JPS63292524A - Manufacture of superconductive film - Google Patents

Manufacture of superconductive film

Info

Publication number
JPS63292524A
JPS63292524A JP62127553A JP12755387A JPS63292524A JP S63292524 A JPS63292524 A JP S63292524A JP 62127553 A JP62127553 A JP 62127553A JP 12755387 A JP12755387 A JP 12755387A JP S63292524 A JPS63292524 A JP S63292524A
Authority
JP
Japan
Prior art keywords
thin film
superconducting thin
film according
producing
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62127553A
Other languages
Japanese (ja)
Inventor
Yoshio Manabe
由雄 真鍋
Tsuneo Mitsuyu
常男 三露
Osamu Yamazaki
山崎 攻
Kiyotaka Wasa
清孝 和佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62127553A priority Critical patent/JPS63292524A/en
Publication of JPS63292524A publication Critical patent/JPS63292524A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To form film-shaped high temp. superconductor by supplying Cu, O, and two specific elements to the base in the form of gas of atoms or compound, and by affixing this complex oxides by chemical gaseous phase growing method. CONSTITUTION:Element A, element B, Cu and O are at least supplied to the surface of a base in the form of gas of atoms or compound to provide affixation of complex oxides. Here element A is either of Sc, Y, and elements of lanthanum type (atomic number 57-71), while element B either of such group IIa elements as Be, Mg, Ca, Sr, Ba. As a film is formed on the crystalline base, the accuracy is higher than any sintered body as well as it is possible to integrate with a device of Si or CaAs.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は超電導薄膜の製造方法に関するものである。特
に化学的気相成長法を用いた製造方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing superconducting thin films. In particular, it relates to a manufacturing method using chemical vapor deposition.

従来の技術 高温超電導体として、A16型2元素化合物として窒化
ニオブ(NbN)やゲルマニウムニオブ(N b s 
G e )などが知られていたが、これらの材料の超電
導転移温度はたかだか24°にであった。
Conventional technology As high temperature superconductors, niobium nitride (NbN) and germanium niobium (Nb s
G e ), etc. were known, but the superconducting transition temperature of these materials was at most 24°.

一方、ペロブスカイト系3元化合物は、さらに高い転移
温度が期待され、Ba−La−Cu−0系の高温超電導
体が提案された( J、G、f3endorz and
K、A、Mul ler 、ツァイトシュリフト フユ
ア フージーク(Zeitschrift fur P
hysik、) −Condensed Matter
 64 、189−193 (1986)]。
On the other hand, perovskite-based ternary compounds are expected to have even higher transition temperatures, and Ba-La-Cu-0-based high-temperature superconductors have been proposed (J, G, f3endorz and
K. A. Muller, Zeitschrift fur P.
hysik, ) -Condensed Matter
64, 189-193 (1986)].

さらに、]Y−Ba−Cu−0がより高温の超電導材1
1”− 料であることが最近提案された(M、 K 、WnM、
 K 、Wn等、フィジカル レピューレターズ(Ph
ysicalReview Letters)Vol 
、5B 、 No 9 、908−910(1987)
)。
Furthermore, ] Y-Ba-Cu-0 is a higher temperature superconducting material 1
1”- materials (M, K, WnM,
K, Wn, etc., Physical Review Letters (Ph
ysicalReview Letters) Vol.
, 5B, No. 9, 908-910 (1987)
).

発明が解決しようとする問題点 しかしながら、Y−Ba−Cu−0系の材料は、現在の
技術では焼結という過程でしか形成できないため、セラ
ミックの粉末あるいはブロックの形状しか得られない。
Problems to be Solved by the Invention However, Y-Ba-Cu-0 based materials can only be formed through the process of sintering using current technology, and therefore only ceramic powder or block shapes can be obtained.

一方、この種の材料を実用化する場合、薄膜状に加工す
ることが強く要望されているが、従来の技術では、薄膜
化は非常に困難されている。
On the other hand, when this type of material is put to practical use, there is a strong demand for processing it into a thin film, but with conventional techniques, it is extremely difficult to process the material into a thin film.

本発明者らは、この種の材料の薄膜化を化学的気相成長
法により基体上に付着させると、薄膜状の高温超電導体
が形成されることを発見し、これにもとづいて超電導薄
膜の製造方法を発明した。
The present inventors discovered that a thin film-like high-temperature superconductor is formed when a thin film of this type of material is deposited on a substrate by chemical vapor deposition. Invented a manufacturing method.

問題点を解決するだめの手段 本発明の製造方法で形成する超電導薄膜の基本構成は、
少なくともA元素とB元素とCuと酸素とを、原子状も
しくは化合物状のガスを、基体表面に供給して複合酸化
物を付着させたことを特徴としている。本発明者らは、
この種の超電導薄膜が、加熱された基板上に、上記複合
酸化物を化学的気相成長法で付着させることにより形成
されることを見い出し発明に致ったものである。ここに
AはSc、Yおよびランタン系元素(原子番号57−7
1)のうちすくなくとも一種、BはBe、Mg。
Means to solve the problem The basic structure of the superconducting thin film formed by the manufacturing method of the present invention is as follows:
The method is characterized in that at least element A, element B, Cu, and oxygen are supplied as atomic or compound gases to the surface of the substrate to deposit the composite oxide. The inventors
The present invention was based on the discovery that this type of superconducting thin film can be formed by depositing the above composite oxide on a heated substrate by chemical vapor deposition. Here, A is Sc, Y, and lanthanum-based elements (atomic number 57-7
At least one of 1), B is Be or Mg.

Ca、Sr、BaなどIla族元素のうち少なくとも一
種を示す。
Indicates at least one type of Ila group elements such as Ca, Sr, and Ba.

作  用 本発明にかかる超電導薄膜の製造方法は、超電導薄膜を
化学的気相成長法によって薄膜化している所に大きな特
色がある。すなわち、化学的気相、成長法による薄膜化
は、超電導体の構成原子を含む原子状もしくは化合物状
のガスという極微粒子を基体上に供給して、基体上に超
電導体を粒子レベルから再構成して堆積させるから、形
成された超電導体の組成は本質的に従来の焼結体に比べ
て均質である。加えてガスを用いるので、超電導体を高
速かつ大面積に堆積することは容易に可能である。した
がって本発明を用いて非常に高精度の超電導体を高速か
つ大面積に堆積することが実現できる。
Function The method for producing a superconducting thin film according to the present invention is characterized in that the superconducting thin film is thinned by chemical vapor deposition. In other words, thin film formation using chemical vapor phase and growth methods reconstitutes the superconductor on the substrate from the particle level by supplying ultrafine particles of atomic or compound gas containing the constituent atoms of the superconductor onto the substrate. Because the superconductor is deposited as a sintered body, the composition of the superconductor formed is essentially homogeneous compared to conventional sintered bodies. In addition, since a gas is used, it is easily possible to deposit superconductors at high speed and over a large area. Therefore, using the present invention, it is possible to deposit superconductors with very high precision over a large area at high speed.

実施例 本発明の実施例を図面とともに説明する。第1図に示す
ように複合酸化物の被膜12を基体11上付着させる方
法として化学的気相成法を用いた。
Embodiments An embodiment of the present invention will be described with reference to the drawings. As shown in FIG. 1, a chemical vapor deposition method was used to deposit the composite oxide film 12 on the substrate 11.

