化物被膜では、2価のB元素の3価A元素の置
換が完全に行われていなく (Al−、B−)2Cu 
O4という化合物を形成していない。この場合、例えば
AllCuO4構造のネットワーク中1″::B元素の
酸化物が分散した複合酸化物を形成している。当然Cu
原子は2価である。超電導特性も再現性良く得られない
。超電導は、a元素のb元素による置換と、これに引き
続く2価Cu原子の酸化による3価Cu原子の発生に起
因し、この過程が熱処理に関連する。なお、熱処理時間
が10時間以下で超電導性が得られないのは、A元素の
B元素による置換が不充分であった事に起因していると
考えられる。
The detailed characteristics of this type of coating, such as its crystal structure, are such that because the coating is constrained on the substrate, there are large strains and defects within the coating that do not exist in ordinary sintered bodies. For this reason, it is not possible to infer the method of manufacturing a film from the method of manufacturing a film. Although the details of the physical meaning of the heat treatment of the film are not clear, it can be roughly considered as follows. In other words, in the composite oxide film deposited on the substrate by sputtering vapor deposition, etc., the substitution of the trivalent A element for the divalent B element is not completed, and (Al-, B-)2Cu
It does not form a compound called O4. In this case, for example, a composite oxide is formed in which the oxide of element 1"::B is dispersed in the network of AllCuO4 structure. Naturally, Cu
Atoms are divalent. Superconducting properties cannot be obtained with good reproducibility either. Superconductivity results from the replacement of element a by element b and subsequent oxidation of divalent Cu atoms to generate trivalent Cu atoms, and this process is associated with heat treatment. Note that the reason why superconductivity cannot be obtained when the heat treatment time is 10 hours or less is considered to be due to insufficient substitution of element A with element B.

この種の3元化合物超電導体(Al−IBX)2Cu0
4の構成元素AおよびBの変化による超電導特性の変化
の詳細は明らかではない。ただAは、3価、Bは2価を
示し、へ元素の一部をB元素が置換しているのは事実で
はある。A元素としてLaについて例をあげて説明した
が、ScやY、さらにランタン系列の元素(原子番号5
7〜71)でも、超電導転移湿度が変化する程度で本質
的な発明の層状構造の特性を変えるものではない。
This type of ternary compound superconductor (Al-IBX) 2Cu0
The details of changes in superconducting properties due to changes in the constituent elements A and B of No. 4 are not clear. However, it is true that A indicates trivalence and B indicates divalence, and the B element replaces a part of the hexavalent element. The explanation was given using La as an example of element A, but Sc, Y, and even lanthanum series elements (atomic number 5
7 to 71), the essential characteristics of the layered structure of the invention do not change to the extent that the superconducting transition humidity changes.

また、B元素においても、Br、Ca、Ba等Ua族元
素の変化は超電導転移温度を10°に程度変化させるが
、本質的に本発明層状構造の特性を変えるものではない
Also, regarding B elements, changes in Ua group elements such as Br, Ca, and Ba change the superconducting transition temperature by about 10°, but this does not essentially change the characteristics of the layered structure of the present invention.