へ元素、B元素、Cuとを、原子状もしくは化合物状の
ガスにして基体11に供給する。B元素はla族元素で
、活性な金属であり、揮発性の有機金属は数少なく、不
安定なものが多い。本発明者らは、β−ジケトン化合物
で揮発性があるビス(1,1,1,ts、rs、rs−
へキサフルオロ−2゜4−ペンタンデオナト)B(■)
(B−Be2Mq。
The element B, the element B, and Cu are supplied to the substrate 11 in the form of atomic or compound gases. Element B is an LA group element and is an active metal, and there are only a few volatile organic metals, and many of them are unstable. The present inventors discovered that bis(1,1,1,ts, rs, rs-
Hexafluoro-2゜4-pentandeonato) B (■)
(B-Be2Mq.

Ca、Sr、Ba) を見出して用いた。その他のA、Cuの原料ガスは、そ
れぞれ、トリス(2,2,6,6−チトラメチルー3,
5−へプタンデオナ) ) A (Ill)(A=Y、
Scまたは原子番号ts−r−71)ビス(1,1,1
,5;5,5−へキサフルオロ−2,4−ペンタンデオ
ナト)銅(II)を用いた。以上のようなへ元素、B元
累、Cuの原料ガスを用いて、基体11上に複合酸化物
12を形成した。その時へ元素、B元累、Cuの原料1
6 ′  ・ ガス中のA元素、B元素、Cuの原子数比をFA。
Ca, Sr, Ba) were discovered and used. Other raw material gases for A and Cu are tris(2,2,6,6-titramethyl-3,
5-Heptandeona) ) A (Ill) (A=Y,
Sc or atomic number ts-r-71) bis(1,1,1
, 5; 5,5-hexafluoro-2,4-pentanedeonato)copper(II) was used. A composite oxide 12 was formed on the substrate 11 using the raw material gases of the element He, the B element, and Cu as described above. Toward that time, elements, B elements, Cu raw materials 1
6' - FA is the atomic ratio of element A, element B, and Cu in the gas.

FB・FCu とした時、本発明者らは・・・・・・・
・・・・(1) の範囲にあれば、臨界温度に多少の差があっても超電導
現象が見出されることを確認した。この複合酸化物の原
料ガス中の原子数比の関係は原料ガスの種類に限らずま
た化学的気相成長法中の常圧。
When FB・FCu, the inventors...
It was confirmed that if the temperature is within the range of (1), superconducting phenomena can be observed even if there is a slight difference in the critical temperature. The relationship between the atomic ratio in the raw material gas of this composite oxide is not limited to the type of raw material gas, but also depends on the normal pressure during chemical vapor deposition.

減圧化学的気相成長法、プラズマ化学的気相成長法、光
化学的気相成長法等のどの方法であっても原料ガス中の
原子数比を合致させれば有効であることを本発明者らは
確認した。
The present inventor has discovered that any method such as low pressure chemical vapor deposition, plasma chemical vapor deposition, photochemical vapor deposition, etc. is effective as long as the atomic ratio in the raw material gas is matched. confirmed.

薄膜超電導体の形成には1ずA−B−Cu−0の複合酸
化物の被膜12を化学的気相成長法で基体11上に付着
させる。
To form a thin film superconductor, first, a coating 12 of an AB-Cu-0 composite oxide is deposited on a substrate 11 by chemical vapor deposition.

この場合、この複合酸化物1oは通常数100°Cの高
温で形成し、超電導例えば液体窒素温度(−195°C
)の低温で動作させるため、特に基体11と被膜12の
密着12の密着性が悪くなり、被膜12が破損されるこ
とを本発明者らは確認した。
In this case, this composite oxide 1o is usually formed at a high temperature of several 100°C, and superconductivity, such as liquid nitrogen temperature (-195°C
), the inventors have confirmed that the adhesion 12 between the base 11 and the coating 12 is particularly poor and the coating 12 is damaged.

さらに本発明者らは、詳細な基体の熱的特性を各種の材
質について調べた結果、基体の線熱膨張係数a〉10/
Cであれば、上記被膜の破損がなく、実用されることを
確認した。例えばα〈10−6/”Cの石英ガラスを基
体に用いると、被膜12は無数の亀裂が入り不連続な被
膜となり、実用に供しにくいことを本発明者らは確認し
た。
Furthermore, as a result of investigating the detailed thermal characteristics of the substrate for various materials, the present inventors found that the linear thermal expansion coefficient a〉10/
It was confirmed that if it was C, the coating would not be damaged and could be put to practical use. For example, the present inventors have confirmed that if quartz glass with α<10-6/''C is used as the substrate, the coating 12 will have numerous cracks and become a discontinuous coating, making it difficult to put it to practical use.

さらに、本発明者らは、第1図の基体11に機能性から
見て、最適の材料があることを見い出した。
Furthermore, the present inventors have discovered that there is an optimal material for the base body 11 shown in FIG. 1 from the viewpoint of functionality.

すなわ、ち、結晶性の高い複合酸化物の被膜12を基体
11の表面13に形成させるためには、単結晶の基体が
有効である。本発明者らは詳細に最適基体材料を調べた
結果、基体11として、酸化マグネシウム、サファイア
(a−A1203)、スピネル、チタン酸ストロンチウ
ム、シリコン、ガリウム砒素等の単結晶が有効であるこ
とを確認した。もっとも、これは表面13に効果的に結
晶性17 ・ − の高い被膜12を成長させるためのものであるから、少
なくとも基体表面13が単結晶であればよい。
In other words, in order to form the highly crystalline complex oxide coating 12 on the surface 13 of the substrate 11, a single crystal substrate is effective. As a result of detailed investigation into the optimal substrate material, the present inventors confirmed that single crystals such as magnesium oxide, sapphire (a-A1203), spinel, strontium titanate, silicon, and gallium arsenide are effective as the substrate 11. did. However, since this is to effectively grow the film 12 with high crystallinity 17.- on the surface 13, it is sufficient that at least the substrate surface 13 is a single crystal.

本発明者らは、この種の超電導体を任意の形状例えば円
筒状に加工する場合、基体としては単結晶よりも、所謂
焼結磁器が有効であることを確認するとともに、最適の
磁器材料を見い出した。すなわち、磁器基体として、ア
ルミナ、酸化マグネシウム、酸化デルコニウム、ステア
タイト、ホルステライト、ベリリア、スピネル等が基体
の加工等、超電導被膜12の基体11への密着性が最適
であることを本発明者らは確認した。この場合も単結晶
と同様に、基体の表面さえこの種の磁器で構成されてい
るとよい。
The present inventors have confirmed that so-called sintered porcelain is more effective as a base material than a single crystal when processing this type of superconductor into an arbitrary shape, such as a cylinder, and have also found the most suitable porcelain material. I found it. That is, the present inventors have found that alumina, magnesium oxide, derconium oxide, steatite, forsterite, beryllia, spinel, etc. are used as the porcelain substrate to provide optimal adhesion of the superconducting coating 12 to the substrate 11 through processing of the substrate, etc. confirmed. In this case as well, it is preferable that even the surface of the substrate is made of this type of porcelain, as in the case of single crystals.

さらに、基体をCu、Ni、Ti、Mo、Nb、Ta、
W。
Furthermore, the substrate is Cu, Ni, Ti, Mo, Nb, Ta,
W.

Mnなどの金属上に複合酸化物を付着させた場合、上記
磁器や単結晶はど密着性はよくないが、超電導現象を確
認した。上記金属上に酸化物、窒化物。
When a composite oxide was deposited on a metal such as Mn, a superconducting phenomenon was confirmed, although the adhesion was not as good as in the case of the above-mentioned porcelain or single crystal. Oxides and nitrides on the above metals.

炭化物等の耐熱被膜を付着させた後に、複合酸化物を付
着させると、密着性は金属上より改善され、超電導現象
も確認した。また、Ni 、 T i 、Mo 、Nb
 。
When a composite oxide was attached after attaching a heat-resistant coating such as carbide, the adhesion was improved compared to that on metal, and superconductivity was also confirmed. Also, Ni, Ti, Mo, Nb
.

Ta、W、Mnのうち少なくとも一種かこれらの金属を
含んだ合金を基体とし、この基体の表面を酸化。
The base is made of at least one of Ta, W, and Mn, or an alloy containing these metals, and the surface of this base is oxidized.

窒化、炭化させたのち、上記複合酸化物を付着させても
超電導現象を確認した。これは、金属上あるいは耐熱被
膜上で形成された複合酸化物はアモルファスあるいは超
電導を示すA−B−Cu−0系の微結晶から構成されて
いるから、超電導現象を示すものと思われる。
Superconductivity was confirmed even when the composite oxide was deposited after nitriding and carbonizing. This is thought to be because the composite oxide formed on the metal or heat-resistant coating is composed of amorphous or A-B-Cu-0 system microcrystals that exhibit superconductivity, and therefore exhibits a superconducting phenomenon.

さらに、上記原子数比の条件を満足して形成された複合
酸化物12を酸素による後処理をすると、超電導転移温
度は変化しないが、超電導転移温度での臨界電流が、処
理後数桁以上増加する傾向にあることを確認した。そし
て常温での抵抗も、酸素の後処理後、数桁下がることを
確認した。
Furthermore, when the composite oxide 12 formed satisfying the above atomic ratio conditions is post-treated with oxygen, the superconducting transition temperature does not change, but the critical current at the superconducting transition temperature increases by several orders of magnitude after the treatment. It was confirmed that there is a tendency to It was also confirmed that the resistance at room temperature was reduced by several orders of magnitude after oxygen post-treatment.

以下、本実施例を深く理解するため、さらに具体的実施
例で述べる。
In order to deeply understand this embodiment, more specific examples will be described below.

(具体的実施例1) 酸化マグネシウム単結晶(1oo)面を基板11として
用い、化学的気相成長法として常圧化学的19 −一 気相成長法を用いた。八−B−Cu−0系の複合酸化物
の一例としてY−Ba−Cu−0複合酸化物について述
べる。Y 、Ba、Cuの各化合物としてトリス((C
H3)2CH3COCHCOCH3(CH3)2)Y2
゜ビス(CF3COCHCOCF3)Ba 3 、ビス
(cF3coCHCoCF3)Cu4を用いた。酸素ハ
純酸素5を用いた。
(Specific Example 1) A magnesium oxide single crystal (1oo) plane was used as the substrate 11, and atmospheric pressure chemical 19-single vapor phase growth method was used as the chemical vapor growth method. A Y-Ba-Cu-0 composite oxide will be described as an example of an 8-B-Cu-0-based composite oxide. Tris ((C
H3)2CH3COCHCOCH3(CH3)2)Y2
Bis(CF3COCHCOCF3)Ba 3 and bis(cF3coCHCoCF3)Cu4 were used. For oxygen, pure oxygen 5 was used.

これらの化合物を輸送するガスとして不活性ガス(He
、Ne、Ar、Kr、Xe)およびH2を用いた。
Inert gas (He
, Ne, Ar, Kr, Xe) and H2.

ここではAr ガス8を用いた。Y 、 Ba 、 C
u  の各化合物中の原子数比を式(1)を満足させる
ため、各化合物を収容した容器5,6.7を180’C
Here, Ar gas 8 was used. Y, Ba, C
In order to satisfy the formula (1) for the atomic ratio in each compound of u, the containers 5 and 6.7 containing each compound were heated to 180'C.
.

130″C,126°C一定に保った。Arガス8の流
量は、Y、Ba、Cuの各容器5,6.7にそれぞれ1
,0.2,0.11/1Iln流した。これによって、
Y 、Ba、Cuの原子数比を1 :1 :3にした。
The temperature was kept constant at 130''C and 126°C.
, 0.2, 0.11/1 ln. by this,
The atomic ratio of Y, Ba, and Cu was set to 1:1:3.

酸素ガス5を0.273 /win流し、還元性のガス
はH2ガス9を用い、流量を0.1137sin  と
した。その他にArガス10を流して、全圧として一気
圧に保った。基体温度は、各化合物と還元性ガス(H2
ガス9)との反応によって、Y 、Ba、Cuの単体が
遊離しはじめる最低温度以上にした。この場合、Y、B
a、Cuの各化合物のうちCu化合物が最低(250″
C)なので、基体温度は250°C以」二の450°C
にした。以上の条件で、基体11上に複合酸化膜12を
6時間蒸着すると、膜厚6.2μm程度であった。形成
された複合酸化膜をさらに、基体温度600″C1純酸
素中で2時間酸素処理し、その後3〜4時間で徐冷した
Oxygen gas 5 was flowed at 0.273/win, H2 gas 9 was used as the reducing gas, and the flow rate was 0.1137 sin. In addition, Ar gas 10 was flowed to maintain the total pressure at one atmosphere. The substrate temperature is determined by the temperature of each compound and the reducing gas (H2
The temperature was set to be higher than the minimum temperature at which single elements of Y 2 , Ba, and Cu begin to be liberated by reaction with gas 9). In this case, Y, B
Among the compounds a and Cu, the Cu compound is the lowest (250″
C) Therefore, the substrate temperature is 250°C or higher and 450°C.
I made it. When the composite oxide film 12 was deposited on the substrate 11 for 6 hours under the above conditions, the film thickness was about 6.2 μm. The formed composite oxide film was further treated with oxygen in C1 pure oxygen at a substrate temperature of 600'' for 2 hours, and then slowly cooled for 3 to 4 hours.

この複合酸化膜12は超電導転移温度90°にであった
This composite oxide film 12 had a superconducting transition temperature of 90°.

この場合、基体温度を250°C以下の場合、基体表面
への複合酸化物の付着性が悪かった。また8oO°C以
上では各化合物の分解が速く、複合酸化物を構成しなか
った。
In this case, when the substrate temperature was 250° C. or less, the adhesion of the composite oxide to the substrate surface was poor. Further, at temperatures above 8oO°C, each compound decomposed quickly and did not form a composite oxide.

ここでは、膜厚6.2μmであるが、膜厚は0.1μm
かそれ以下の薄い場合、10μm以上の厚い場合も超電
導が発生することを確認した。
Here, the film thickness is 6.2 μm, but the film thickness is 0.1 μm.
It was confirmed that superconductivity occurs when the thickness is 10 μm or more, and when the thickness is 10 μm or more.

また、基体11への複合酸化物12の付着速度りは、0
.1≦D≦10μm/hrの間で超電導が発21 t・
−7 生した。10μm/ h r以上では、複合酸化物を構
成せず、また0、1μm/ h r以下では超電導現象
を確認できなかった。
Further, the adhesion rate of the composite oxide 12 to the substrate 11 is 0.
.. Superconductivity occurs between 1≦D≦10 μm/hr21 t・
-7 I was born. At 10 μm/hr or more, no composite oxide was formed, and at 0.1 μm/hr or less, no superconducting phenomenon could be confirmed.

ここでは、装置1内の全圧力を1気圧一定にして行った
が、全圧力Pを0.01≦P≦3気圧の範囲にしても超
電導の発生を確認した。全圧力が3気圧より大きい場合
では、複合酸化物を構成することはなく、また0、01
気圧未満では超電導現象を示さなかった。
Here, the total pressure inside the device 1 was kept constant at 1 atm, but the occurrence of superconductivity was confirmed even when the total pressure P was set in the range of 0.01≦P≦3 atm. When the total pressure is greater than 3 atm, no composite oxide is formed, and 0,01
No superconducting phenomenon was observed below atmospheric pressure.