とりわけ、本発明にかかる超電導体は、超電導体を薄膜
化している所に大きな特色がある。すなわち、薄膜化は
超電導体の素材を原子状態という極微粒子に分解してか
ら、基体上に堆積させるから、形成された超電導体の組
成は本質的に、従来の焼結体に比べて均質である。した
がって、非常造方法によると、例えば結晶性基体上に薄
膜状で形成されるので焼結体より本質的により精度が高
い上StあるいはGaAsなどのデバイスとの集積化が
可能であるとともに、ジョセ、フソン素子など各種の超
電導デバイスの製造に実用される。特にこの種の化合物
超電導体の転移温度が室温になる可能性もあり、従来の
実用の範囲は広く、本発明の工業的価値は高い。
In particular, the superconductor according to the present invention has a major feature in that the superconductor is made into a thin film. In other words, in thin film formation, the superconductor material is decomposed into ultrafine particles in the atomic state and then deposited on the substrate, so the composition of the formed superconductor is essentially more homogeneous than that of conventional sintered bodies. be. Therefore, according to the temporary fabrication method, since it is formed in the form of a thin film on a crystalline substrate, it is possible to integrate devices such as St or GaAs, which have essentially higher precision than sintered bodies, and also enable integration with devices such as St or GaAs. It is used in the production of various superconducting devices such as Fuson elements. In particular, the transition temperature of this type of compound superconductor may be room temperature, so the range of conventional practical use is wide, and the industrial value of the present invention is high.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の薄膜超電導体の製造方法で
形成した薄膜超電導体の基本構成図、第2図、第3図、
第4図は本発明の薄膜超電導体の基本特性図、第5図は
本発明の薄膜超電導体の製造方法に用いる製造装置の基
本構成図である。 11・・・基体、12・・・3元化合物被膜。 代理人の氏名 弁理士 中尾敏男 はか1名呂jf)浄
信(内容に変更な乙) 第1図 ゝ11 第3図 うi & (幻 第5図 手続補正書fオ入°) 昭和62年6 月26日 昭和62年特許願第=55635  号2発明の名称 薄膜超電導体の製造方法 3補正をする者 事件との関係      特  許  出   願  
大佐 所  大阪府門真市大字門真1006番地名 称
 (582)松下電器産業株式会社代表者    谷 
 井  昭  雄 4代理人 〒571 住 所  大阪府門真市大字門真1006番地松下電器
産業株式会社内 7、補正の内容 図面金策を別紙の通り補正いたします。
FIG. 1 is a basic configuration diagram of a thin film superconductor formed by a method for manufacturing a thin film superconductor according to an embodiment of the present invention, FIGS.
FIG. 4 is a basic characteristic diagram of the thin film superconductor of the present invention, and FIG. 5 is a basic configuration diagram of a manufacturing apparatus used in the method of manufacturing the thin film superconductor of the present invention. 11...Substrate, 12...Ternary compound coating. Name of agent Patent attorney Toshio Nakao Haka1 Narojf) Joshin (no changes to the content) Figure 1ゝ11 Figure 3 ui & (Illustrated Figure 5 Procedural amendment fo ° included) 1988 June 26, 1988 Patent Application No. 55635 2 Name of invention Method for manufacturing thin film superconductor 3 Relationship with the amended case Patent application
Colonel Tokoro 1006 Oaza Kadoma, Kadoma City, Osaka Name (582) Matsushita Electric Industrial Co., Ltd. Representative Tani
Akio Ii 4 Agent 571 Address 7, Matsushita Electric Industrial Co., Ltd., 1006 Oaza Kadoma, Kadoma City, Osaka Prefecture Details of the amendment The drawing monetary policy will be amended as shown in the attached document.

Claims (17)