酸素の後処理に関し、超電導転移温度の変化はないが超
電導転移温度での臨界電流は1.5桁以上向上すること
を確認した。
Regarding the oxygen post-treatment, it was confirmed that although there was no change in the superconducting transition temperature, the critical current at the superconducting transition temperature was improved by more than 1.5 orders of magnitude.

以上のように本実施例にすれば、Y、Ba、Cuの各化
合物状のガスと酸素を原料ガスとし、常圧化学的気相成
長法を用いることにより、超電導体を薄膜化することが
できる。
As described above, according to this embodiment, a superconductor can be made into a thin film by using atmospheric pressure chemical vapor deposition using Y, Ba, and Cu compound gases and oxygen as raw material gases. can.

(具体的実施例2) 具体的実施例2を図面とともに説明する。化学的気相成
長法としては、第2図に示すように電子サイクロトロン
共鳴(ECR)プラズマによる化22  ノ、−: 学的気相成長法を用いた。ECRプラズマによる化学的
気相成長法の基本構成は、マイクロ波(2,45GHz
)とECR条件の磁場22とである。装置21に酸素5
を導入して酸素プラズマ23を作り、基体11付近にY
、Ba、Cuの各化合物状のガスを導入して、酸素プラ
ズマ23とY、Ba、Cuの各化合物状のガスとを反応
させて複合酸化物12を基体11上に付着させる。複合
酸化物12は具体的実施例1と同じ(Y −Ba −C
u −0系で行った。
(Specific Example 2) A specific example 2 will be described with reference to the drawings. As the chemical vapor deposition method, a chemical vapor deposition method using electron cyclotron resonance (ECR) plasma was used as shown in FIG. The basic structure of the chemical vapor deposition method using ECR plasma is microwave (2.45 GHz
) and the magnetic field 22 under ECR conditions. Oxygen 5 to the device 21
is introduced to create oxygen plasma 23, and Y is introduced near the base 11.
, Ba, and Cu are introduced, and the oxygen plasma 23 is caused to react with the compound gases of Y, Ba, and Cu, so that the composite oxide 12 is deposited on the substrate 11. Composite oxide 12 is the same as in specific example 1 (Y-Ba-C
This was done on the u-0 system.

Y、Ba、Cuの各原料ガスは具体的実施例1と同じく
トリス(2,2,6,6−チトラメチルー3.5−へブ
タンデオナト)イツトリウム(III)Y(CH3)2
COCHCO(CH3)2)22.ビス(1,1,1,
5,5,5−へキサフルオロ−2゜4−ペンタンデオナ
ト)バリウム(II)Ba(CF3CQCHCOCF3
)23 、ビス(1,1゜1.5,5,5−へキサフル
オロ−2,4−ペンタンデオナト)銅(II)Cu(C
F3COCHCOCF3)24ケ用いた。酸素は純酸素
6を用いた。
The raw material gases of Y, Ba, and Cu are tris(2,2,6,6-titramethyl-3.5-hebutanedeonato)yttrium(III)Y(CH3)2 as in Specific Example 1.
COCHCO(CH3)2)22. Bis(1,1,1,
5,5,5-hexafluoro-2°4-pentanedeonato)Barium(II)Ba(CF3CQCHCOCF3
)23 , bis(1,1゜1.5,5,5-hexafluoro-2,4-pentanedeonato)copper(II)Cu(C
F3COCHCOCF3) 24 pieces were used. Pure oxygen 6 was used as oxygen.

Y、Ba、Cuの各化合物2,3.4を入れた容23 
・・ ・ 器6,7,8を、それぞれ180″C,130″C11
26°Cの一定に保った。容器6,7.8で発生したY
 、Ba、Cuの各化合物状のガスは、直接、装置21
内に導入した。各化合物状のガスの導入口24は基体1
1より5crn#1′シた。基体11として熱膨張率1
σ6(1,’C)以上のサファイア基板のR而を用いた
。基体温度は、具体的実施例1と同様な理由で、260
°Cとした。Y、Ba、Cuの原子数比をFY、FBa
、Fou とすると、を満足するようにした。ここでは
、FY:FBa:Fcu−1=1=3 とした。そして
酸素の流量を20 secmとした。また、還元性のガ
スとして純水素9を用い、2Bacm流した。装置21
内の全圧力は約10 ’Torr  であった。マイク
ロ波のパワーを200Wとした。以上の条件で、基体1
1上に蒸着時間6時間、膜厚7.2μmの複合酸化物1
2を堆積させた。形成された複合酸化物12をさらに同
一装置で酸素のECRプラズマを用いて処理した。基板
温度200°C1酸素ガスの流量を10108c、マイ
クロ波パワー200Wで10分間処理した。このように
して得られた複合酸化12の超電導転移温度は900に
であった。
Volume 23 containing compounds 2 and 3.4 of Y, Ba, and Cu
・ ・ Containers 6, 7, and 8 are 180″C and 130″C11, respectively.
The temperature was kept constant at 26°C. Y generated in containers 6, 7.8
, Ba, and Cu compound gases are directly supplied to the device 21.
introduced within. Each compound gas inlet 24 is connected to the base 1.
5crn#1' from 1. The base body 11 has a thermal expansion coefficient of 1
A sapphire substrate with an R of σ6(1,'C) or more was used. The substrate temperature was 260°C for the same reason as in specific example 1.
It was set to °C. The atomic ratio of Y, Ba, and Cu is FY, FBa
, Fou, it is made to satisfy. Here, FY:FBa:Fcu-1=1=3. And the flow rate of oxygen was set to 20 sec. In addition, pure hydrogen 9 was used as a reducing gas and was flowed at 2 Bacm. Device 21
The total pressure within was approximately 10'Torr. The power of the microwave was set to 200W. Under the above conditions, base 1
Composite oxide 1 with a evaporation time of 6 hours and a film thickness of 7.2 μm was deposited on 1.
2 was deposited. The formed composite oxide 12 was further treated using oxygen ECR plasma in the same apparatus. Processing was performed for 10 minutes at a substrate temperature of 200° C., an oxygen gas flow rate of 10108° C., and a microwave power of 200 W. The superconducting transition temperature of composite oxide 12 thus obtained was 900.

ここでは、全圧力10  Torr を用いたが、全圧
力Pを10−5≦P≦10−2Torrの範囲であれば
超電導の発生を確認した。全圧力を10−5未満にする
と超電導現象を認めることがなく、1o−2より大きい
場合では複合酸化物を形成できなかった。
Although a total pressure of 10 Torr was used here, it was confirmed that superconductivity occurred if the total pressure P was in the range of 10-5≦P≦10-2 Torr. When the total pressure was less than 10-5, no superconducting phenomenon was observed, and when it was greater than 10-2, no composite oxide could be formed.

以上のように、本実施例によればY、Ba、Cuの各化
合物状のガスと酸素を原料ガスとし、ECRプラズマを
用いることにより、低い基体温度、低いガス圧で超電導
を示す複合酸化物を形成することができる。なお、具体
的実施例1,2では、Y。
As described above, according to this example, a composite oxide that exhibits superconductivity at low substrate temperature and low gas pressure is produced by using Y, Ba, and Cu compound gases and oxygen as raw material gases and using ECR plasma. can be formed. In addition, in specific examples 1 and 2, Y.

Ba、Cuの原子数比を、1:1:3で行ったが、式(
1)を満足する原子数比であればすべて超電導の発生を
確認した。
The atomic ratio of Ba and Cu was 1:1:3, but the formula (
The occurrence of superconductivity was confirmed in all cases where the atomic ratio satisfied 1).

Y、Ba、Cuの原料ガスとして、対称のβ−ジケトン
化合物を用いたが、非対称のβ−ジケトン化合物であっ
てもよい。また、シクロベンタンプ25 ・、−。
Although a symmetrical β-diketone compound was used as the raw material gas for Y, Ba, and Cu, an asymmetrical β-diketone compound may be used. Also, cyclobentamp 25 ·, -.

エニル化合物、例エハシクロペンタンデエニル銅トリメ
チルリン(C5H5Cu(CH3)3P)、ジシクロペ
ンタンデエニルハリウム((C5H5)2Ba)や、ア
ルキル化合物等の揮発性、昇華性を有する有機金属化合
物でも超電導の発生を確認した。
Enyl compounds, such as cyclopentanedenyl copper trimethylphosphorus (C5H5Cu(CH3)3P), dicyclopentanedenyl halium ((C5H5)2Ba), and organometallic compounds with volatility and sublimation properties such as alkyl compounds. The occurrence of superconductivity was confirmed.

捷た、Y、Ba、Cuを供給する手段は、Y、Ba。The means for supplying the shredded Y, Ba, and Cu is Y, Ba.

Cuのうち少なくとも一種類の合金を熱、電子ビーム、
スパッタリング等の手段によって供給する熱加熱法、電
子ビーム法、スパッタ法であっても、超電導の発生を確
認した。
At least one type of alloy of Cu is heated, electron beam,
The generation of superconductivity was confirmed even with thermal heating methods such as sputtering, electron beam methods, and sputtering methods.

なお、具体的実施例1,2では、常圧化学的気相成長法
とECRプラズマによる化学的気相成長法を示した。そ
の他に、光化学的気相成長法の場合、基体温度を500
°Cにし、660nm以下の光源としてアルゴンイオン
レーザを照射して複合酸化物12を形成しても、超電導
の発生を確認した。また、プラズマ化学的気相成長法も
、直流プラズマ、低周波プラズマ、高周波プラズマ、マ
イクロ波プラズマのいずれも有効であることを本発明者
らは確認した。
In addition, in specific examples 1 and 2, a normal pressure chemical vapor deposition method and a chemical vapor deposition method using ECR plasma were shown. In addition, in the case of photochemical vapor deposition, the substrate temperature is
Even when the composite oxide 12 was formed by heating the composite oxide 12 at 660 nm or less and irradiating it with an argon ion laser as a light source, the occurrence of superconductivity was confirmed. In addition, the present inventors have confirmed that direct current plasma, low frequency plasma, high frequency plasma, and microwave plasma are all effective for plasma chemical vapor deposition.

さらに、電界を印加してプラズマ中のイオンを加速した
場合、付着性が向上した複合酸化物が得られた。減速し
た場合、複合酸化物の表面が平坦であった。超電導転移
温度は殆んど変化しなかった。
Furthermore, when ions in the plasma were accelerated by applying an electric field, a composite oxide with improved adhesion was obtained. When the speed was reduced, the surface of the composite oxide was flat. The superconducting transition temperature hardly changed.

酸素の後処理に関し、形成された複合酸化物を異なる装
置で処理しても変化がない。また、酸素を後処理として
熱的な処理あるいはプラズマを用いるほかに、レーザ光
、赤外線等の工学的熱処理方法あるいは電子線による加
熱方法が応用可能である。
Regarding oxygen post-treatment, there is no change even if the formed composite oxide is treated with different equipment. Furthermore, in addition to using thermal treatment or plasma as a post-treatment with oxygen, engineering heat treatment methods such as laser light, infrared rays, or heating methods using electron beams can be applied.

なお、基体表面にへ元素、B元素、Cuの化合物被膜を
化学的気相成長法、物理的気相成長法で基体上に付着さ
せ、さらに酸素ビームあるいは酸素イオン、酸素ラジカ
ル等を化合物被膜形成中に照射し基体表面で、複合酸化
物を形成することも可能である。
In addition, a compound film of element B, element B, and Cu is deposited on the surface of the substrate by chemical vapor deposition or physical vapor deposition, and then an oxygen beam, oxygen ions, oxygen radicals, etc. are applied to form a compound film. It is also possible to form a composite oxide on the surface of the substrate by irradiating the inside of the substrate.

この種のA −B −Cu −0系複合酸化物の超電導
体の構成元素AおよびBの変化による超電導特性の変化
の詳細は明らかではない。ただAは、3価、Bは2価を
示しているのは事実ではある。へ元素としてYについて
例をあげて説明したが、ScやLa 、さらにランタン
系列の元素(原子番号57〜71)でも、超電導転移温
度が変化する程度で本質的な発明の特性を変えるもので
はない。
The details of changes in superconducting properties due to changes in constituent elements A and B of this kind of A-B-Cu-0 based composite oxide superconductor are not clear. However, it is true that A indicates trivalence and B indicates divalence. Although the explanation has been given using an example of Y as an element, the use of Sc, La, and even lanthanum series elements (atomic numbers 57 to 71) does not change the essential characteristics of the invention, except that the superconducting transition temperature changes. .

寸だ、B元素においても、Sr、Ca、Ba等1a族元
素の変化は超電導転移温度を10°に程度変化させるが
、本質的に本発明の特性を変えるものではない。
Even in B elements, changes in group 1a elements such as Sr, Ca, and Ba change the superconducting transition temperature by about 10°, but this does not essentially change the characteristics of the present invention.

発明の効果 とりわけ、本発明にかかる超電導体は、超電導体を化学
的気相成長法によって薄膜化している所に大きな特色が
ある。すなわち、化学的気相成長法による薄膜化は、超
電導体の構成原子を含む原子状もしくは化合物状のガス
という極微粒子を基体上に供給して、基体」二に超電導
体を粒子レベルから化学的に再構成して堆積させるから
、形成された超電導体の組成は本質的に従来の焼結体に
比べて均質である。加えてガスを用いるので、超電導体
を高速かつ大面積に堆積させることは容易に可能である
。しだがって、非常に高精度の超電導体が本発明で実現
される。
Effects of the Invention Particularly, the superconductor according to the present invention is characterized in that the superconductor is formed into a thin film by chemical vapor deposition. In other words, thinning the film by chemical vapor deposition involves supplying ultrafine particles of atomic or compound gas containing the constituent atoms of the superconductor onto the substrate, and then chemically depositing the superconductor from the particle level onto the substrate. Because the superconductor is reconstituted and deposited, the composition of the formed superconductor is essentially homogeneous compared to conventional sintered bodies. In addition, since a gas is used, it is easily possible to deposit superconductors at high speed and over a large area. Therefore, a superconductor with very high precision is realized with the present invention.