【特許請求の範囲】[Claims] (1)基体上に主成分が(A_1_−_xB_x)_2
CuO_4である複合酸化物被膜を付着させ、さらに上
記被膜を酸化性雰囲気で熱処理することを特徴とする薄
膜超電導体の製造方法。 ここに、AはSc、Yおよびランタン系列元素(原子番
号57〜71)のうちすくなくとも一種、BはIIa族元
素のうちのすくなくとも一種の元素を示す。
(1) The main component is (A_1_−_xB_x)_2 on the substrate
A method for manufacturing a thin film superconductor, which comprises depositing a composite oxide film of CuO_4, and further heat-treating the film in an oxidizing atmosphere. Here, A represents at least one kind of Sc, Y, and lanthanum series elements (atomic numbers 57 to 71), and B represents at least one kind of group IIa elements.
(2)基体を、線膨脹係数α>10^−^6/℃の材質
で構成したことを特徴とする特許請求の範囲第1項記載
の薄膜超電導体の製造方法。
(2) The method for manufacturing a thin film superconductor according to claim 1, wherein the substrate is made of a material having a coefficient of linear expansion α>10^-^6/°C.
(3)基体を、酸化マグネシウム、サファイア(α−A
l_2O_3)、スピネル、チタン酸ストロンチュウム
、シリコン、ガリウム砒素等の単結晶の少なくとも一種
で構成したことを特徴とする特許請求の範囲第1項記載
の薄膜超電導体の製造方法。
(3) The substrate is magnesium oxide, sapphire (α-A
2. The method for producing a thin film superconductor according to claim 1, wherein the thin film superconductor is made of at least one of single crystals such as 1_2O_3), spinel, strontium titanate, silicon, and gallium arsenide.
(4)基体を、アルミナ、酸化マグネシウム、酸化ヂル
コニウム、ステアタイト、ホルステライト、ベリリア、
スピネル等の磁器で構成したことを特徴とする特許請求
の範囲第1項記載の薄膜超電導体の製造方法。
(4) The base material is alumina, magnesium oxide, zirconium oxide, steatite, forsterite, beryllia,
A method for manufacturing a thin film superconductor according to claim 1, characterized in that the thin film superconductor is made of porcelain such as spinel.
(5)複合酸化物被膜を、スパッタリング蒸着、熱蒸着
等の物理的気相成長法で基体上に付着させることを特徴
とする特許請求の範囲第1項記載の薄膜超電導体の製造
方法。
(5) The method for producing a thin film superconductor according to claim 1, characterized in that the composite oxide film is deposited on the substrate by a physical vapor deposition method such as sputtering vapor deposition or thermal vapor deposition.
(6)複合酸化物被膜を、常圧あるいは減圧化学的気相
成長法、プラズマ化学的気相成長法、光化学的気相成長
法等の化学的気相成長法で基体上に付着させることを特
徴とする特許請求の範囲第1項記載の薄膜超電導体の製
造方法。
(6) The composite oxide film may be deposited on the substrate by a chemical vapor deposition method such as normal pressure or reduced pressure chemical vapor deposition method, plasma chemical vapor deposition method, or photochemical vapor deposition method. A method for producing a thin film superconductor according to claim 1.
(7)スパッタリング蒸着において、被膜蒸着中基体温
度を200〜1000℃の範囲内に設定することを特徴
とする特許請求の範囲第5項記載の薄膜超電導体の製造
方法。
(7) The method for manufacturing a thin film superconductor according to claim 5, characterized in that in sputtering deposition, the substrate temperature is set within the range of 200 to 1000°C during film deposition.
(8)スパッタリング蒸着において、被膜蒸着中基体温
度を500〜700℃の範囲内に設定することを特徴と
する特許請求の範囲第5項記載の薄膜超電導体の製造方
法。
(8) A method for manufacturing a thin film superconductor according to claim 5, characterized in that in sputtering deposition, the substrate temperature is set within a range of 500 to 700°C during film deposition.
(9)熱処理において、酸化性雰囲気として常圧空気ま
たは純酸素を用いることを特徴とする特許請求の範囲第
1項記載の薄膜超電導体の製造方法。
(9) The method for producing a thin film superconductor according to claim 1, wherein normal pressure air or pure oxygen is used as the oxidizing atmosphere in the heat treatment.
(10)スパッタリング蒸着において、主成分が(A_
1_−_xB_x)_2CuO_4である複合酸化物タ
ーゲットをスパッタリング蒸着することを特徴とする特