以上の説明のごとく本発明の超電導薄膜の製造方法によ
ると、例えば結晶性基体上に薄膜状で形成されるので焼
結体より本質的により精度が高い上Si  あるいはC
aAs  などのデバイスとの集積化が可能であるとと
もに、ジョセフソン素子など各種の超電導デバイスの製
造に実用される。特にこの種の化合物超電導体の転移温
度が室温になる可能性もあり、従来の実用の範囲は広く
、本発明の工業的価値は高い。
As explained above, according to the method for producing a superconducting thin film of the present invention, it is formed in the form of a thin film on, for example, a crystalline substrate, so it is essentially more precise than a sintered body.
It can be integrated with devices such as aAs, and is also used in the production of various superconducting devices such as Josephson elements. In particular, the transition temperature of this type of compound superconductor may be room temperature, so the range of conventional practical use is wide, and the industrial value of the present invention is high.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の超電導薄膜の製造方法で形
成した超電導薄膜の基本構成図と具体的実施例1の常圧
化学的気相成長法の装置概略図、第2図は本発明の具体
的実施例2のECRプラズマによる化学的気相成長法の
装置概略図である。 1・・・・・・常圧化学的気相成長法の装置、11・・
・・・・基体、12・・・・・・複合酸化物、21・・
・・・・ECRプラズマによる化学的気相成長法の装置
。 第1図 ?9 排気 第2図 ↓ 29排気
Fig. 1 is a basic configuration diagram of a superconducting thin film formed by the superconducting thin film manufacturing method according to one embodiment of the present invention, and a schematic diagram of an apparatus for atmospheric pressure chemical vapor deposition according to specific embodiment 1. FIG. 2 is a schematic diagram of an apparatus for chemical vapor deposition using ECR plasma according to a second specific example of the invention. 1... Apparatus for atmospheric pressure chemical vapor deposition method, 11...
...Base, 12...Composite oxide, 21...
...Equipment for chemical vapor deposition using ECR plasma. Figure 1? 9 Exhaust Figure 2 ↓ 29 Exhaust

Claims (40)

【特許請求の範囲】[Claims] (1)少なくともA元素とB元素とCuと酸素とを、原
子状もしくは化合物状のガスにして基体上に供給し、化
学的気相成長法によって前記A元素、B元素そしてCu
の複合酸化物を付着させることを特徴とする超電導薄膜
の製造方法。ここでA元素はSc、Yおよびランタン系
元素(原子番号57〜71)のうち少なくとも一種、B
元素はアルカリ土類元素のうち少なくとも一種の元素を
示す。
(1) At least element A, element B, Cu, and oxygen are supplied onto the substrate in the form of atomic or compound gases, and the elements A, B, and Cu are
A method for producing a superconducting thin film, which comprises depositing a composite oxide. Here, element A is at least one of Sc, Y, and lanthanum elements (atomic numbers 57 to 71), and B
The element indicates at least one element among alkaline earth elements.
(2)化学的気相成長法として、常圧または減圧の化学
的気相成長法を用いたことを特徴とする特許請求の範囲
第1項記載の超電導薄膜の製造方法。
(2) The method for producing a superconducting thin film according to claim 1, characterized in that the chemical vapor deposition method is a chemical vapor deposition method under normal pressure or reduced pressure.
(3)化学的気相成長法として、プラズマ化学的気相成
長法を用いたことを特徴とする特許請求の範囲第1項記
載の超電導薄膜の製造方法。
(3) The method for producing a superconducting thin film according to claim 1, wherein a plasma chemical vapor deposition method is used as the chemical vapor deposition method.
(4)化学的気相成長法として、光化学的気相成長法を
用いたことを特徴とする特許請求の範囲第1項記載の超
電導薄膜の製造方法。
(4) The method for producing a superconducting thin film according to claim 1, wherein a photochemical vapor deposition method is used as the chemical vapor deposition method.
(5)A元素を含む化合物状のガスとして、アルキル化
合物β−ジケトンキレート化合物またはシクロペンタン
ジエニル化合物等の有機金属化合物を用いたことを特徴
とする特許請求の範囲第1項記載の超電導薄膜の製造方
法。
(5) The superconducting thin film according to claim 1, wherein an organometallic compound such as an alkyl compound β-diketone chelate compound or a cyclopentanedienyl compound is used as the compound gas containing element A. manufacturing method.
(6)B元素を含む化合物状のガスとして、アルキル化
合物、β−ジケトンキレート化合物またはシクロペンタ
ンジエニル化合物等の有機金属化合物を用いたことを特
徴とする特許請求の範囲第1項記載の超電導薄膜の製造
方法。
(6) The superconductor according to claim 1, wherein an organometallic compound such as an alkyl compound, a β-diketone chelate compound, or a cyclopentanedienyl compound is used as the compound gas containing element B. Method for manufacturing thin films.
(7)Cuを含む化合物状のガスとして、アルキル化合
物、β−ジケトンキレート化合物またはシクロペンタン
ジエニル化合物等の有機金属化合物を用いたことを特徴
とする特許請求の範囲第1項記載の超電導薄膜の製造方
法。
(7) The superconducting thin film according to claim 1, characterized in that an organometallic compound such as an alkyl compound, a β-diketone chelate compound, or a cyclopentanedienyl compound is used as the compound gas containing Cu. manufacturing method.
(8)化学的気相成長法として、電子サイクロトロン共
鳴プラズマによる化学的気相成長法を用いたことを特徴
とする特許請求の範囲第3項記載の超電導薄膜の製造方
法。
(8) The method for producing a superconducting thin film according to claim 3, wherein a chemical vapor deposition method using electron cyclotron resonance plasma is used as the chemical vapor deposition method.
(9)A元素、B元素そしてCuを含む化合物または前
記元素をそれぞれ含む化合物のうちアルキル化合物を輸
送するガスとしてHe、Ne、Ar、Xe、にKr等の
不活性ガスを用いたことを特徴とする特許請求の範囲第
5項、第6項、第7項のいずれかに記載の超電導薄膜の
製造方法。
(9) A compound containing element A, element B, and Cu, or an inert gas such as Kr or the like is used for He, Ne, Ar, or Xe as a gas for transporting an alkyl compound of a compound containing each of the above elements. A method for manufacturing a superconducting thin film according to any one of claims 5, 6, and 7.
(10)A元素、B元素、Cuを含む化合物または前記
元素をそれぞれを含む化合物のうちβ−ジケトン化合物
を輸送するガスとして、He、Ne、Ar、Xe、Kr
等の不活性ガスまたはH_2を用いたことを特徴とする
特許請求の範囲第5項、第6項、第7項のいずれかに記
載の超電導薄膜の製造方法。
(10) Gases that transport β-diketone compounds among compounds containing element A, element B, and Cu or compounds containing each of the above elements include He, Ne, Ar, Xe, and Kr.
The method for producing a superconducting thin film according to any one of claims 5, 6, and 7, characterized in that an inert gas such as or H_2 is used.
(11)A元素、B元素、Cuを含む化合物また前記元
素をそれぞれを含む化合物のうちシクロペンタリジエニ
ル化合物を輸送するガスとして、He、Ne、Ar、X
e、Kr等の不活性ガスまたはH_2、CO_2、H_
2O、O_2、空気を用いたことを特徴とする特許請求
の範囲第5項、第6項、第7項いずれかに記載の超電導
薄膜の製造方法。
(11) Compounds containing element A, element B, Cu, and among compounds containing each of the above elements, gases that transport cyclopentadienyl compounds include He, Ne, Ar, and
Inert gas such as e, Kr or H_2, CO_2, H_
The method for producing a superconducting thin film according to any one of claims 5, 6, and 7, characterized in that 2O, O_2, and air are used.
(12)A元素または前記元素を含む合金をヒータ加熱
法、電子ビーム加熱法、スパッタ法のうち少なくとも1
つを用いてガス状にして基体上に供給したことを特徴と
する特許請求の範囲第1項記載の超電導薄膜の製造方法
(12) Element A or an alloy containing the element is heated by at least one of heater heating method, electron beam heating method, and sputtering method.
2. The method for producing a superconducting thin film according to claim 1, wherein the superconducting thin film is supplied onto the substrate in a gaseous state using a gaseous substance.
(13)B元素または前記元素を含む合金をヒータ加熱
法、電子ビーム加熱法、スパッタ法を用いてガス状にし
て、基体上に供給したことを特徴とする特許請求の範囲
第1項記載の超電導薄膜の製造方法。
(13) Element B or an alloy containing the element is made into a gas by using a heater heating method, an electron beam heating method, or a sputtering method, and is supplied onto the substrate. Method for manufacturing superconducting thin films.
(14)ヒータ加熱法、電子ビーム加熱法、スパッタ法
のうちすくなくとも1つを用いて、CuまたはCuの合
金をガス状にして基体上に供給することを特徴とする特
許請求の範囲第1項記載の超電導薄膜の製造方法。
(14) Claim 1, characterized in that Cu or a Cu alloy is supplied onto the substrate in a gaseous state using at least one of a heater heating method, an electron beam heating method, and a sputtering method. The method for producing the superconducting thin film described above.
(15)A元素、B元素、Cuを含むβ−ジケトン化合
物または前記元素をそれぞれ含むβ−ジケトン化合物を
用い基体温度を250℃以上にしたいことを特徴とする
特許請求の範囲第5項、第6項、第7項、第10項のい
ずれかに記載の超電導薄膜の製造方法。
(15) A β-diketone compound containing element A, element B, and Cu or a β-diketone compound containing each of the above elements is used, and the substrate temperature is desired to be 250°C or higher. The method for producing a superconducting thin film according to any one of Items 6, 7, and 10.
(16)A元素、B元素、Cuを含むシクロペンタンデ
エニル化合物または前記元素をそれぞれ含むシクロペン
タンデエニル化合物を用い、基体温度を420℃以上に
したことを特徴とする特許請求の範囲第5項、第6項、
第7項、第11項のいずれかに記載の超電導薄膜の製造
方法。
(16) A cyclopentanedenyl compound containing element A, element B, and Cu or a cyclopentanedenyl compound containing each of the above elements is used, and the substrate temperature is set to 420° C. or higher. Section, Section 6,
The method for producing a superconducting thin film according to any one of Items 7 and 11.
(17)プラズマ化学的気相成長法において、プラズマ
中のイオン等を電界によって加速させて、基体上に複合
酸化物を付着させることを特徴とする特許請求の範囲第
3項記載の超電導薄膜の製造方法。
(17) In the plasma chemical vapor deposition method, the superconducting thin film according to claim 3 is characterized in that ions in the plasma are accelerated by an electric field to deposit the composite oxide on the substrate. Production method.
(18)プラズマ化学気相成長方法において、プラズマ
中のイオン等を電界によって減速させて、基体上に複合
酸化物を付着させることを特徴とする特許請求の範囲第
3項記載の超電導薄膜の製造方法。
(18) Production of a superconducting thin film according to claim 3, characterized in that in the plasma chemical vapor deposition method, ions in the plasma are decelerated by an electric field to deposit the composite oxide on the substrate. Method.
(19)基体として、線熱膨張率a>10^−^6(1
/℃)の材質を用いたことを特徴とする特許請求の範囲
第1項記載の超電導薄膜の製造方法。
(19) As a substrate, linear thermal expansion coefficient a>10^-^6(1
2. The method of manufacturing a superconducting thin film according to claim 1, characterized in that a material having a temperature of 100%/°C) is used.
(20)基体として、酸化マグネシウム、サファイア(
α−Al_2O_3)、スピネル、チタン酸ストロンチ
ウム、シリコン、ガリウム砒素等の単結晶の少なくとも
一種を用いたことを特徴とする特許請求の範囲第19項
記載の超電導薄膜の製造方法。
(20) Magnesium oxide, sapphire (
20. The method for producing a superconducting thin film according to claim 19, characterized in that at least one of single crystals such as α-Al_2O_3), spinel, strontium titanate, silicon, and gallium arsenide is used.
(21)基体として、アルミナ、酸化マグネシウム、酸
化ヂルコニウム、ステアタイト、ホルステライト、ベリ
リア、スピネル等の磁器を用いたこと特徴とする特許請
求の範囲第19項記載の超電導薄膜の製造方法。
(21) The method for producing a superconducting thin film according to claim 19, characterized in that the substrate is made of porcelain such as alumina, magnesium oxide, zirconium oxide, steatite, forsterite, beryllia, or spinel.
(22)基体に、Cu、Ni、Ti、Mo、Nb、Ta
、W、Mn、Fe等の金属のうちの一種あるいはこれら
の金属を含んだ合金例えばステンレスを用いたことを特
徴とする特許請求の範囲第1項記載の超電導薄膜の製造
方法。
(22) Cu, Ni, Ti, Mo, Nb, Ta on the substrate
2. The method for producing a superconducting thin film according to claim 1, wherein one of metals such as , W, Mn, and Fe, or an alloy containing these metals, such as stainless steel, is used.
(23)基体の表面に、耐熱被膜を形成した後、複合酸
化物を付着させることを特徴とする特許請求の範囲第1
項記載の超電導薄膜の製造方法。
(23) Claim 1, characterized in that after forming a heat-resistant coating on the surface of the substrate, the composite oxide is attached.
A method for producing a superconducting thin film as described in .
(24)耐熱被膜を金属の酸化物、窒化物、炭化物で構
成したことを特徴とする特許請求の範囲第23項記載の
超電導薄膜の製造方法。
(24) The method for producing a superconducting thin film according to claim 23, wherein the heat-resistant coating is made of a metal oxide, nitride, or carbide.
(25)基体を、Ni、Ti、Mo、Nb、Ta、W、
Mnのうちの少なくとも一種か、これらの金属を含んだ
合金で構成し、複合酸化物を付着させる前に、前記基体
の表面を酸化、窒化あるいは炭化させることを特徴とす
る特許請求の範囲第23項記載の超電導薄膜の製造方法
(25) The substrate is Ni, Ti, Mo, Nb, Ta, W,
Claim 23, characterized in that the substrate is made of at least one type of Mn or an alloy containing these metals, and the surface of the substrate is oxidized, nitrided, or carbonized before the composite oxide is attached. A method for producing a superconducting thin film as described in .
(26)A元素、B元素、Cuの化合物または、前記元
素それぞれを含む化合物のガスに、550nm以下の光
エネルギーを照射して、基体上に複合酸化物を付着させ
ることを特徴とする特許請求の範囲第4項記載の超電導
薄膜の製造方法。
(26) A patent claim characterized in that a compound of element A, element B, and Cu, or a gas of a compound containing each of the above elements is irradiated with light energy of 550 nm or less to deposit a composite oxide on a substrate. The method for producing a superconducting thin film according to item 4.
(27)基体上に、複合酸化物を付着中に、還元性ガス
を流しながら前記複合酸化物を形成することを特徴とす
る特許請求の範囲第1項記載の超電導薄膜の製造方法。
(27) The method for producing a superconducting thin film according to claim 1, wherein the composite oxide is formed on the substrate while flowing a reducing gas.
(28)還元性ガスとしてH_2を用いたことを特徴と
する特許請求の範囲第27項記載の超電導薄膜の製造方
法。
(28) The method for producing a superconducting thin film according to claim 27, characterized in that H_2 is used as the reducing gas.
(29)基体上に複合酸化物を形成した後に、酸素によ
って後処理したことを特徴とする特許請求の範囲第1項
記載の超電導薄膜の製造方法。
(29) The method for producing a superconducting thin film according to claim 1, wherein the composite oxide is formed on the substrate and then post-treated with oxygen.
(30)酸素の後処理として、基体温度600℃〜80
0℃としたことを特徴とする特許請求の範囲第29項記
載の超電導薄膜の製造方法。
(30) As an oxygen post-treatment, the substrate temperature is 600°C to 80°C.
The method for producing a superconducting thin film according to claim 29, characterized in that the temperature is 0°C.
(31)酸素の後処理として、酸素を励起してイオンま
たはラジカルを用いたことを特徴とする特許請求の範囲
第29項記載の超電導薄膜の製造方法。
(31) The method for producing a superconducting thin film according to claim 29, wherein oxygen is excited and ions or radicals are used as the oxygen post-treatment.
(32)酸素の励起する手段としてプラズマを用いたこ
とを特徴とする特許請求の範囲第31項記載の超電導薄
膜の製造方法。
(32) A method for producing a superconducting thin film according to claim 31, characterized in that plasma is used as a means for exciting oxygen.
(33)酸素を励起する方法として、電子サイクロトロ
ン共鳴プラズマを用いたことを特徴とする特許請求の範
囲第32項記載の超電導薄膜の製造方法。
(33) The method for producing a superconducting thin film according to claim 32, wherein electron cyclotron resonance plasma is used as a method for exciting oxygen.
(34)共鳴プラズマを用いる酸素の後処理に関し、酸
素の圧力Pを10^−^4≦P≦10^−^2Torr
にしたことを特徴とする特許請求の範囲第33項記載の
超電導薄膜の製造方法。
(34) Regarding oxygen post-treatment using resonance plasma, oxygen pressure P is set to 10^-^4≦P≦10^-^2 Torr.
34. A method for producing a superconducting thin film according to claim 33.
(35)共鳴プラズマを用いる酸素の後処理に関し、基
体温度を400℃以下にしたことを特徴とする特許請求
の範囲第33項記載の超電導薄膜の製造方法。
(35) The method for producing a superconducting thin film according to claim 33, wherein the substrate temperature is set to 400° C. or lower in the oxygen post-treatment using resonance plasma.
(36)基体上に、複合酸化物を付着させる速度D(μ
m/hr)を0.1≦D≦10としたことを特徴とする
特許請求の範囲第1項記載の超電導薄膜の製造方法。
(36) Speed D (μ
2. The method for producing a superconducting thin film according to claim 1, characterized in that (m/hr) satisfies 0.1≦D≦10.
(37)A元素、B元素およびCuの原子状もしくは化
合物ガスの前記元素の原子数比を0.5≦B/A≦4そ
して0.5≦Cu/A+B≦4として供給することを特
徴とする特許請求の範囲第1項記載の超電導薄膜の製造
方法。
(37) The atomic ratio of the elements A, B, and Cu in the atomic or compound gas is supplied as 0.5≦B/A≦4 and 0.5≦Cu/A+B≦4. A method for producing a superconducting thin film according to claim 1.
(38)化学的気相成長法として、常圧、減圧または光
化学的気相成長法を用い、複合酸化物の形成中の全圧力
P_Tを、0.01≦P_T≦10気圧にしたことを特
徴とする特許請求の範囲第2項または第4項記載の超電
導薄膜の製造方法。
(38) As the chemical vapor deposition method, normal pressure, reduced pressure, or photochemical vapor deposition method is used, and the total pressure P_T during the formation of the composite oxide is set to 0.01≦P_T≦10 atmospheres. A method for producing a superconducting thin film according to claim 2 or 4.
(39)化学的気相成長法として、プラズマ化学的気相
成長法を用い、複合酸化物の形成中の全圧力P_Tを0
.1Torr≦P_T≦100Torrにしたことを特
徴とする特許請求の範囲第3項記載の超電導薄膜の製造
方法。
(39) As the chemical vapor deposition method, a plasma chemical vapor deposition method is used, and the total pressure P_T during the formation of the composite oxide is reduced to 0.
.. The method for manufacturing a superconducting thin film according to claim 3, characterized in that 1 Torr≦P_T≦100 Torr.
(40)化学的気相成長法として、電子サイクロトロン
共鳴プラズマを用い、複合酸化物の形成中の全圧力P_
Tを10^−^5≦P_T≦10^−^2Torrにし
たことを特徴とする特許請求の範囲第8項記載の超電導
薄膜の製造方法。
(40) As the chemical vapor deposition method, electron cyclotron resonance plasma is used, and the total pressure P_ during the formation of the composite oxide is
9. The method of manufacturing a superconducting thin film according to claim 8, wherein T is set to 10^-^5≦P_T≦10^-^2 Torr.
JP62127553A 1987-05-25 1987-05-25 Manufacture of superconductive film Pending JPS63292524A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62127553A JPS63292524A (en) 1987-05-25 1987-05-25 Manufacture of superconductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62127553A JPS63292524A (en) 1987-05-25 1987-05-25 Manufacture of superconductive film