許請求の範囲第5項記載の薄膜超電導体の製造方法。
(10) In sputtering deposition, the main component is (A_
The method for manufacturing a thin film superconductor according to claim 5, characterized in that a composite oxide target of 1_-_xB_x)_2CuO_4 is deposited by sputtering.
(11)(A_1_−_xB_x)_2CuO_4ター
ゲットにおいて、AをLa、BをBa、Br、Caのい
ずれかの一つで構成し、かつxを0.05<x<0.2
の範囲に設定したことする特許請求の範囲第10項記載
の薄膜超電導体の製造方法。
(11) (A_1_-_xB_x)_2CuO_4 target, A is composed of La, B is composed of one of Ba, Br, Ca, and x is 0.05<x<0.2
A method for producing a thin film superconductor according to claim 10, which is set in the range of .
(12)スパッタリング蒸着において、Ar、Xe、N
e、Krのうち少なくとも一種あるいはこれらの混合ガ
スでスパッタリング蒸着することを特徴とする特許請求
の範囲第5項記載の薄膜超電導体の製造方法。
(12) In sputtering deposition, Ar, Xe, N
6. The method for producing a thin film superconductor according to claim 5, wherein the thin film superconductor is deposited by sputtering using at least one of E, Kr, or a mixed gas thereof.
(13)スパッタリング蒸着を少なくとも二極スパッタ
、直流二極スパッタ、マグネトロンスパッタのうちいず
れか一種で行うことを特徴とする特許請求の範囲第5項
記載の薄膜超電導体の製造方法。
(13) The method for producing a thin film superconductor according to claim 5, wherein the sputtering deposition is performed by at least one of bipolar sputtering, DC bipolar sputtering, and magnetron sputtering.
(14)スパッタリング蒸着において、少なくとも一つ
のターゲットの化学組成が異なる複数個のターゲット(
A_1_−_x_1B_x_1)_2CuO_4、(A
_1_−_x_2B_x_2)_2CuO_4・・・(
A_1_−_x_nB_x_n)_2CuO_4を同時
にスパッタリング蒸着することを特徴とする特許請求の
範囲第5項記載の薄膜超電導体の製造方法。
(14) In sputtering deposition, a plurality of targets (at least one of which has a different chemical composition)
A_1_−_x_1B_x_1)_2CuO_4, (A
_1_-_x_2B_x_2)_2CuO_4...(
The method for manufacturing a thin film superconductor according to claim 5, characterized in that A_1_-_x_nB_x_n)_2CuO_4 is simultaneously deposited by sputtering.
(15)スパッタリング蒸着において、複合酸化物ター
ゲットの電気抵抗率を10^−^3Ωcm以下にするこ
とを特徴とする特許請求の範囲第5項記載の薄膜超電導
体の製造方法。
(15) The method for producing a thin film superconductor according to claim 5, wherein the electrical resistivity of the composite oxide target is set to 10^-^3 Ωcm or less in sputtering deposition.
(16)物理的気相成長法において、複合酸化物被膜の
金属主成分を基体上に付着させ、さらに酸素ビームある
いは酸素イオンを被膜形成中に照射し、基体表面で金属
主成分を酸化させることを特徴とする特許請求の範囲第
5項記載の薄膜超電導体の製造方法。
(16) In the physical vapor deposition method, the main metal component of the composite oxide film is deposited on the substrate, and then oxygen beam or oxygen ions are irradiated during film formation to oxidize the main metal component on the surface of the substrate. A method for manufacturing a thin film superconductor according to claim 5, characterized in that:
(17)物理的気相成長法において、基体上に酸素イオ
ンを照射しながら複合酸化物被膜の合金主成分をターゲ
ットとしてスパッタリング蒸着することを特徴とする特
許請求の範囲第5項記載の薄膜超電導体の製造方法。
(17) Thin film superconductor according to claim 5, characterized in that in the physical vapor deposition method, sputtering deposition is performed using the main alloy component of the composite oxide film as a target while irradiating oxygen ions onto the substrate. How the body is manufactured.
JP62055635A 1987-03-11 1987-03-11 Manufacture of thin film superconductor Pending JPS63224116A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62055635A JPS63224116A (en) 1987-03-11 1987-03-11 Manufacture of thin film superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62055635A JPS63224116A (en) 1987-03-11 1987-03-11 Manufacture of thin film superconductor