Publications (1)

Publication Number Publication Date
JPS63292524A true JPS63292524A (en) 1988-11-29

Family

ID=14962858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62127553A Pending JPS63292524A (en) 1987-05-25 1987-05-25 Manufacture of superconductive film

Country Status (1)

Country Link
JP (1) JPS63292524A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01200519A (en) * 1988-02-04 1989-08-11 Fujikura Ltd Manufacture of oxide superconducting wire material
JPH01208468A (en) * 1988-02-15 1989-08-22 Riken Corp Manufacture of thin barium-type film
US5164363A (en) * 1989-02-10 1992-11-17 Kabushiki Kaisha Toshiba Method for vapor-phase growth of a superconducting oxide thin film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01200519A (en) * 1988-02-04 1989-08-11 Fujikura Ltd Manufacture of oxide superconducting wire material
JPH01208468A (en) * 1988-02-15 1989-08-22 Riken Corp Manufacture of thin barium-type film
US5164363A (en) * 1989-02-10 1992-11-17 Kabushiki Kaisha Toshiba Method for vapor-phase growth of a superconducting oxide thin film

Similar Documents

Publication Publication Date Title
EP0302506B1 (en) Method and apparatus for fabricating superconductive thin films
Schieber Deposition of high temperature superconducting films by physical and chemical methods
JP2003002635A (en) Superconductive magnesium diboride thin film, and method and apparatus for manufacturing the same
US5453306A (en) Process for depositing oxide film on metallic substrate by heat plasma flash evaporation method
JPS63224116A (en) Manufacture of thin film superconductor
Zhao et al. In-situ growth of YBCO high-Tc superconducting thin films by plasma-enhanced metalorganic chemical vapor deposition
JPS63292524A (en) Manufacture of superconductive film
JPS63239742A (en) Manufacture for film superconductor
JPH01208327A (en) Production of thin film of superconductor
JPS63239738A (en) Superconductor wire and manufacture thereof
Zhao et al. Deposition of high-Tc superconducting Y-Ba-Cu-O thin films at low temperatures using a plasma-enhanced organometallic chemical vapor deposition approach
JP2702711B2 (en) Manufacturing method of thin film superconductor
JPH0331482A (en) Manufacture of material contain- ing either one or both of alkali earth metal and alkali earth metal oxide
JPH0196015A (en) Formation of superconducting thin film
JP2594271B2 (en) Superconductor thin film manufacturing apparatus and superconductor thin film manufacturing method
JPH02118075A (en) Production of oxide superconductor
JPS63299019A (en) Manufacture of thin film superconductive material
JPH02118061A (en) Production of oxide superconductor
Sugimoto Chemical Vapor Deposition of Oxide High-Tc Superconducting Thin Films
JP2835235B2 (en) Method of forming oxide superconductor thin film
JPH012218A (en) Manufacturing method of thin film superconductor
JPH01275405A (en) Production of superconductor structure
JPH01220311A (en) Manufacture of superconductive ceramic wire rod
JPH01105416A (en) Manufacture of thin film superconductor
JPH02311313A (en) Production of thin film superconductor