Publications (1)

Publication Number Publication Date
JPS63224116A true JPS63224116A (en) 1988-09-19

Family

ID=13004255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62055635A Pending JPS63224116A (en) 1987-03-11 1987-03-11 Manufacture of thin film superconductor

Country Status (1)

Country Link
JP (1) JPS63224116A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63241823A (en) * 1987-03-27 1988-10-07 Nissin Electric Co Ltd Manufacture of superconducting thin film
JPS63264819A (en) * 1987-04-22 1988-11-01 Hitachi Ltd Forming method for oxide superconductor thin film
JPS6419629A (en) * 1987-03-14 1989-01-23 Sumitomo Electric Industries Manufacture of superconductive thin film
JPS6433006A (en) * 1987-04-08 1989-02-02 Hitachi Ltd Production of superconducting oxide and superconducting device
JPS6442307A (en) * 1987-04-18 1989-02-14 Sumitomo Electric Industries Preparation of superconducting thin film
JPS6463222A (en) * 1987-03-18 1989-03-09 Sumitomo Electric Industries Manufacture of superconductive thin film
JPS6463220A (en) * 1987-03-16 1989-03-09 Sumitomo Electric Industries Manufacture of superconductive thin film
JPS6463221A (en) * 1987-03-18 1989-03-09 Sumitomo Electric Industries Manufacture of superconductive thin film
JPS6463223A (en) * 1987-03-18 1989-03-09 Sumitomo Electric Industries Manufacture of superconductive thin film
JPS6463224A (en) * 1987-03-18 1989-03-09 Sumitomo Electric Industries Manufacture of superconductive thin film
JPH01100020A (en) * 1987-03-19 1989-04-18 Cie Generale D'electricite <Cge> Superconductive oxide of copper with mixed atomic value and manufacture

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6419629A (en) * 1987-03-14 1989-01-23 Sumitomo Electric Industries Manufacture of superconductive thin film
JPS6463220A (en) * 1987-03-16 1989-03-09 Sumitomo Electric Industries Manufacture of superconductive thin film
JPS6463222A (en) * 1987-03-18 1989-03-09 Sumitomo Electric Industries Manufacture of superconductive thin film
JPS6463221A (en) * 1987-03-18 1989-03-09 Sumitomo Electric Industries Manufacture of superconductive thin film
JPS6463223A (en) * 1987-03-18 1989-03-09 Sumitomo Electric Industries Manufacture of superconductive thin film
JPS6463224A (en) * 1987-03-18 1989-03-09 Sumitomo Electric Industries Manufacture of superconductive thin film
JPH01100020A (en) * 1987-03-19 1989-04-18 Cie Generale D'electricite <Cge> Superconductive oxide of copper with mixed atomic value and manufacture
JPS63241823A (en) * 1987-03-27 1988-10-07 Nissin Electric Co Ltd Manufacture of superconducting thin film
JPS6433006A (en) * 1987-04-08 1989-02-02 Hitachi Ltd Production of superconducting oxide and superconducting device
JPS6442307A (en) * 1987-04-18 1989-02-14 Sumitomo Electric Industries Preparation of superconducting thin film
JPS63264819A (en) * 1987-04-22 1988-11-01 Hitachi Ltd Forming method for oxide superconductor thin film

Similar Documents

Publication Publication Date Title
JPS63224116A (en) Manufacture of thin film superconductor
JPS63224112A (en) Superconducting wire and its manufacture
JPS63239742A (en) Manufacture for film superconductor
JPH0284782A (en) Manufacture of josephson element
JP2563315B2 (en) Superconductor wire and method of manufacturing the same
US5361720A (en) Epitaxial deposition
JPH01208327A (en) Production of thin film of superconductor
JPS63310515A (en) Manufacture of superconductor membrane
JPH0358488A (en) Planar josephson element and manufacturing method of the same
JP2702711B2 (en) Manufacturing method of thin film superconductor
JP3361016B2 (en) Superconducting member and manufacturing method thereof
JPS63247363A (en) Sputtering target
JPS63299019A (en) Manufacture of thin film superconductive material
JPS63306677A (en) Superconducting device and manufacture thereof
JPH0365502A (en) Preparation of superconductive thin film
EP0333513B1 (en) Oxide superconductor
JP2961852B2 (en) Manufacturing method of thin film superconductor
JPS63247362A (en) Sputtering target
JPH03505024A (en) Epitaxial deposition
JPH05194095A (en) Production of thin-film electric conductor
JPH05170448A (en) Production of thin ceramic film
JPH01105416A (en) Manufacture of thin film superconductor
JPH01183176A (en) Manufacture of thin superconducting film
JPS63298920A (en) Manufacture of membranous superconductor
JPH012218A (en) Manufacturing method of thin film superconductor